The Economics of Federal Aid to
Private Elementary and Secondary Schools

Donald E. Frey*

*Assistant Professor of Economics, Wake Forest University.
Most of the work for this paper was completed at the Industrial
Relations Section of Princeton University.
The Economics of Federal Aid to Private Elementary and Secondary Schools
Donald E. Frey

During the 1972 presidential campaign both major candidates advocated some form of federal aid to parochial schools or to the parents of parochial school students. This paper addresses several aspects of the overall question of policy: Is federal aid to parochial schools justifiable in economic terms?

I

The argument implicit in the statements of Mr. Nixon is the following. If the cost of parochial education continues to rise at a rapid rate, a large number of students will be forced out of parochial schools and into public schools by reason of their inability to pay rising tuition. Such an influx would impose additional burdens on the public system without providing any new sources of revenue. This will tend to strain the financial ability of the public systems and may result in a reduction in the quality of public education. On the other hand, some sort of federal aid to parochial schools should leave the tuition of such schools within the means of more students, thereby slowing or stopping the influx into the public schools and indirectly aiding the public schools.

Enrollment in non-public elementary and secondary schools declined from 7 million students in 1966 to about 5.4 million in 1971. For the

1Source: American Enterprise Institute for Public Policy Research, Financing the Schools, (Washington, D.C., 1972), p. 35. Parochial religious schools account for 95 percent of private pupils. Of the total, 83 percent are Roman Catholic.
purpose of this section only, we will accept the unexamined proposition that this decline was indeed due to the rising costs of parochial education, and not to some other cause.\(^2\) Furthermore, we will accept the unexamined proposition that declines in parochial enrollments will be as large in the near future as in the recent past.\(^3\) We are also willing to accept Mr. Nixon's estimates of the additional burden on the public schools if all parochial schools were to close. He has variously estimated this expense to be between $3 billion and $4 billion annually, plus fixed costs for plant. Finally, we remind the reader of the subtle, but crucial, thrust of Mr. Nixon's argument: aid to parochial schools is justified in terms of aiding public schools.

The mere fact that an influx of students to the public schools would be costly does not justify the conclusion that it would necessarily be harmful. Such an influx would be harmful only if the funds needed to maintain the quality of public education at former levels were not forthcoming.

The Nixon argument seems to say just that: as enrollments rise, people

\(^2\) A survey of the National Catholic Educational Association, as reported in the New York Times, April 6, 1972, points out that at least some of the decline in enrollments has been due to the movement of the Catholic population away from central cities to suburbs, where parochial schools are far less accessible.

\(^3\) See section II of this paper.

\(^4\) The $4 billion figure is in the Message on Educational Reform, March 3, 1970, as quoted in Financing the Schools, op. cit., p. 37. The figure of $3 billion was given in a speech before Catholic educators as quoted in the New York Times, April 7, 1972, p. 14.
will be unwilling to increase tax rates sufficiently to maintain educational quality. This position, while plausible, has not been substantiated.

A no-aid position may also be articulated. Even with a static tax base, the electorate may be more willing to raise tax rates after the demise of parochial schools than before. As private schools close, so the argument goes, public schools may well receive new political support from parents who previously had only a minimal stake in the public system. Someone with a reputation as a critic of the "nationalized" public education industry has taken note of the

understandable reluctance of parents who send their children to parochial schools to increase taxes to finance higher public school expenditures. As a result, those areas where parochial schools are important have great difficulty raising funds for public schools. 5

At issue is a behavioral hypothesis about the support that communities give to their public schools as the ratio of public school pupils to all pupils (in both public and private schools) changes. An empirical study may clarify whether the "pro-aid" view, or the "no-aid" view is correct. Partisans of either viewpoint should agree with the first equation in our model, the enrollment function. This function states that the ratio of public pupils to all pupils, X_1, is related directly to the quality of the public schools, inversely to the proportion of the population that finds parochial education compatible with its belief, 6 and directly to the cost of private

6For all practical purposes, the proportion of the population able to attend private schools is the same as the proportion that is Catholic. While there are regional exceptions, this statement is true for the whole United States and is especially true for the state of New Jersey, the state from which our data are drawn.
education. Better public schools, all else equal, draw students away from private schools. A larger population having beliefs compatible with the goals of parochial schools undoubtedly results in a larger actual enrollment in private schools, all else equal. And higher private school costs, if passed along as higher tuition rates, imply fewer students able to afford private education.

