THE IWASAWA THEORY FOR UNITARY GROUPS

XIN WAN

A DISSERTATION
PRESENTED TO THE FACULTY
OF PRINCETON UNIVERSITY
IN CANDIDACY FOR THE DEGREE
OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE
BY THE DEPARTMENT OF
MATHEMATICS
ADVISER: PROFESSOR CHRISTOPHER SKINNER

JUNE 2012
Abstract

In this thesis we generalize earlier work of Skinner and Urban to construct $(p$-adic families of) nearly ordinary Klingen Eisenstein series for the unitary groups $U(r, s) \hookrightarrow U(r + 1, s + 1)$ and do some preliminary computations of their Fourier Jacobi coefficients. As an application, using the case of the embedding $U(1, 1) \hookrightarrow U(2, 2)$ over totally real fields in which the odd prime p splits completely, we prove that for a Hilbert modular form f of parallel weight 2, trivial character, and good ordinary reduction at all places dividing p, if the central critical L-value of f is 0 then the associated Bloch Kato Selmer group has infinite order. We also state a consequence for the Tate module of elliptic curves over totally real fields that are known to be modular.
Acknowledgements

First of all I would like to deeply thank my advisor Professor Christopher Skinner, for introducing me to the subject, patiently answering my questions and providing many useful ideas to overcome the difficulties. The important paper [35] of him and E. Urban is the starting point of this thesis. Also I would like to thank H. Hida, M. Hsieh, K. Lan, E. Urban, J. Van-Order, V. Vatsal, X. Yuan, B. Zhang, S. Zhang, W. Zhang for useful communications. Finally I would like to thank the Department of Mathematics of Princeton University for providing a perfect environment of learning and doing mathematics during my 5 years Ph.D study.
To my wife.
Contents

Abstract ... iii
Acknowledgements .. iv

1 Introduction .. 1
 1.1 Conjectures for Motives 1
 1.1.1 Characteristic 0 Conjectures 1
 1.1.2 Iwasawa Main Conjectures 2
 1.2 Main Results ... 3
 1.3 Plan of the Thesis 5

2 Background .. 7
 2.1 Notations .. 7
 2.2 Unitary Groups 8
 2.3 Hermitian Symmetric Domain 12
 2.3.1 Automorphic forms 12
 2.4 Galois representations Associated to Cuspidal Representations 14
 2.5 Selmer Groups 15
 2.6 Iwasawa Theory 16
 2.7 p-adic L-Functions 16
 2.8 Characteristic Ideals and Fitting Ideals 17
 2.9 Main Conjectures 17
 2.10 Hilbert Modular Forms 18

3 Eisenstein Series and Fourier-Jacobi Coefficients 20
 3.1 Klingen Eisenstein Series 20
 3.1.1 Archimedean Picture 20
10 Siegel Eisenstein Series and Their Pull-Backs

10.1 Some Isomorphisms and Embeddings. .. 103
10.2 Pull-Backs of Siegel Eisenstein Series. .. 104
 10.2.1 The pull-back formulas .. 104
10.3 Fourier-Jacobi Expansions: Generalities. .. 105
10.4 Some Good Siegel Sections ... 107
 10.4.1 Archimedean Siegel Sections ... 107
 10.4.2 Prime to p Siegel Sections: the Unramified Case 108
 10.4.3 Siegel Sections at Ramified Primes ... 110
 10.4.4 Sections at Ramified Primes Again ... 112
 10.4.5 p-adic Sections .. 114
10.5 Good Siegel Eisenstein Series ... 115
10.6 E_D via Pull-Back .. 117
10.7 Neben-Typus ... 119
10.8 Formulas .. 121
10.9 a Formula for Fourier Coefficients .. 124
 10.9.1 the Formula .. 124
10.10 Identify with Rankin-Selberg Convolutions 132

11 p-adic Interpolations ... 135

11.1 p-adic Eisenstein Datum ... 135
11.2 Interpolation .. 136
 11.2.1 Congruence Module and the Canonical Period 136
11.3 p-adic L-Functions ... 137
 11.3.1 Connections with Anticyclotomic p-adic L-Functions 138
11.4 p-adic Eisenstein Series .. 139

