Skip navigation
Please use this identifier to cite or link to this item: http://arks.princeton.edu/ark:/88435/dsp01qv33s074w
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSzabo, Zoltan-
dc.contributor.authorTalvola, Victoria-
dc.date.accessioned2021-07-27T15:51:47Z-
dc.date.available2021-07-27T15:51:47Z-
dc.date.created2021-04-29-
dc.date.issued2021-07-27-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/dsp01qv33s074w-
dc.description.abstractIn this thesis, I present an exposition on the Casson invariant, an invariant of integral homology 3-spheres. The thesis is intended for students who have studied basic topology: I cover the necessary background material on 3-manifolds and knots. This includes a definition of the Rokhlin invariant, which the Casson invariant generalizes. I describe the Casson invariant both axiomatically and through its explicit construction in terms of counting points in representation spaces of the fundamental group of a space. I also survey recent work on the Casson invariant, including generalizations such as the Casson-Walker invariant and applications to the cosmetic surgery conjecture.en_US
dc.format.mimetypeapplication/pdf
dc.language.isoenen_US
dc.titleAn Overview of the Casson Invarianten_US
dc.typePrinceton University Senior Theses
pu.date.classyear2021en_US
pu.departmentMathematicsen_US
pu.pdf.coverpageSeniorThesisCoverPage
pu.contributor.authorid920192203
pu.mudd.walkinNoen_US
Appears in Collections:Mathematics, 1934-2024

Files in This Item:
File Description SizeFormat 
TALVOLA-VICTORIA-THESIS.pdf2.66 MBAdobe PDF    Request a copy


Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.