The second function of the model is the political support function. It states that the quality of public education, X_2, a proxy for which is the per-pupil expenditure in the public schools, is related to the proportion of all students that is attending the public schools, X_1, the median family income of the community, X_3, and the number of pupils in the public school system, X_4. Income should have a positive impact on expenditures if educational quality is a normal good. Increased enrollment, in absolute numbers, may lower average costs, quality constant, if there are economies of scale. There is, however, no a priori knowledge as to the direction of the impact of X_1 upon X_2. The pro-aid camp argues that tax rates are not increased as the proportion of all pupils in public schools, X_1, increases, thereby allowing expenditure per pupil, X_2, to decrease. The no-aid camp argues that tax rates may be increased through increased political support for public education. The model perceived by the two parties is shown in Figure 1.

There are those who would claim that this may be a very weak proxy for educational quality since increased per-pupil expenditures may not be employed in ways that effectively increase educational quality.
Both parties agree on the position and slope of the enrollment function, which is labeled E in the diagrams. In Figures 1A and 1B this function is shown shifting to the right in response to rising costs of parochial education. Rising costs, which are reflected in rising tuition charges, drive students into the public schools, all else equal.

The central debate concerns the slope of the political support function, which is labeled P in the diagrams. As illustrated, the pro-aid camp expects per-pupil expenditures to decline as public enrollment grows. The no-aid camp expects the opposite, due to increased political support.

Suppose federal grants retard or halt the movement of the enrollment function to the right. According to the pro-aid position, such grants would sustain existing levels of expenditure per pupil in the public schools.
According to the no-aid camp, such aid would merely deny to the public schools new political support that would have ultimately increased per-pupil expenditures in the public schools. Note once again, that the pro-aid argument justifies grants to parochial schools because it helps public schools.

The data and the evidence. The crucial issue is the sign of the coefficient of X_1 in the political support function. This function is identified and may be estimated by ordinary least squares and two-stage least squares. Definitions of the variables and sources of data are given in Table 1.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
<th>Comments and Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_1</td>
<td>Ratio of public to all elementary pupils in the district</td>
<td>U.S. Census of Population, 1970; General Social and Economic Characteristics, New Jerseya</td>
</tr>
<tr>
<td>X_3</td>
<td>Median family income in district</td>
<td>U.S. Census of population, 1970; General Social and Economic Characteristics, New Jersey</td>
</tr>
<tr>
<td>X_5</td>
<td>Percent of population with one or both parents foreign born</td>
<td>U.S. Census of population, 1970; General Social and Economic Characteristics, New Jersey. A proxy for the percent of the population compatible with parochial schools.</td>
</tr>
</tbody>
</table>

aThe U.S. Census reports $100 - X_1$, the proportion of all pupils in private schools.
Variables X_1, X_2, X_3, and X_4 belong in the political support function, which is of primary interest. X_5 belongs in the enrollment function and is of interest only for two-stage estimation. These data were gathered for 112 school districts in New Jersey—districts for which data appeared in both the U.S. census source and the state commissioner's report. The enrollments of the public systems ranged from 76,000 pupils in Newark to as few as 900 pupils. The mean size of the systems was about 5800 pupils. The proportion of pupils attending public schools ranged from a low of 50 percent to a high of nearly 100 percent. The unweighted mean was about 77 percent.

Turning to Table 2, we discover that estimation of the political support function by ordinary least squares reveals no statistically significant impact of X_1 upon X_2. This suggests three possibilities. The hypotheses of both the no-aid and pro-aid people may be wrong. Both hypotheses may be correct and the effects may negate each other. Or, simultaneous equations bias may be masking a negative coefficient for X_1.