12 p-adic Properties of Fourier coefficients of E_D 141

12.1 Automorphic Forms on Some Definite Unitary Groups 141
 12.1.1 generalities .. 141
 12.1.2 Hecke operators. .. 142
12.2 Applications to Fourier Coefficients ... 142
 12.2.1 Forms on $H \times U_1$... 142
 12.2.2 Consequences for Fourier Coefficients 144
12.3 p-adic Properties of Fourier Coefficients .. 145

13 Construction of the Cuspidal Family ... 151

13.1 Certain Eisenstein series on GU(2,2) .. 151
 13.1.1 Siegel Eisenstein Series .. 151

13.2 Hecke Operators ... 153
 13.2.1 Unramified Cases .. 154
 13.2.2 $v|p$ Case ... 156
 13.2.3 Construction of the Family .. 157

14 Proof of the Main Results .. 161

14.1 the Eisenstein Ideal .. 161
 14.1.1 Hecke Operators .. 161

14.2 Galois Representations ... 164
 14.2.1 Galois Theoretic Argument .. 164
 14.2.2 Galois Representations .. 167

14.3 Proof of the Main Result .. 169
Chapter 1

Introduction

1.1 Conjectures for Motives

1.1.1 Characteristic 0 Conjectures

Let M be a motive over a number field F. Suppose p is an odd prime that splits completely in F. (We are mainly interested in the p-adic realization $H_p(M)$ of M, i.e. a Galois representation of F with coefficients a finite extension L of \mathbb{Q}_p and which is unramified outside a finite set of primes and potentially semi-stable at all places dividing p.) Let V be $H_p(M)$. Suppose that for each $v | p$ we have defined a subspace $V_v^+ \subset V$ which is invariant under the local Galois group $G_{F,v}$. Then the Selmer group $H^1_f(K, V)$ of V relative to the V_v^+'s is defined to be the kernel of the restriction map

$$H^1(F, V) \to \prod_{v | p} H^1(I_v, V) \times \prod_{v | p} H^1(I_v, V/V_v^+),$$

where $I_v \subset G_{F,v}$ is the inertial group.

Greenberg gave a recipe for choosing such V_v^+'s under certain standard conditions. For each v a prime of F dividing p, suppose $H_p(M)$ is Hodge-Tate at v with $H_p(M) \otimes_{\mathbb{Q}_p} \mathbb{C}_p \simeq \otimes_i \mathbb{C}_p(i)^{h_i}$ where the h_i are integers and $\mathbb{C}_p(i)$ is the ith Tate twist of \mathbb{C}_p, i.e. $\mathbb{C}_p := \lim \leftarrow \mu_{p^\infty} \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$. If $d = \dim_{\mathbb{Q}_p}(H_p(M))$ and d^\pm is the dimension of the subspace of $H_p(M)$ on which complex conjugation acts by ± 1, then $d^+ + d^- = d$. We assume that $\sum_{i \geq 1} h_i = d^+$ and that:

Panchishkin Condition:
$H_p(M)$ contains a subspace $F^+H_p(M)$ invariant under $G_{F,v}$ with the property that

$$F^+H_p(M) \otimes_{\mathbb{Q}_p} \mathbb{C}_p \simeq \bigoplus_{1 \leq i \leq 1} \mathbb{C}_p(i)^{h_i}.$$

Then $V^+_v := F^+H_p(M)$. Examples of motives for which these conditions hold include:

- all Dirichlet characters and their Tate twists;
- elliptic curves with multiplicative or good ordinary reductions at all places dividing p;
- nearly ordinary modular forms.

One can also define the L-function $L(M,s)$ for M which, conjecturally is absolutely convergent for $\text{Re}(s)$ is sufficiently large and has a meromorphically continuation to the whole complex plane. A general philosophy is that the size of the Selmer group for M is controlled by the special value $L(M^*(1),0)$ (up to certain periods and normalization factors), where $*$ means dual and (1) is the Tate twist. More precisely, the characteristic 0 Bloch-Kato conjecture is:

