Estimating the Payoff to Schooling Using the Vietnam-era Draft Lottery

Joshua D. Angrist
Harvard University and NBER

and

Alan B. Krueger
Princeton University and NBER

August 1991

We are grateful to Kevin McCormick, Ronald Tucker, and Greg Weyland for creating a special Current Population Survey extract for us. We are also grateful to Dean Hyslop for excellent research assistance and to Michael Boozer for helpful comments. The data used in this paper will be made available to other researchers. This research was supported by the National Science Foundation, Grant No. SES-9012149.
Estimating the Payoff to Schooling Using the Vietnam-era Draft Lottery

Abstract

During the Vietnam draft priority for military service was randomly assigned to draft-age men in a series of lotteries. However, many men managed to avoid military service by enrolling in school and obtaining an educational deferment. This paper uses the draft lottery as a natural experiment to estimate the return to education and the veteran premium. Estimates are based on special extracts of the Current Population Survey that the Census Bureau assembled for 1979 and 1981-85. The results suggest that an extra year of schooling acquired in response to the lottery is associated with 6.6 percent higher weekly earnings. This figure is about 10 percent higher the OLS estimate of the return to education for this sample, which suggests there is little ability bias in conventional estimates of the return to education. Our findings are robust to a variety of alternative assumptions about the effect of veteran status on earnings.

Joshua D. Angrist
Economics Department
Harvard University
Cambridge, MA 02138

Alan B. Krueger
Economics Department
Princeton University
Princeton, NJ 08544
For many years economists have sought to estimate the monetary return to education without bias from omitted variables that are correlated with educational attainment and with earnings capacity (see Griliches (1977) for a survey of this literature). This bias would arise if, for example, more able individuals obtained more schooling, and thus the highly educated would have earned more even in the absence of their extra schooling. A variety of econometric techniques have been applied to try to overcome this problem, but the magnitude and importance of omitted-variable bias in the estimated return to education is still an unanswered question.¹ Willis (1986; p. 589), for example, concludes that, "Given the complexity of the issues and the non-representative character of the data sets that have been employed in the literature on ability bias, it is difficult to reach any firm conclusion about the magnitude or even the direction of the bias...."

Concern over potential ability bias in the return to education has been heightened in recent years by evidence that the return to education has increased in the 1980’s.² Of course, if individuals’ schooling levels were randomly assigned, the payoff to education could be consistently measured simply by comparing the earnings of more and less educated individuals. In the absence of random assignment, omitted-variable bias can be overcome by using instrumental variables that are correlated with

¹Previous econometric approaches to the ability bias problem include variance components models and “kinometrics” (e.g., Taubman, 1977), parametric sample selection corrections (e.g., Willis and Rosen, 1979), and instrumental variables models based on birthdays (Angrist and Krueger, 1991).

²See, for example, Blackburn and Neumark (1991). For convenience, we will follow the practice of the previous literature and generically label omitted variables in wage equations that are correlated with education as ability. We note that the bias could represent other omitted factors, such as family wealth, which might influence educational achievement and earnings.
education but have no other effect on earnings. This paper reports results of analyzing a natural experiment that generates such instruments for schooling. Namely, the Vietnam-era draft lottery provides a unique situation that we exploit to estimate the rate of return to education and the effect of military service on civilian earnings.

As a consequence of the Selective Service draft lottery, the risk of induction into the armed services was randomly assigned on the basis of individuals' birthdays. In certain years, however, men could be deferred or exempted from military service by remaining in school and obtaining an educational deferment. Thus, an individual's draft lottery number affected both the likelihood he would serve in the military and the incentive for him to seek additional schooling. Because past evidence has established a link between military service and civilian earnings (for examples see Berger and Hirsch, 1983, Angrist, 1990, and Angrist and Krueger, 1989), the impact of military service on earnings must be adequately accounted for if the influence of the draft lottery is to be used to identify the effect of schooling on earnings. We develop and implement an estimation strategy that uses draft lottery number dummies as instruments for both the return to education and for the effect of veteran status on earnings.

Our estimation strategy is feasible because, due to the way the draft was implemented, it was necessary for young men seeking to avoid the draft to take draft-avoidance measures (e.g., school attendance) before the cutoff lottery number for the draft was actually known. Therefore, the lottery has an influence on years of schooling that differs from its influence on veteran status. For example, after conditioning on veteran status, we find that men at high risk of being drafted were 5 percentage
points more likely to have attended college. Furthermore, educational deferments were curtailed for men born after 1951, causing a different functional relationship between lottery numbers and education over time. Thus, in principle it is possible to use functions of draft lottery numbers to instrument for both veteran status and education.

To estimate this model, we analyze data from six March Current Population Surveys (CPS) that were specially prepared for us, and include information on men's lottery numbers from the Vietnam-era draft. Our CPS extracts contain labor market information for the years 1979 and 1981-1985. Perhaps surprisingly, we find no evidence that conventional ordinary least squares (OLS) estimates of the rate of return to education are biased upwards. In fact, the lottery-based estimate of the rate of return to schooling is slightly higher than the OLS estimate. Moreover, this finding is remarkably robust to a variety of assumptions about the impact of veteran status on earnings. For example, our qualitative conclusions are unchanged if we parametrically vary the veterans premium between -30 percent and +30 percent. These results provide support for the view that ability bias is not a significant problem in estimates of the return to education, at least for this cohort of men.