In order to test the last possibility, we estimated the political support function using two-stage least squares. The first-stage equation estimated X_1 as a function of all the exogenous variables in the model. This introduced the additional variable X_5, the proportion of the population with one or both parents foreign-born. The variable is assumed to be a rough proxy for the proportion of the population that is Roman Catholic and is used because census data are not collected on religious affiliation. Ideally, the first-stage

8 The bias can only be in a positive direction.

9 This proxy variable has weaknesses that are too obvious to belabor. However, it has a highly significant negative impact on enrollments in public schools, just as we would expect if it indeed is a proxy for the proportion of the population that is strongly favorable to parochial education.
<table>
<thead>
<tr>
<th>Table 2: Coefficients and t-Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Variables (across)</td>
</tr>
<tr>
<td>X₂ Log(X₂) X₂ Log(X₂) X₁ Log(X₁)</td>
</tr>
<tr>
<td>C 497 4.6 524 5.0 88.8 4.3</td>
</tr>
<tr>
<td>(4) (6.7) (2.6) (4.6) (21) (15)</td>
</tr>
<tr>
<td>X₁ -.554 (.4)</td>
</tr>
<tr>
<td>X₂ -.913 (.4)</td>
</tr>
<tr>
<td>X₃ 2.75 2.7 .053 (5.5) (5.5) (1.7)</td>
</tr>
<tr>
<td>(5.5)</td>
</tr>
<tr>
<td>X₄ .003 .003 -.000 (.9) (.9) (.3)</td>
</tr>
<tr>
<td>X₅ -.000 -.000 .000 (.7) (.7) (.3)</td>
</tr>
<tr>
<td>Log(X₅) -.746 (6.9)</td>
</tr>
</tbody>
</table>

| Exploratory Variables: |
| Log(X₁) -.078 (.6) |
| Log(X₂) -.164 (.7) |
| Log(X₃) .41 (.4) (.4) .100 (5.4) (1.97) |
| Log(X₄) .046 (.2) (.2) .013 (2.1) (1.2) |
| Log(X₅) -.20 (6.6) |
| R² .224 .241 .224 .238 .316 .325 |

| OLS | OLS | TSLS | TSLS |

The significant and positive coefficient of enrollment undoubtedly reflects the costs of providing compensatory programs for the urban poor in the very large school districts. This effect apparently outweighs any scale economies.
equation would also include a variable the tuition in the parochial schools of each of the communities. It is assumed that high tuition fees result in smaller parochial enrollments. Tuition figures were not available on a community-by-community basis. In any event, there is good reason to believe that nominal parochial tuition fees are often quite different from the actual tuition charged.

The two-stage estimation techniques also failed to detect any significant impact of X_1 on X_2, although the absolute magnitude of the coefficient was increased. Even with this increase, the absolute magnitude remained very small. If we are willing to ignore temporarily the fact that the coefficients are not significant, we may use them to compute some estimates of changes in per-pupil expenditures in public schools were all the parochial schools to close. (This, of course, is an extreme assumption.) These computations are given in Table 3.

The conclusion of Table 3 is that even if the estimated coefficients were significant, the dollar impact of closing all parochial schools would be trivial. It is unlikely in any event that all parochial schools would be forced to close in the foreseeable future. The least efficient schools

10 It is apparently common practice to pay as much as one-half of tuition fees via contributions to the parish church. This, in effect, is a subsidy that the federal government already provides for parochial education, since such contributions are deductible from the federal income tax. Source: "Catholic School Problems Reflected at St. Kevin's," New York Times, January 10, 1972, p. E-6.

For more than one-half of parochial schools in the United States, tuition payments represent less than 25 percent of total support; for more than 40 percent, a parish subsidy represents more than 75 percent of total support. Source: The Notre Dame Study of Catholic Elementary and Secondary Schools in the United States, "Catholic Schools in Action," (University of Notre Dame, 1966), p. 65, Table 24.
Table 3

Impact Upon Per-pupil Public Expenditures if All Parochial Schools Closed

<table>
<thead>
<tr>
<th>Equation</th>
<th>Change in $</th>
<th>New Expenditure Level</th>
<th>Percent Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-12.65</td>
<td>781.45</td>
<td>-1.6</td>
</tr>
<tr>
<td>2</td>
<td>-15.88</td>
<td>778.12</td>
<td>-2.0<sup>b</sup></td>
</tr>
<tr>
<td>3</td>
<td>-20.93</td>
<td>773.10</td>
<td>-2.8</td>
</tr>
<tr>
<td>4</td>
<td>-41.34</td>
<td>752.66</td>
<td>-4.2<sup>b</sup></td>
</tr>
</tbody>
</table>

^aThe ex ante mean expenditure level for the 112 districts was $794.