Conjecture 1.1.1. Suppose V is an irreducible Galois representation of F, then

$$\text{ord}_{s=0} L(M^*(1), s) = \text{rank}_L H^1_{\text{f}}(F,M)$$

1.1.2 Iwasawa Main Conjectures

We can choose the coefficient to be the integer ring O_L instead of L and defined the corresponding ‘integral version’ Selmer groups as well. We can also deform everything in p-adic families. More precisely, on the arithmetic side consider the integral Selmer group Sel_M for M but over some \mathbb{Z}_p^d extension F_∞ of F. This Selmer group has an action of the Iwasawa algebra $\mathbb{Z}_p[[\text{Gal}(F_\infty/F)]]$ and can be viewed as interpolating Selmer groups of $H_p(M)$ twisted by characters of $\text{Gal}(F_\infty/F)$. On the analytic side there is a conjectural p-adic L-function $L_M \in A[[\text{Gal}(F_\infty/F)]]$ which interpolates special values of L-functions for M twisted by Hecke characters. (here A is some finite extension of O_L.) The Iwasawa main conjecture essentially states that:

Conjecture 1.1.2. Sel_M is a torsion module over $\mathbb{Z}_p[[\text{Gal}(F_\infty/F)]]$ and

$$\text{Char}(\text{Sel}_M) = (\mathcal{L}_M)$$

as ideals of the Iwasawa algebra. Here Char means the characteristic ideal to be defined later (see section 2.8).
Note that in the special case when F is totally real and M is 1-dimensional, this is the classical Iwasawa main conjecture which was proved by Mazur-Wiles [28] and Wiles [43]. The strategy is to congruences between GL_2 Eisenstein Series, whose associated Galois representations are reducible, and cusp forms, whose Galois representations are irreducible. Recently, this has been generalized successfully by C.Skinner and E.Urban ([35], [36],[37],[38]), proving many cases of the rank 1 and 2 characteristic 0 Bloch-Kato conjectures and the Iwasawa main conjectures for GL_2 modular forms as well as some other groups. The method of Skinner and Urban is to study the congruences between cusp forms and Eisenstein series on an even larger group ($GU(2,2)$) to construct the Selmer classes.

1.2 Main Results

This thesis is devoted to generalizing some of the work in [35] to other unitary groups. More precisely, starting from a cusp form on $U(r,s)$ we hope to: (1) construct a (p-adic family) of nearly ordinary Klingen Eisenstein series on $U(r+1, s+1)$ with the constant terms divisible by the p-adic L-functions we hope to study; (2) study the p-adic properties of the Fourier-Jacobi coefficients of the Klingen Eisenstein families and deduce some congruences between this family and cuspidal families; (3) pass to the Galois side to deduce one divisibility of the Iwasawa main conjecture. The first step is done in the first part of the paper. The second step is the most difficult one and we are only able to achieve this for $U(1,1) \rightarrow U(2,2)$ and $U(2,0) \rightarrow U(3,1)$. In general we lack general results about non-vanishing modulo p of special L-values. The last step is essentially an argument appearing in [35]. As a result we are able to prove one divisibility of the Iwasawa main conjecture for two kinds of Rankin-Selberg L-functions. In the thesis we have only explained the proof of the following theorem due to limited time and leaving the write up of the other results to the future:

Theorem 1.2.1. Let F be a totally real number field. Let p be an odd rational prime that splits completely in F. Let f be a Hilbert modular form over F of parallel weight 2 and trivial character. Let ρ_f be the p-adic Galois representation associated to f such that $L(\rho_f, s) = L(f, s)$. Suppose:

(i) f is good ordinary at all primes dividing p;

(ii) (irred) and (dist) hold for ρ_f.

If the central critical value $L(f, 1) = 0$, then the Selmer group $H^1_F(F, \rho_f^\ast)$ is infinite.

Here (irred) means the residual Galois representation $\bar{\rho}_f$ of F is irreducible and (dist) means that for $V = \rho_f$ and each prime $v | p$, the O_L^\ast-valued characters giving the actions of $G_{F,v}$ on V_v^\ast and V/V_v^\ast are distinct modulo the maximal ideal of O_L.

3
Corollary 1.2.1. Let E be an elliptic curve over F with the p-adic Tate module ρ_E. Suppose E has good ordinary reduction at all primes dividing p. Suppose also that the residual Galois representation $\bar{\rho}_E$ is modular and satisfies (dist) above. If the central critical value $L(E,1) = 0$, then the Selmer group $H^1_f(F,\rho_E)$ is infinite.

