Skip navigation
Please use this identifier to cite or link to this item: http://arks.princeton.edu/ark:/88435/dsp01q524js136
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorAdams, Ryan-
dc.contributor.authorMukherjee, Arin-
dc.date.accessioned2024-07-18T12:45:06Z-
dc.date.available2024-07-18T12:45:06Z-
dc.date.created2024-05-
dc.date.issued2024-07-18-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/dsp01q524js136-
dc.description.abstractMorphological computation is the idea that intelligent systems offload computation from their control systems to their morphologies. Towards the goal of designing complex passively-adaptable intelligent systems, we learn simple adaptive functions and quantify the extent to which a learned morphology induces a passive-automatic control system. Key to our approach is the neuromechanical autoencoder framework, used to co-learn the morphology and controls of a system with a gradient based approach.en_US
dc.format.mimetypeapplication/pdf
dc.language.isoenen_US
dc.titleLearning Neuromechanical Functions: Adaptability and Advantage in Gradient-Based Design of Morphological Computationen_US
dc.typePrinceton University Senior Theses
pu.date.classyear2024en_US
pu.departmentComputer Scienceen_US
pu.pdf.coverpageSeniorThesisCoverPage
pu.contributor.authorid920195317
pu.mudd.walkinNoen_US
Appears in Collections:Computer Science, 1987-2024

Files in This Item:
File SizeFormat 
MUKHERJEE-ARIN-THESIS.pdf1.61 MBAdobe PDF    Request a copy


Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.