^bFor log-linear regressions, the percent change was computed directly. For this computation, the percent change in enrollments employed was
\[\frac{23}{(77+100)/2} \] times 100.

The average ex ante percent enrollment in the public schools was 77 for the 112 districts in the sample. Use of the geometric mean as the base for the computation made no important difference.
would be closed until eventually a number of competitive parochial schools would remain. Furthermore, whatever proportion of schools ultimately closes, the proportion of pupils changing to public education should be less. The reason is that the schools to be closed will undoubtedly be those whose clientele can easily be absorbed into the remaining parochial schools.

There is no compelling evidence to prefer either the pro-aid or no-aid positions. The burden of proof, however, would seem to be upon those advocating such a large change of policy as giving federal grants to private education. The argument that such aid will indirectly aid the public schools does not seem to shoulder that burden of proof.

II

For purposes of discussion, we accepted in section I the "unexamined proposition that declines in parochial enrollments will be as large in the near future as in the recent past." Although this proposition is the fuel for the argument that an emergency will be upon us if federal grants are not shortly provided to parochial schools (or parents), it is not immediately obvious that enrollments will continue to decline at the same rate as previously.

Assume that average costs and tuition of parochial schools will continue to rise as fast in the near future as in the recent past. This tells us nothing whatsoever about the rate at which enrollments will decline. None of the proponents of aid for parochial schools has, to my knowledge, estimated
a demand function for parochial education, relating enrollment to tuition paid. The importance of such missing information may be seen from the following consideration. If the demand for parochial education were unit-elastic with respect to tuition fees, then even if the percent rate of increase of tuition remains the same, the absolute decrease in enrollments must get smaller.

I do not suggest that the demand for parochial education actually is unit-elastic. This example simply illustrates the great danger in projecting the future from the immediate past without adequate insight into important aspects of the question. The potential exists for developing programs designed to protect against future events that would not have occurred in any case.

III

We consider the hitherto unexamined proposition that rising costs of parochial education cause enrollments to decline. It is our position that both costs and enrollments may be simultaneously determined. If that is the case, then it is incorrect to attribute declining enrollments to increases in average costs. In this section we will present both short-run and long-run models of the determination of enrollment, average costs, and educational quality of parochial schools. The importance of these models is that they highlight several reasons why unit costs might rise while enrollments decline—the pattern that has been observed in the past few years. The long-run model also reveals conditions under which federal aid to parochial schools might have perverse effects: namely, hasten the exodus rather than slow it.
Short-Run Models

In the short run the size of the physical plant of a parochial system is fixed, although variable inputs may be changed in response either to a change in numbers enrolled or to a desire to change educational quality offered. Since the parochial school system is not a profit-maximizer, we assume that the system follows a "non-profit decision rule" such that average total costs are set equal to price (= tuition). Marginal cost and revenue curves are not germane since the objective is not profit maximization. Since any given physical plant may have been built when demand conditions were different, there is no reason to believe that the intersection of the demand and average total cost curves occurs at the point of minimum average cost. In Figure 2A point A is not the minimum cost point on average total cost curve ATC(1).

Figure 2

Short-run Models Illustrating Reasons for A Simultaneous Decrease in Enrollments and Increase in Costs

A. Rising Factor Prices Or Use of Factors

\[
\frac{\partial}{\partial \pi \text{ or } \text{use of factors}}
\]

B. Decline in Demand

\[
\frac{\partial}{\partial \text{Decline in Demand}}
\]

Enrollment

ATC

Enrollment
Parochial school authorities claim, in essence, that rising prices of variable inputs have caused ATC(1) to shift upward, as shown in Figure 2A, resulting in a new equilibrium point such as B. At B, we observe, enrollment is lower and unit costs are higher than at A. This is consistent with observed facts.

It is possible, however, to explain the same facts without invoking an increase in the prices of inputs at all. Suppose that parochial school administrators adopt a policy of improving educational quality. Then more variable inputs will be used for each unit of output produced. This would have the same effect as increasing the price of factors. ATC(1) rises to ATC(1') in either case.

In Figure 2B we present an even more intriguing possibility. The average total cost curve does not shift at all. The demand curve, however, shifts to the left. The equilibrium moves from point A to point B. The new equilibrium is also consistent with the observed facts: smaller enrollment and higher costs.