The corollary follows from the theorem immediately by the modularity lifting results of [40]. We assume that $\bar{\rho}_E$ is modular since we do not know the Serre conjecture in the totally real case. Note that if f is the Hilbert modular form associated to E, then according to our convention that the Hecke polynomial is the characteristic polynomial of the image of geometric Frobenius, $\rho_f^* = \rho_E$.

In the special case that $F = \mathbb{Q}$ theorem 1.2.1 is essentially proved in [35], though our result is slightly more general (in particular we do not need to assume that f is special or even square integrable at any finite place).

In the case when the root number is -1 the theorem 1.2.1 is a result of Zhang and Nekovar. We prove it when the root number is $+1$. In fact, our theorem, combined with the parity result of Nekovar, implies that when the order of vanishing is even and at least 2, then the rank of the Selmer group is also at least 2. Also note that the method of [37] does not seem to generalize to the totally real field case.

In order to prove theorem 1.2.1 we need to choose a CM extension K of F and make use of the unitary group $U(1,1)/F$ which is closely related to GL_2. We embed f into a Hida family f and use some CM character ψ to construct a family of forms on $U(1,1)$. Then our proof consists of four steps: (1) from this family on $U(1,1)$ we construct a p-adic family of Klingen Eisenstein series on $U(2,2)$ such that the constant term is the divisible by the p-adic L-function of f over K; (2) prove (the Fourier expansion of) the Klingen Eisenstein family is co-prime to the p-adic L-function by a computation using the doubling methods; (3) use the results about the constant terms in step 1 to construct a cuspidal family which is congruent to the Klingen Eisenstein family modulo the p-adic L-function; (4) pass to the Galois side, using the congruence between the Galois representations for the Klingen Eisenstein family and the cuspidal family to prove the theorem.

We first prove the above theorem assuming that d is even and use a base change trick to remove that condition. A large part of the arguments are straightforward generalizations of [35]. However we do all the computations in the adelic language instead of the mixture of classical and adelic
language of [35]. This simplifies the computations somewhat since we no longer need to compare the classical and adelic pictures. The required non-vanishing modulo p results of some special L-values are known thanks to the recent work of of Ming-lun Hsieh [18] and Jeanine Van-Order [45]. Also we use Hida’s work on the anticyclotomic main conjecture to compare the CM periods and canonical periods. To construct the cuspidal family in step (3) we explicitly write it down instead of using the geometric argument in [35] Chapter 6. This is a much easier way since we only need to do Hida theory for cuspidal forms (which is already available) if we are only interested in proving the characteristic 0 result. In the future we will generalize the geometric argument in [35] 6.3 to prove the one divisibility of the Iwasawa-Greenberg main conjecture. (In the case when $F \neq \mathbb{Q}$ we need to restrict to a certain subfamily of the whole weight space to have freeness of the nearly ordinary forms over the (sub) weight space and surjectivity to the boundary).

1.3 Plan of the Thesis

This thesis consists of two parts: part one is the first 5 chapters, which are computations for general unitary groups, and part two consists of chapters 6-14, which specializes to $U(1, 1) \to U(2, 2)$ and proves the main theorem.

Part one is devoted to constructing the nearly ordinary Klingen Eisenstein series for unitary groups. The motivation for computations in this generality is for possible future generalization of part two to general unitary groups, by studying the congruences between such Eisenstein Series and cusp forms. In chapter 2 we recall various backgrounds and formulate our main conjectures for unitary groups and Hilbert modular forms. In chapter 3 we recall the notion of Klingen and Siegel Eisenstein series, the pull-back formulas relating them and their Fourier-Jacobi coefficients. In chapter 4 and 5 we construct the nearly ordinary Klingen Eisenstein series by the pullbacks of a Siegel Eisenstein series from a larger group. We manage to take the Siegel sections so that when we are moving our Eisenstein datum p-adically, these Siegel Eisenstein series also move p-adic analytically. The hard part is to choose the sections at p-adic places. For the ℓ-adic cases we just pick one section and might change this choice whenever doing arithmetic applications. At the Archimedean places we restrict ourselves to the parallel scalar weight case which is enough for doing Hida theory. We plan to generalize this to more general weights in the future, which might enable us to do some finite slope arithmetic applications. Also in the first part of this thesis we content ourselves with only computing a single form (instead of a family) and leave the p-adic interpolation for future work. We
also do some preliminary computations for Fourier-Jacobi coefficients for the Siegel Eisenstein series on the big unitary group. The Fourier Jacobi coefficients for Klingen Eisenstein series are realized as the Petersson inner-product of that for Siegel Eisenstein series with the cusp form we start with.