The remainder of the paper is organized as follows. Section I describes institutional features of the Vietnam-era draft lottery, with particular emphasis on the ways in which the draft lottery affected school enrollment decisions. Section II describes the data that we analyze. Section III presents our econometric model, and section IV presents our empirical findings. Section V explores the robustness of our results.
I. Educational Deferments and the Draft Lottery

Priority for induction into the United States armed forces during the early 1970's was determined randomly in a series of draft lotteries. Each lottery consisted of the assignment of Random Sequence Numbers (RSN’s or "draft lottery numbers") to all dates of birth in the cohort to be called for service. As the year progressed, men were called for induction by RSN, with the lowest numbers called first. At some date during the year an official RSN ceiling was determined according to Defense Department manpower needs; only men with lottery numbers below the ceiling, referred to here as draft-eligible men, could have been drafted. An essential feature of this process was that for most of the year during which draft registrants were at risk of being drafted, they did not know what the ultimate lottery number ceiling would be. Therefore, even for men with relatively high numbers, there was a strong incentive for those who wanted to avoid military service to take "preventive action" by obtaining a draft deferment.

Separate birth cohorts were at risk of being drafted in each lottery. The 1970 lottery involved men born in the years 1944-1950, the 1971 lottery involved men born in 1951, the 1972 lottery involved men born in 1952 and so on, through 1975. Few men were actually drafted after 1972, however. And in July of 1973 congressional authority to induct service men expired and was never renewed.

A few months before the year in which a cohort was slated for

3 There is some question as to whether the 1970 lottery, which included men born between 1944 and 1950, generated a truly random sequence of lottery numbers. For example, Fienberg (1971) shows that the mean lottery number increased with month of birth. Steps were taken to assure a random draw for the subsequent lotteries.
induction, lottery numbers were assigned to dates of birth in a televised national drawing. Final selection from the pool of draft-eligible men was largely based on the screening process employed by local boards and by the elimination of men with deferments (Tarr 1981). According to the "channeling" policy, individuals were granted deferments for a variety of educational, occupational, or family reasons. Deferred men retained the liability implied by the RSN attached to their date of birth upon expiration of their deferment. For example, a deferred college student with a low number who was born in 1950 would face a high risk of being drafted if he left school in 1972. Also, note that high school students were also automatically deferred as long as they remained in school.

A chronology of key events of the draft lotteries is presented in Table 1. The chronology illustrates the uncertainty faced by young men after the assignment of random sequence numbers. Although official induction ceilings were often reached midway through the year, the highest RSN that would be called was generally not known until later in the year. For example, the 1971 ceiling for induction (125) was first called in May. However, 125 was not officially declared to be the induction ceiling until October, and men with numbers as high as 170 were called for pre-induction physicals. Similarly, although no one was inducted after 1972, men born in 1953 with lottery numbers below 100 were eligible (but not necessarily called) for administrative processing in 1973.

Because of the uncertainty regarding the risk of induction associated with particular lottery numbers, the pattern of variation in deferment behavior with lottery numbers is likely to differ from the pattern of variation in the probability of veteran status. For example, consider the
<table>
<thead>
<tr>
<th>Lottery</th>
<th>Event and Students Deferred</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Most new graduate deferments ended. Currently deferred allowed to end term or semester. Grad students teaching full time granted occupational deferments. Undergraduate and high school deferments continue.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>number deferred: 1.703 million college .526 million high school</td>
<td>June 30, 1967</td>
</tr>
<tr>
<td>1970</td>
<td>Random Selection for Birth Cohorts 1944-50</td>
<td>December 1, 1969</td>
</tr>
<tr>
<td></td>
<td>number deferred: 1.843 million college .418 million high school</td>
<td>January 1, 1970</td>
</tr>
<tr>
<td></td>
<td>RSN 1-10 Called RSN 1-60 Called RSN 1-90 Called RSN 1-115 Called RSN 1-145 Called RSN 1-170 Called RSN 1-190 Called RSN 1-195 Called</td>
<td>January 1970</td>
</tr>
<tr>
<td></td>
<td>CEILING: 195</td>
<td></td>
</tr>
<tr>
<td>1971</td>
<td>Random Selection for Birth Cohort 1951</td>
<td>July 1, 1970</td>
</tr>
<tr>
<td></td>
<td>number deferred: 1.699 million college .562 million high school</td>
<td>June 30, 1970</td>
</tr>
<tr>
<td></td>
<td>RSN 1-100 Called RSN 1-125 Called</td>
<td>January - April 1971 May - December</td>
</tr>
<tr>
<td></td>
<td>CEILING ANNOUNCED: 125</td>
<td>October 1970</td>
</tr>
<tr>
<td></td>
<td>1971 Draft Reform Amendments</td>
<td>September 28, 1971</td>
</tr>
</tbody>
</table>

- Continued -
<table>
<thead>
<tr>
<th>Lottery Event and Students Deferred</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new undergraduate deferments. Previously deferred allowed to continue in school. High school deferments continue.</td>
<td>December 10, 1971</td>
</tr>
<tr>
<td>1972 Random Selection for Birth Cohort 1952</td>
<td>August 5, 1971</td>
</tr>
<tr>
<td>number deferred: .881 million college .232 million high school</td>
<td>December 31, 1971</td>
</tr>
<tr>
<td>RSN 1-15 called</td>
<td>April - June 1972</td>
</tr>
<tr>
<td>RSN 1-75 called</td>
<td>September</td>
</tr>
<tr>
<td>RSN 1-95 called</td>
<td>October - December</td>
</tr>
<tr>
<td>CEILING ANNOUNCED: 95</td>
<td>September</td>
</tr>
<tr>
<td>1973 Random Selection for Birth Cohort 1953</td>
<td>February 2, 1972</td>
</tr>
<tr>
<td>number deferred: .454 million college .030 million high school</td>
<td>June 30, 1972</td>
</tr>
<tr>
<td>Secretary of Defense announces no further draft calls foreseen</td>
<td>January 27, 1973</td>
</tr>
<tr>
<td>Processing, examination and induction suspended</td>
<td>February 14, 1973</td>
</tr>
<tr>
<td>Processing of suspended inductions resumes</td>
<td>April 4, 1973</td>
</tr>
<tr>
<td>Orders issued to terminate all inductions on July 1, 1973</td>
<td>May 15, 1973</td>
</tr>
<tr>
<td>Induction authority expires (for those never deferred)</td>
<td>July 1, 1973</td>
</tr>
</tbody>
</table>