Long-Run Analysis

In the short run, parochial systems may be saddled with the wrong size plant. In the long run, though, plant size may be varied so that for any

11. During recent Congressional testimony it is reported that Cardinal Cooke of New York "scoffed at the suggestion that waning parent interest was a major factor in enrollment declines..." (Nation's Schools, Nov., 1972, p. 21) Earlier testimony, however, suggested that this indeed was the case. J.J. Delaney, "What's Happening to the Sister Schools?" in Education, Feb.-March, 1972, p. 19, suggests that Catholic parents no longer view the public schools as alien institutions controlled by hostile Protestants.

12. With the typical upward-sloping supply curve, a drop in demand is associated with a drop in prices and a drop in quantity (enrollment). In this model, however, a drop in demand is consistent with an increase in prices (= cost per unit = tuition).
point on the demand curve, maximum educational quality may be obtained. That is, for any given enrollment level and average total cost (on the demand curve), there may be many feasible plant sizes, but only one that provides maximum educational quality. In the long run this size plant is built. Making use of the fact that for every point on the demand curve there is some maximum level of educational quality that may be obtained, we are ready to develop a full-scale long-run model. In this model enrollment, quality, and average costs (= tuition) are determined. The model is identical to one developed for non-profit hospitals by Martin S. Feldstein.

In Figure 3 the demand curve for the parochial school district is shown in quadrant one. The demand curve relates the size of enrollment with the tuition that parents must pay. In the second quadrant we find a 45° line that represents the non-profit condition that tuition per child should equal cost per child. In the third quadrant the cost per child is related to the most educational quality that can be obtained in the long run by buying an optimum-sized school plant. The way the curve in the third quadrant is drawn, it indicates that quality increases with respect to costs per child at a decreasing rate. This must be so because the time of students is an input in the educational process. Increases of all the inputs under the long-run control of the school system (labor, materials and capital) are not typically matched by increases in the input of time by students.

Figure 3
Long-Run Determination of Enrollment, Tuition, and Educational Quality
The fourth quadrant represents the quality-enrollment plane. Once the functions of the first three quadrants are given, the quality-enrollment frontier (transformation curve) of the fourth quadrant is fully determined. To illustrate this, we have taken an arbitrary point on the demand curve, X, and constructed the point X' on the quality-enrollment frontier.

Note the following characteristics of the model so far:

1) It is indeterminate. In the long run, any point on the quality-enrollment frontier may be chosen. We will shortly make it determinate.

2) If the prices of factors increase exogenously, then the curve in the third quadrant rotates clockwise around the origin toward the cost axis. This is consistent with the fact that for any given expenditure (cost) per student, smaller amounts of the factors may be purchased at higher prices. Thus quality must decline. This, in turn, requires that the quality-enrollment frontier in the fourth quadrant rotate in a clockwise manner around the point of its intersection with the enrollment axis. Thus, rising factor prices result in quality becoming more costly in terms of enrollment that must be given up. The relative prices of quality and enrollment change. Enrollment becomes relatively cheaper as factor prices rise.

3) A parallel shift of the demand curve to the left results in the quality-enrollment frontier moving in toward the origin. However there will be a slight tendency for the relative prices of enrollment and quality to change. Quality will become slightly cheaper in terms of enrollment as demand declines.
4) Federal grants directly to parents may be viewed as shifting the demand curve to the right. If made to the schools directly, the grant will have the effect of pushing the 45° line in quadrant two to the left, without changing the slope. Both of these interpretations of federal aid have the effect of shifting the quality-enrollment frontier to the right and making enrollment cheaper relative to quality than before the aid.

In Figure 4A we have reproduced the fourth quadrant and superimposed upon it the assumed indifference curves of the administrators of the parochial schools. Given the utility function and the quality-enrollment frontier, the equilibrium point is at Y. This closes the model. We turn now to the implications of the model.

In Figure 4B we illustrate the likely impact of increasing factor prices. The original equilibrium is at Y, and the new equilibrium is at Y'. Note that the rotation of the frontier, which has the effect of making enrollment cheaper relative to quality, has had the effect of increasing enrollments. This occurs with fairly "normal" indifference curves. Thus, a very strong "substitution" effect has overcome the "income effect" of rising factor prices and has actually increased enrollment. Naturally, this does not have to be the case; the point is that rising factor prices change the relative prices of quality and enrollment.