The main use for this computation is to prove that the Klingen Eisenstein series is co-prime to the p-adic L-function and thus giving the congruence relations needed for arithmetic applications.

In part two we apply our computations in part one to the case of $U(1, 1) \hookrightarrow U(2, 2)$ over totally real fields and deduce our main theorem. For convenience we keep the argument parallel to the [35] paper. In chapter 6 we recall the notion of Hilbert modular forms and record some results on the Iwasawa theory for their Selmer groups. In chapter 7 we recall some results about p-adic automorphic forms and Hida theory for the group $U(2, 2)$. We prove our main theorem in chapter 14 (corresponding to step (4)). Chapters 8-12 (corresponding to step (1) and (2)) are parallel to chapters 9-13 of [35] and we do the local and global calculations and deduce the required p-adic properties needed in chapter 14. Chapter 13 is to construct a cuspidal family from the nearly ordinary Klingen Eisenstein family (step (3)). This is also needed in chapter 14.

We remark that the materials in part one (chapters 2-5) for general unitary groups, especially the p-adic computations in section 4.4 are new. Part two (chapters 6-14) differs from the paper [35] only in certain technicalities (the adelic computation and a slightly different choice of the Fourier-Jacobi coefficient in later half of chapter 10, the construction in chapter 13 and the use of different results on non-vanishing modulo p of special L-values and comparing periods in proposition 12.3.2).
Chapter 2

Background

In this section we recall notations for holomorphic automorphic forms on unitary groups, Eisenstein series and Fourier Jacobi expansions.

2.1 Notations

Suppose \(F \) is a totally real field such that \([F : \mathbb{Q}] = d \) and \(\mathcal{K} \) is a totally imaginary quadratic extension of \(F \). For a finite place \(v \) of \(F \) or \(\mathcal{K} \) we usually write \(\varpi_v \) for a uniformizer and \(q_v \) for \(|\varpi_v|^{-1} \). Let \(c \) be the non trivial element of \(\text{Gal}(\mathcal{K}/F) \). Let \(r,s \) be two integers with \(r \geq s \geq 0 \). We fix an odd prime \(p \) that splits completely in \(\mathcal{K}/\mathbb{Q} \). We fix \(i_\infty : \bar{\mathbb{Q}} \to \mathbb{C} \) and \(\iota : \mathbb{C} \cong \mathbb{C}_p \) and write \(i_p \) for \(\iota \circ i_\infty \). Denote \(\Sigma^\infty \) to be the set of Archimedean places of \(F \). We take a CM type \(\Sigma \) of \(\mathcal{K} \) (thus \(\Sigma \sqcup \Sigma^c \) are all embeddings \(\mathcal{K} \to \mathbb{C} \) where \(\Sigma^c = \{ \tau \circ c, \tau \in \Sigma \} \)). There is an associated CM period \(\Omega^\infty = (\Omega^\infty,\sigma)_{\sigma \in \Sigma} \in \mathbb{C}^\Sigma \) (we refer to [Hida07] for the definition). Define: \(\Omega_{\infty}^\Sigma = \prod_{\sigma \in \Sigma} \Omega_{\infty,\sigma}^\Sigma \). We often write \(S_m \) to denote the \(m \) by \(m \) Hermitian matrices either over \(F \) or some localization \(F_v \).

We use \(\epsilon \) to denote the cyclotomic character and \(\omega \) the Teichmüller character. We will often adopt the following notation: for an idele class character \(\chi = \otimes_v \chi_v \) we write \(\chi_p(x) = \prod_{v \mid p} \chi_v(x_v) \). For a character \(\psi \) of \(\mathcal{K}_v \) or \(A^\times_{\mathcal{K}} \) we often write \(\psi' \) for the restriction to \(F_v^\times \) or \(A^\times_F \). For a character \(\tau \) of \(\mathcal{K}^\times \) or \(A^\times_{\mathcal{K}} \) we define \(\tau^c \) by \(\tau^c(x) = \tau(x^c) \).