Notes: In 1973, registrants with numbers below 100 were eligible for administrative processing. In 1974, the ceiling for administrative processing was 95. The last lottery was held in 1975, for men born in 1956. Sources: Selective Service System (1969-73, 1986), Baskir and Strauss (1978).
position of a man born in 1951 with a lottery number between 125 and 195. This young man was first at risk of being drafted in 1971. In the preceding year, RSN 195 was the highest number called. The draft eligibility ceiling for the 1971 lottery was set at 125, but this was not announced until October. A student in this situation would have an incentive to stay in school to avoid military service, even though, as it turned out, this person could not have been drafted given his lottery number. Circumstances like these lead to a relationship between schooling and lottery numbers that differs from the relationship between the probability of serving in the military and lottery numbers.

Table 1 also reports the number of men with student deferments at various dates in the lottery period. Although new graduate student deferments were eliminated in 1967 and new undergraduate deferments were eliminated in December 1971, there were still over one million deferred students at the beginning of 1972. This is because students who were already deferred preceding the rule changes were generally allowed to keep their deferments (Baskir and Strauss 1978). In 1970 and 1971 -- the peak years for inductions during the lottery -- there were over 2 million deferred high school and college students. Among men found physically and mentally acceptable for service, the vast majority of deferments were obtained for educational reasons.

Time Series Evidence

For most of the post World War II period, school enrollment rates of

4. 162,746 men were drafted in 1970, 94,092 men in 1971, 49,514 men in 1972 and only 646 in 1973. 382,010 men were drafted in 1966, at the peak of Vietnam Era accessions (Selective Service System 1988). Of 26.8 million men of draft age during the Vietnam Era (1964-75), 8.7 million voluntarily enlisted and 2.2 million were drafted (Baskir and Strauss 1978).
18 and 19 year olds have been rising. As shown in Figure 1, however, the school enrollment rate increased rapidly in the mid to late 1960's, with male enrollment peaking in 1968. The 1968 enrollment peak and subsequent steep decline in the early 1970's is often attributed to educational deferments during the Vietnam-era draft (e.g., Fuchs 1983, p. 93). Baskir and Strauss (1978) argue that during the Vietnam era, college enrollment rates were 6-7% higher than normal because of the draft, and Singer (1989) argues that the draft accounts for exceptionally strong growth in the number of applicants to medical school during the 1968-74 period.

In spite of considerable circumstantial evidence regarding the relationship between the draft and higher education, it is difficult to prove that the draft accounts for the 1960's enrollment spike. For example, the observation that enrollment rates of women follow a pattern similar to those of men is prima facie evidence that the change in enrollment rates was not due to draft avoidance. Moreover, Freeman (1975) presents evidence that the bulk of the 1960's increase in education is due to economic factors. Nevertheless, as explained below, we find evidence that the draft did affect school enrollment decisions for many draft-eligible individuals. In particular, we document a statistically significant relationship between draft lottery numbers and educational attainment using micro data.

II. Data

Our analysis requires a data set containing information on lottery numbers, education, veteran status, and earnings. Draft lottery numbers can be determined on the basis of date of birth from published tables.
(Selective Service System 1969-73). However, date of birth is usually excluded from public-use micro data sets such as the Current Population Survey (CPS) and Population Censuses because of concern that it compromises respondent anonymity. Consequently, this information is not available in most of the data sets analyzed by labor economists.⁵

Date of birth is recorded on the Control Cards used by the Census Bureau for record keeping purposes as part of the monthly CPS, however. Although the Census Bureau cannot release data containing individuals’ exact date of birth, we have worked with the Census Bureau to create six special files of the Current Population Survey that recode individuals’ birthdays into 14 groups of lottery numbers. These special extracts contain a lottery number recode variable that indicates 13 groups of 25 consecutive lottery numbers (RSN 1-324), and a final group of 40 consecutive numbers (RSN greater than 325). Because several birthdays are grouped into lottery number ranges, respondent anonymity is not jeopardized in these files. A variable indicating year of birth was also added to the tape. The matched data includes all men born 1944-53 in rotation groups 5-8 of the March 1979 CPS, and March 1981-85 CPS’s. There are 30,967 men in this sample. After we eliminate men who have missing values or who did not work during the year, the sample size is 26,119.

III. Lottery-Based Estimation

Our interest is in estimating parameters of the following equation:

⁵One exception is the National Longitudinal Survey, which contains information on date of birth. But this data set is too small to yield precise estimates for our purposes.
\[y_i = s_i \rho + v_i \gamma + X_i \theta + \epsilon_i \]

where \(y_i \) is \(i \)'s log earnings, \(s_i \) is years of schooling, \(v_i \) is veteran status, and \(X \) is a set of covariates such as region of residence. \(\epsilon_i \) is a regression error with scalar covariance, that may be correlated with both \(s_i \) and \(v_i \). The parameter \(\rho \) is commonly referred to as the return to education, and \(\gamma \) the veteran premium. For purposes of exposition we ignore the covariates \((X) \), but we include them in the estimates below.