Figure 4B shows that a fully-developed model of parochial schools does not necessarily imply that rising factor prices tend to decrease enrollments. Thus, when advocates of federal aid claim that rising factor prices are
Figure 4
Fourth Quadrant: Quality-Enrollment Frontier and Indifference Curves

A. ENROLLMENT

 ENROLLMENT - QUALITY
 FRONTIER

 IMPACT OF INCREASE
 OF FACTOR PRICES

B. ENROLLMENT

 FULLY-DETERMINED
 MODEL

 IMPACT OF DECLINE IN
 DEMAND

C. ENROLLMENT

 Y

 CASE IN WHICH
 FEDERAL AID HAS
 PERVERSE EFFECT

D. ENROLLMENT

 Y'

 Ed. QUALITY

Ed. QUALITY
causing a decline in enrollments they are not stating an obvious fact, nor even the implication of an unambiguous theory, but a very particular interpretation of a theory. Namely, for rising factor costs to cause a decrease in enrollments, the income effect must outweigh the substitution effect.

On the other hand, Figure 4C, which shows the results of a decrease in demand for parochial education unambiguously results in a decline in enrollments, so long as the indifference curves are fairly normal. In Figure 4C the quality-enrollment frontier has shifted in and has reduced the relative price of quality compared to size. Thus substitution and income effects both tend to reduce the size of enrollments. In Figure 4C we have drawn the new equilibrium point in such a way as to show the possibility that a decline in demand might actually result in higher quality. Since higher quality is associated with higher costs, we have shown the possibility of a decline in demand resulting in smaller enrollments and higher costs. This alone, then, would explain the observed facts of the past few years.

In Figure 4D we illustrate the possibility of perverse effects of granting federal aid to parochial schools. The federal aid pushes out the quality-enrollment frontier. In the illustration, the frontier is pushed into a region where the preferences of the school authorities change in favor of educational quality. The result is that enrollment actually declines. The assumption that the contours of the indifference map may change in favor of quality after a certain point is not far-fetched. Once all the students who might reasonably be expected to attend parochial schools have been accommodated, interest may well shift toward improved quality. Once again,
I ask not to be misunderstood: the point is not that this will happen but that government policies may have surprising effects if adopted without a clear understanding of the mechanisms affected.

Quite probably, the effects discussed with Figures 4B and 4C are simultaneously occurring. If the theory is correct, the bulk of the decline in enrollment is due to a shift to the left of the demand curve for parochial education even though factor prices are rising. It would be amazing if increasing secularism of the last decade, has not reduced the apparent desirability of parochial schools.

IV

This paper has asked, in three different ways: Is federal aid to parochial schools justified in economic terms? The most subtle argument advanced by proponents of such aid is that it will indirectly aid the public schools. We have found that argument unfounded, although I would be happy to see the same model re-estimated with different data. The short-run adjustments that must be made when a private school closes may be painful. But long-term effects are not apparent. Secondly, we have argued that in the absence of information about the demand for parochial education, projections about future declines in parochial enrollments are very risky indeed. Finally, we have challenged the theory that rising factor costs have caused the recent decline in parochial enrollments. It is at least as likely that the demand for parochial education has dropped.
Perhaps one non-economic observation may be allowed. The constitutional
doctrine of separation of church and state, interpreted to mean nearly
absolute separation, has probably been to the benefit of both church and state.
This separation, which one church historian has called the "great tradition
of the American churches," may be one cause of the relative vigor of American,
as opposed to European, churches. A large portion, probably a majority,
of the religious community in America still values that wall of separation.
Should the attempt to breach that wall succeed, an acrimonious debate will
certainly break forth. As a member of the religious community and the
economics profession, I wonder what the social costs and benefits of that
battle will be.

Department of Economics
Wake Forest University

14 Hudson, Winthrop. The Great Tradition of the American Churches (New

15 For example, The Baptist State Convention of North Carolina, as recently
as November 15, 1972, resolved to "reaffirm its faith in public schools," and to "reject any attempt to take tax money from citizens of all religious
convictions and give it to...religious schools and urge the President and
Congress to resist attempts to use tax money for these schools." Source:
Twin City Sentinel, November 15, 1972, p. 2. Although the press has given
heavy coverage to proponents of such aid, the opposition is wide-spread
and important and ought not to be underestimated.