Ordinary Least Squares (OLS) estimates of the return to education, \(\rho \), may be biased because of correlation between \(s_i \) and components of \(\epsilon_i \), such as ability. The draft lottery, however, provides instrumental variables that are correlated with education and with veteran status but likely to be uncorrelated with other variables related to earnings.

As in all Two-Stage Least Squares (2SLS) problems, precision of the estimates in the second stage depends on the correlation between instruments and endogenous regressors in the first stage equation. We begin analysis of the effect of lottery numbers on education by assuming that veteran status is orthogonal to the regression error in (1). The question of whether lottery numbers may be used as an instrument for education then hinges on the correlation between education and functions of lottery numbers conditional on veteran status. We work with 13 dummies indicating 25 consecutive lottery numbers for two reasons; this is the least restrictive specification for the data we have. The 13 dummies are interacted with year-of-birth dummies to allow the relationship between lottery numbers and schooling to vary by cohort. In the analysis where

\[6\] The omitted group contains numbers above 325.
both veteran status and education are treated as endogenous regressors, the use of unrestricted dummies provides enough instruments to identify the effects of both variables.

Let z_i be a row vector of lottery number dummies that will be used as instruments for individual i. Ignoring other covariates, the following is our first stage equation for schooling, assuming veteran status is exogenous:

\[s_i = v_i \delta + z_i \alpha + \eta_i, \]

where δ is a coefficient that measures the effect of veteran status on education.\(^7\)

The first three columns of Table 2 report an OLS estimate of equation (2). The dependent variable is years of education completed. To illustrate the impact of lottery numbers on educational attainment for each birth year, the table reports coefficients and standard errors for three broad lottery group dummies, one for RSN 1-75, one for RSN 76-150, and one for RSN 151-225. The omitted lottery group is RSN 226-365, which is the least likely group to be drafted. Each RSN dummy is interacted with year-of-birth dummies. Results are presented separately for each year of birth, and a test of the joint significance of the lottery number dummies is presented on the last row of the table. The estimated equation also includes a veteran status dummy, two race dummies, a central city dummy, a balance of SMSA dummy, a marital status dummy, 5 year dummies, 9 year-of-

\(^7\)Veteran status may be related to education because of tuition assistance from the GI Bill or because of other reasons.
Table 2: Lottery Numbers and Educational Attainment

<table>
<thead>
<tr>
<th>Year of Birth</th>
<th>Veteran Status Exogenous<sup>a,c</sup></th>
<th>Veteran Status Endogenous<sup>b,c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-75 (1)</td>
<td>76-150 (2)</td>
</tr>
<tr>
<td>1944</td>
<td>.194</td>
<td>.563</td>
</tr>
<tr>
<td></td>
<td>(.171)</td>
<td>(.174)</td>
</tr>
<tr>
<td>1945</td>
<td>.375</td>
<td>.230</td>
</tr>
<tr>
<td></td>
<td>(.175)</td>
<td>(.170)</td>
</tr>
<tr>
<td>1946</td>
<td>.301</td>
<td>.332</td>
</tr>
<tr>
<td></td>
<td>(.157)</td>
<td>(.156)</td>
</tr>
<tr>
<td>1947</td>
<td>.003</td>
<td>.228</td>
</tr>
<tr>
<td></td>
<td>(.151)</td>
<td>(.151)</td>
</tr>
<tr>
<td>1948</td>
<td>-.003</td>
<td>.068</td>
</tr>
<tr>
<td></td>
<td>(.156)</td>
<td>(.152)</td>
</tr>
<tr>
<td>1949</td>
<td>.057</td>
<td>.091</td>
</tr>
<tr>
<td></td>
<td>(.155)</td>
<td>(.153)</td>
</tr>
<tr>
<td>1950</td>
<td>-.078</td>
<td>.097</td>
</tr>
<tr>
<td></td>
<td>(.151)</td>
<td>(.152)</td>
</tr>
<tr>
<td>1951</td>
<td>.358</td>
<td>.160</td>
</tr>
<tr>
<td></td>
<td>(.147)</td>
<td>(.151)</td>
</tr>
<tr>
<td>1952</td>
<td>-.023</td>
<td>.025</td>
</tr>
<tr>
<td></td>
<td>(.147)</td>
<td>(.149)</td>
</tr>
<tr>
<td>1953</td>
<td>-.026</td>
<td>.104</td>
</tr>
<tr>
<td></td>
<td>(.149)</td>
<td>(.148)</td>
</tr>
</tbody>
</table>

P-value for joint F-test: .071 .080

Notes:

- a. Dependent variable is years of schooling.
- b. Dependent variable is years of schooling after removing the effect of predicted veteran status and covariates.
- c. Covariates are: 2 race dummies, central city dummy, balance of SMSA dummy, marriage dummy, 5 year dummies, 9 year-of-birth dummies, and 8 region dummies. Veteran status is also a covariate when it is treated as exogenous. Sample size is 25,781. Standard errors are shown below the coefficients.
The estimates suggest that the lottery groups have a significant relationship with educational attainment. For example, men in the 1946 cohort who were assigned low lottery numbers obtained about .3 years more education than men who were assigned to the highest lottery group. Overall, an F-test of the hypothesis that the lottery groups are unrelated to educational attainment has a p-value of 7 percent. It is difficult to discern a clear or consistent pattern in the lottery numbers, however. Low lottery numbers are associated with less schooling for the 1944 cohort, but with more schooling for the 1945 and 1946 cohorts. And the lottery numbers appear to have little or no effect on education for cohorts born after 1947. The changing pattern of the relationship between lottery numbers and education may reflect changes in deferment policy over time and changes in individuals' perceptions about the risk of being drafted over time.

We have also estimated equation (2) using other measures of educational attainment as the dependent variable. For example, we have estimated linear probability models for whether individuals attended some college. These estimates indicate that men in the lowest lottery group are 5 percentage points more likely to attend college than men in the highest lottery group, on average.

The estimates for education in Table 2 are of interest if veteran status is an exogenous regressor in equation (1). However, Angrist (1989) reports evidence suggesting that veteran status may be correlated with the regression error in (1), and therefore should be treated as an endogenous variable. Draft lottery numbers provide natural instruments for veteran

8These are the same covariates used in the 2SLS models below.
status as well as for education. Consistent estimation of the returns to
education then turns on the ability to use functions of the lottery as
instruments for both veteran status and for education.

The problem of identification with two endogenous regressors and one
set of lottery dummies as instruments can be analyzed as follows. Re-write
equation (2) as:

\[s_i = v_i \pi + \eta_i, \]

where \(\eta_i = z_i \alpha + v_i \). Let \(P_z = Z(Z'Z)^{-1}Z' \) be the projection matrix
associated with the instrument matrix \(Z \). If both \(S \) and \(V \) are endogenous,
2SLS estimates of (1) are the same as OLS estimates of

\[Y = P_z \rho + P_z \gamma + \epsilon, \]

where capital letters denote vectors. Also, \(\rho \) is equivalent to the
coefficient estimate from a bivariate OLS regression of \(Y \) on

\[[I - P_z V(P_z V)^{-1} V' P_z] P_z S = P_z [I - V(P_z V)^{-1} V' P_z] S = P_z Q_{zv} S, \]

(\text{where } Q_{zv} = [I - V(P_z V)^{-1} V' P_z]). \(Q_{zv} S \) is simply the residual from
estimating equation (3) by 2SLS using \(Z \) as instruments for \(V \).

Thus, if \(V \) and \(S \) are both endogenous regressors, for \(\rho \) to be
identified \(Z \) must be correlated with \(Q_{zv} S \). That is, after partialling out
predicted veteran status, schooling must still be correlated with \(Z \), where
veteran status is predicted from a projection on \(Z \). To illustrate the
identification of the schooling variable we first estimate the relationship between schooling and veteran status and other covariates by 2SLS, using lottery dummies (and covariates) as instruments for veteran status. We then calculate the residuals from this equation, and regress these residuals on the lottery dummies \((Z)\) and the covariates.

The estimates are presented in columns \((4)-(6)\) of Table 2. As it turns out, results from regressions of the 2SLS residuals from \((3)\) on lottery dummies are quite similar to the results that simply control for veteran status. The prob-value for an F-test of the joint significance of the lottery dummies is 8 percent level, which is only slightly higher than for the specification that treats veteran status as exogenous. And the pattern of the coefficients is similar whether we have already partialled out predicted veteran status (columns \(4-6\)) or not (column \(1-3\)). These findings indicate the efficacy of using lottery number dummy variables as instruments for both education and veteran status.

IV. **Empirical Results**

Table 3 reports our main set of estimates of equation \((1)\). The sample used to estimate these models consists of men born between 1944 and 1953.\(^9\) Column \((1)\) reports results for a model in which years of education is treated as an endogenous regressor and veteran status as an exogenous regressor. The equation is estimated by 2SLS, using 130 lottery-by-year-of-birth dummies as (excluded) instrumental variables. In column \((2)\)

\(^9\)Earnings were converted to 1978 dollars using the CPI. The weekly wage is the ratio of annual earnings in the preceding calendar year to weeks worked in the same year. We eliminate individuals whose weekly wage is greater than or equal to $2,500 or is less than $25.
veteran status is modelled as an endogenous regressor and education as an exogenous variable. Again, the model is identified by the exclusion of dummy variables for lottery number groups. The model in column (3) treats both education and veteran status as endogenous regressors, and instruments for both variables with the lottery number dummies. Finally, the model in column (4) is estimated by OLS. All of the equations also include several covariates that are reported in the table.

We first discuss the estimates of the rate of return to education. The estimated return to education is 6.6 percent \((t\text{-ratio}=4.4)\) if education is the only endogenous regressor. If education and veteran status are both treated as endogenous regressors the rate of return to education is still 6.6 percent. In this sample the OLS estimate of the return to education is 5.9 percent, slightly less than the 2SLS estimate. The 2SLS and OLS estimates are not significantly different from each other, however.

Nevertheless, it is interesting to compare the magnitude of the 2SLS to the OLS estimate of the return to education. If the only specification error in the estimated human capital earnings function is due to measurement error in education, and if this measurement error is uncorrelated with true education or with any of the other \(X\)-variables, then the ratio of the OLS to the 2SLS estimates of the coefficient for education has probability equal to the ratio of the variance in true education to the variance in reported education.\(^{10}\) This quantity is often called a reliability ratio. In this case, the reliability ratio is about .89, which is close to estimates based on re-survey data. For example, Siegel and

\(^{10}\) This statement assumes that true schooling is orthogonal with the other regressors.
Hodge (1968) estimate that the reliability ratio for education is .933, based on data from the 1960 Census and the 1960 Census postEnumeration survey. And Blalby, Hauser, and Featherman report reliability ratios of .801, .838, and .921 using data from the March 1973 CPS, Occupational Changes in a Generation survey, and a re-survey sample. The unweighted mean of these three estimates is .873.

A. Veteran Premium

The veteran premium is statistically insignificant in the 2SLS models in Columns 2 and 3, which treat veteran status as an endogenous regressor. The coefficient is slightly positive, but unfortunately the standard error is relatively large. In the OLS model veteran status also has a small, positive coefficient. Apparently, the reason why the education variable is robust to the inclusion of veteran status is because veteran status has an insignificant effect on earnings. Nevertheless, the small positive estimate of the veteran premium is a contrast with the past literature, which typically finds that Vietnam-era veterans earn less than nonveterans. A possible explanation for these contrasting findings is that we have analyzed data for a wide age group to increase our sample. For example, Angrist (1990) estimates the Vietnam-era premium for men born 1950-1953, and focuses on annual earnings instead of weekly earnings.

11 These reliability ratios are the correlations between education for individuals who were sampled at two different dates. Assuming that measurement error is i.i.d. and uncorrelated with true education, these correlations identify the reliability ratio.

To further explore our estimate of the veteran premium the Appendix Table reports 2SLS and OLS estimates of wage equations using the log annual wage as the dependent variable, and presents additional estimates for the subsample of men born between 1950 and 1953. Panel A reports estimates for the full sample (born between 1944 and 1953) using the log of annual earnings rather than weekly earnings as the dependent variable. As to be expected, the rate of return to education is larger in the models that use annual earnings compared to those that use weekly earnings. The veteran premium, however, is negative in the models that use annual earnings and instrument for veteran status. Panel B restricts the sample to men born between 1950 and 1953, and uses annual earnings as the dependent variable. Models in Panel C also use the narrower sample, but use the log of the weekly wage as the dependent variable. Estimates for the 1950-53 birth cohorts show a negative veterans premium if the annual wage is used, which is close in magnitude to Angrist's (1990) estimate based on grouped social security data. Lastly, we note that the 2SLS estimate of the return to education remains substantial if the sample is restricted to men born 1950-53.

One potential problem with using draft lottery numbers as instruments for education and veteran status is that one's lottery number may also be related to other forms of draft avoidance. For example, some men who were assigned low draft numbers fled to Canada or intentionally injured themselves to avoid military service. The possibility that such behavior

13 The sample size is slightly larger in Panel A of the Appendix Table than in Table 3 because when we use annual earnings we do not eliminate observations that have outliers for their weekly wage. The results are not very different if we restrict the sample to the same observations used to estimate Table 3, however.
also affects earnings cannot be ruled out. But we suspect that such behavior is unlikely to meaningfully bias our estimates. Most deferment in the Vietnam Era was due to the failure to meet physical and mental standards. These standards were high enough to eliminate the majority of draft-eligible young men without further action on their part (Tarr 1981). For example, wearing moderately strong corrective lenses was often grounds for deferment. Among those not eliminated in this manner, education was the major source of deferment in the 1970's.

The last row of Table 3 reports the p-value for a test of error-instrument orthogonality. Specification error caused by other potential forms of draft avoidance might be picked up by these over-identification tests. In all cases, however, the p-values are far from rejecting at conventional significance levels. We further investigate the robustness of our estimates below.

V. Is the Return to Education Really Identified?

The identification of both the effects of education and veteran status on earnings from individuals' random draw in the draft lottery may be questioned. In particular, our identification strategy rests on whether the relationship between lottery numbers and veteran status is linearly independent of the relationship between lottery numbers and education. Although we consider this to be mainly an empirical issue that is resolved by the standard errors of the estimates, the robustness of our estimate of the rate of return to education, which is our central concern here, can be probed further. Specifically, if the coefficient on veteran status (γ) were known with certainty, we could constrain the veteran dummy to have
this coefficient and use lottery dummies as instruments just for education. In this situation, the return to education would be identified even if education and veteran status were identical functions of lottery numbers. Although the veteran premium is not known with certainty, we can vary γ over a wide range to explore the robustness of our estimate of ρ.

Formally, consider the equation:

$$\gamma_1 = s_1 \rho + (v_1 \gamma + \epsilon_1),$$

where $v_1 \gamma$ is now an omitted variable in the compound error term. Then a straightforward extension of the omitted-variable-bias formula gives the 2SLS estimate of ρ as a function of γ as:

$$\hat{\rho}(\gamma) = \hat{\rho}_0 - \theta \gamma,$$

where $\hat{\rho}_0$ is the 2SLS estimate of $\hat{\rho}$ imposing $\gamma = 0$, and θ is the 2SLS estimate of θ in an auxiliary regression of veteran status on schooling: $v_1 = s_1 \theta + \nu_1$. The auxiliary 2SLS equation uses lottery dummies as instruments to identify the parameter θ.

To implement this idea, we parametrically vary the coefficient on

14 Proof of (7): Alternative estimates of $\hat{\rho}(\gamma)$ may be computed by 2SLS estimation of ρ after subtracting $v_1 \gamma$ from the dependent variable:

$$(\gamma_1 - v_1 \gamma) = s_1 \rho + \epsilon_1.$$ Therefore,

$$\hat{\rho}(\gamma) = (S' P Z)^{-1} S' P Y - [(S' P Z)^{-1} S' P X] \gamma = \hat{\rho}_0 - \theta \gamma.$$ Notice that if fitted values of v_1 and s_1 (from regressions on z_1) are orthogonal, θ is zero and the 2SLS estimate of ρ is asymptotically unbiased.
veteran status between -.30 and +.30. This is a very wide range, and it is most likely that the true effect of veteran status on civilian earnings for this cohort falls within this range. Figure 2 presents a plot of 2SLS estimates of the rate of return to education under alternative assumptions about the magnitude of the veteran coefficient. The figure shows that the return to education is remarkably robust to alternative assumptions about the magnitude of the veteran premium; this result occurs because ϕ is small.

For example, if the veteran premium is constrained to equal -.30 the 2SLS estimate of the return to education is .064 with a standard error of .016, and if the veteran premium is constrained to equal +.30, the 2SLS estimate of the return to education is .068 with a standard error of .016. In both cases the 2SLS estimate exceeds the OLS estimate of the return to education.15

A. Alternative Specifications

Although the draft lottery may have affected some individuals' incentives to remain in high school, the greatest impact of a low lottery number is likely to have been on the incentive to seek a college or graduate school deferment. Thus, variation in years of schooling due to the draft lottery is probably a result of some individuals with low lottery numbers deciding to attend college whereas they only would have attended high school had they been assigned a high draft lottery number.

Because the earnings-schooling relationship may not be log-linear over

15 The OLS estimate of the return to education only varies between .058 and .059 as the veteran premium is parametrically varied between -.30 and +.30.
the entire range of education, we have estimated specifications that include a dummy variable indicating whether individuals have at least some college education vs. high school education or less. Likewise, we have estimated specifications that include a dummy variable indicating college graduate (or higher) vs. less than college graduate, and a dummy variable indicating graduate school education (18 or more years of schooling) vs. less than graduate school education. These specifications have been estimated by OLS and by 2SLS, using the lottery number as an instrument for the education variable. We view these estimates as exploratory; we are not certain over which range of education the draft lottery is likely to have influenced education, so we present estimates for a variety of different levels of education.17

The results are reported in Table 4. Although the specifications that we report treat veteran status as an endogenous regressor, the results are qualitatively similar if we treat veterans status as an exogenous regressor. The estimates in row (1), for example, indicate that individuals with at least some college education earn approximately 25 percent more per week than those who did not attend college. The corresponding 2SLS estimate indicates a 31 percent wage premium for college attendance. Similarly, row (2) shows that college graduates earn about 29 percent more than those with less than a college degree according to the OLS estimate, whereas the premium for finishing college is 38 percent when

16 For example, Hungerford and Solon (1987) present evidence of a "sheepskin effect" in the earnings-schooling relationship for college graduates using CPS data.

17 Although it may be preferable to estimate an equation including all the education dummies at the same time, the 2SLS estimates of such an equation are extremely imprecise.
Table 4
2SLS and OLS Wage Equation Estimates
Dependent Variable: Log Real Weekly Wage
Men Born 1944 - 1953

<table>
<thead>
<tr>
<th>Independent Variable</th>
<th>OLS (1)</th>
<th>2SLS (2)</th>
<th>P-Value for Over-ID Test (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>At least some college</td>
<td>0.249</td>
<td>0.314</td>
<td>0.542</td>
</tr>
<tr>
<td>(−1 if educ. > 12)</td>
<td>(0.007)</td>
<td>(0.090)</td>
<td></td>
</tr>
<tr>
<td>college graduate or higher</td>
<td>0.289</td>
<td>0.383</td>
<td>0.532</td>
</tr>
<tr>
<td>(−1 if educ. ≥ 16)</td>
<td>(0.007)</td>
<td>(0.109)</td>
<td></td>
</tr>
<tr>
<td>Graduate school</td>
<td>0.283</td>
<td>0.342</td>
<td>0.431</td>
</tr>
<tr>
<td>(−1 if educ ≥ 18)</td>
<td>(0.011)</td>
<td>(0.164)</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

a. Exogenous variables are: veteran status dummy variable, 2 race dummies, a central city dummy, a balance of SMSA dummy, a marriage dummy, 5 year dummies, 9 year-of-birth dummies, and 8 region dummies. Instrumental variables are 130 lottery-dummy-by-year-of-birth interactions.

b. Only one schooling dummy variable is included in a regression at a time. The schooling variable equals 0 if the worker's schooling is less than the stated amount.

variation from the draft lottery is used. Completing graduate school is also found to have a greater effect on earnings in the 2SLS model than in the OLS model. In none of these three specifications, however, are the OLS and 2SLS estimates of schooling coefficients significantly different.

We interpret these additional results as evidence that the previous large estimates of the payoff to education in the log-linear 2SLS models are not merely a result of nonlinearities in the earnings-schooling relationship in the vicinity of the schooling level where individuals qualified for educational deferments. Instead, the results indicate that the estimated return to additional schooling is at least as great when the return is identified using just exogenous variation in schooling due to the lottery (2SLS model) as when the return is identified using all inter-individual variation in schooling (OLS model).

C. Estimates for Racial Groups

As a final check on the plausibility of our estimates, we have estimated the wage equations separately for whites and nonwhites by 2SLS and OLS. The return to education is generally found to be roughly the same for nonwhite men and white men in these birth cohorts. On the other hand, it is widely believed that military service has a positive effect on civilian earnings for minorities.

In our sample, the 2SLS estimate of the return to education is .069 (t=3.75) for nonwhites and .062 (t=4.37) for whites.18 Although the

18 These estimates treat veteran status and education as endogenous regressors. Results are similar if veteran status is treated as an exogenous regressor. There are 2,675 nonwhites and 23,106 whites in our sample. Separate estimates by race are available on request.
estimated payoff to schooling for somewhat greater for nonwhites, these estimates are insignificantly different from each other. The OLS estimate of the return to education is also higher for nonwhites than for whites in this sample (.062 vs. .058).

Our estimates of the veteran premium for the sample of non-whites are mixed, in part because the estimates are imprecise due to a smaller sample. If we estimate a model that only includes linear education, veteran status, year-of-birth dummies and time dummies, and instrument for education and veteran status with lottery dummies, we find that the veteran premium is -16.9 percent (t-ratio=1.66). However, if we include additional covariates, such as region, marital status, and central city, the veteran premium falls to -10.7 percent (t-ratio=1.07). The OLS estimate of the veteran premium for nonwhites in this sample is positive (roughly 2 percent), but statistically and economically insignificant. Although our estimates of the veteran premium for the sample of nonwhites is imprecise, there is little support in these data for the conventional view that military service raises civilian earnings for nonwhites.
V. Conclusion

This paper examines the civilian earnings experience and education of men who were subject to the Vietnam-era draft lottery. Because men who were concerned about the risk of induction could reduce their chances of being drafted by seeking a student deferment, the draft lottery generated exogenous variation in years of schooling. We exploit this variation in schooling attainment to estimate the monetary rate of return to additional schooling. In addition, we use the natural experiment of the draft lottery to estimate the effect of veteran status on civilian earnings.

Our main finding is that the variation in schooling generated by the draft lottery causes about a 6.5 percent increase in weekly earnings per year of additional schooling, based on a log-linear earnings function. This is somewhat higher than the conventional OLS estimate of 5.9 percent for this sample. Furthermore, the lottery-based estimate of the return to schooling is robust to alternative assumptions about the magnitude of the veteran premium.

We conclude from these results that there is little evidence of positive ability bias in conventional estimates of the return to education. In fact, the lottery-based estimates of the payoff to schooling suggest that conventional OLS estimates may be somewhat understated. Moreover, estimates of the extent of measurement error in education based on re-interview data suggest that the downward bias in the OLS estimate of the return to education is of the same order of magnitude that would be expected if measurement error in education were the only source of specification error in the human capital earnings function.

Although several theoretical models of schooling predict upwards bias
in the OLS estimate of the return to education, our reading of the past
literature is that there is little systematic evidence of upwards bias in
OLS estimates of the return to education. The main exception to this
finding is Behrman, et al. (1980), who estimate the return to education
based on differences in earnings and education between monozygotic twins.
However, the estimates for twins may be severely downward biased due to
measurement error in reported education, especially because there is likely
to be little true variation in education between identical twins. To
resolve this conflicting evidence, Ashenfelter and Krueger are currently
investigating the importance of measurement error in education for
estimates of the return to education using a new sample of data on twins
that contains multiple measures of education.

19 Griliches (1977 reaches a similar conclusion.
Appendix Table

2SLS and OLS Estimates of the Return to Schooling and Veteran Status

<table>
<thead>
<tr>
<th>Independent Variables</th>
<th>2SLS (1)</th>
<th>2SLS (2)</th>
<th>2SLS (3)</th>
<th>2SLS (4)</th>
<th>OLS (5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Dependent Variable: Log Annual Earnings, Men Born 1944-53, N=26,119</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td>---</td>
<td>.078</td>
<td>.091</td>
<td>.091</td>
<td>.079</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(.002)</td>
<td>(.024)</td>
<td>(.024)</td>
<td>(.002)</td>
</tr>
<tr>
<td>Veteran Status</td>
<td>.065</td>
<td>-.057</td>
<td>.056</td>
<td>.024</td>
<td>.023</td>
</tr>
<tr>
<td></td>
<td>(.089)</td>
<td>(.086)</td>
<td>(.086)</td>
<td>(.086)</td>
<td>(.011)</td>
</tr>
<tr>
<td>Endogenous Regressors</td>
<td>Veteran Status</td>
<td>Veteran Status</td>
<td>Education</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. Dependent Variable: Log Annual Earnings, Men Born 1950-53, N=11,291</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td>---</td>
<td>.073</td>
<td>.093</td>
<td>.086</td>
<td>.074</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(.003)</td>
<td>(.048)</td>
<td>(.047)</td>
<td>(.003)</td>
</tr>
<tr>
<td>Veteran Status</td>
<td>-.105</td>
<td>-.111</td>
<td>-.113</td>
<td>-.036</td>
<td>-.041</td>
</tr>
<tr>
<td></td>
<td>(.110)</td>
<td>(.108)</td>
<td>(.108)</td>
<td>(.027)</td>
<td>(.019)</td>
</tr>
<tr>
<td>Endogenous Regressors</td>
<td>Veteran Status</td>
<td>Veteran Status</td>
<td>Education</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. Dependent Variable: Log Weekly Earnings, Men Born 1950-53, N=11,132</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td>---</td>
<td>.052</td>
<td>.075</td>
<td>.078</td>
<td>.052</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(.002)</td>
<td>(.030)</td>
<td>(.030)</td>
<td>(.002)</td>
</tr>
<tr>
<td>Veteran Status</td>
<td>.036</td>
<td>.032</td>
<td>.029</td>
<td>.004</td>
<td>-.007</td>
</tr>
<tr>
<td></td>
<td>(.070)</td>
<td>(.068)</td>
<td>(.068)</td>
<td>(.018)</td>
<td>(.012)</td>
</tr>
<tr>
<td>Endogenous Regressors</td>
<td>Veteran Status</td>
<td>Veteran Status</td>
<td>Education</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: Exogenous variables are: veteran status dummy variable, 2 race dummies, a central city dummy, a balance of SMSA dummy, a marriage dummy, 5 year dummies, 9 year-of-birth dummies, and 8 region dummies. Instruments are 130 lottery-by-year-of-birth dummies.
REFERENCES