(Gauss sums) If \(v \) is a prime of \(F \) with characteristic \(\ell \) and \(\mathfrak{d}_v \mathcal{O}_{F,v} = (d_v) \) is the different of \(F/\mathbb{Q} \) at \(v \) and if \(\psi_v \) is a character of \(F_v^\times \) and \((c_{\psi,v}) \subset \mathcal{O}_{F,v} \) is the conductor then we define the local Gauss
sums:
\[g(\psi_v, c_\psi, v d_v) := \sum_{a \in (\mathcal{O}_{F,v}/c_\psi, v)^*} \psi_v(a) e(Tr_{F_v/Q_p}(\frac{a}{c_\psi, v d_v})). \]

If \(\otimes \psi_v \) is an idele class character of \(\mathbb{A}_F^\times \) then we set the global Gauss sum:
\[g(\otimes \psi_v) := \prod_v \psi_v^{-1}(c_\psi, v d_v) g(\psi, c_\psi, v d_v). \]

This is independent of all the choices. Also if \(F_v \cong \mathbb{Q}_p \) and \((p^t) \) is the conductor for \(\psi_v \), then we write \(g(\psi_v) := g(\psi_v, p^t) \). We define the Gauss sums for \(K \) similarly.

Let \(K_\infty \) be the maximal abelian \(\mathbb{Z}_p \) extension of \(K \). Write \(\Gamma_K := \text{Gal}(K_\infty/K) \). We define: \(\Lambda_K := \mathbb{Z}_p[[\Gamma_K]] \). For any \(A \) a finite extension of \(\mathbb{Z}_p \) define \(\Lambda_K, A := A[[\Gamma_K]] \). Let \(\varepsilon_K : G_K \rightarrow \Gamma_K \hookrightarrow \Lambda_K^\times \) be the canonical character. We define \(\Psi_K \) to be the composition of \(\varepsilon_K \) with the reciprocity map of global class field theory, which we denote as \(\text{rec}_K \). Here we used the geometric normalization of class field theory. We make the corresponding definitions for \(F \) as well.

2.2 Unitary Groups

We define:
\[\theta_{r,s} = \begin{pmatrix} 1_s & & \\ & \theta & \\ -1_s & & \end{pmatrix} \]

where \(\theta = \zeta \theta_{1-r,s} \) with some totally imaginary element \(\zeta \in K \). Let \(V = V(r,s) \) be the skew Hermitian space over \(K \) with respect to this metric, i.e. \(K^{r+s} \) equipped with the metric given by \(<u,v> := u \theta_{r,s} v \). We define algebraic groups \(G := GU(r,s) \) and \(U(r,s) \) as follows: for any \(F \)-algebra \(R \), the \(R \) points are:
\[G(R) = GU(r,s)(R) := \{ g \in GL_{r+s}(K \otimes_F R) | g \theta_{r,s} g^* = \mu(g) \theta_{r,s}, \mu(g) \in R^\times \} \]

(\(\mu : GU(r,s) \rightarrow \mathbb{G}_m \) is called the similitude character) and
\[U(r,s)(R) := \{ g \in GU(r,s)(R) | \mu(g) = 1 \}. \]

Sometimes we write \(GU_n \) and \(U_n \) for \(GU(n,n) \) and \(U(n,n) \).
We have the following embedding:

$$GU(r, s) \times \text{Res}_{\mathbb{O}_c/\mathbb{O}_p} \mathbb{G}_m \to GU(r + 1, s + 1)$$

$$g \times x = \begin{pmatrix} a & b & c \\ d & e & f \\ h & l & k \end{pmatrix} \times x \mapsto \begin{pmatrix} a & b & c \\ \mu(g)x^{-1} & d & e & f \\ h & l & k \end{pmatrix} x$$

We write \(m(g, x)\) for the right hand side. The image of the above map is the Levi subgroup of the Klingen parabolic subgroup \(P\) of \(GU(r + 1, s + 1)\), which consists of matrices in \(GU(r + 1, s + 1)\) such that the off diagonal entries of the \(s + 1\)th column and the last row are 0, of \(GU(r, s)\). We denote this levi by \(M_P\). We also write \(N_P\) for the unipotent radical of \(P\). We also define \(B = B(r, s)\) to be the standard Borel consisting of matrices \(\begin{pmatrix} A_g & B_g \\ D_g \end{pmatrix}\) where the blocks are with respect to the partition \(r + s\) and we require that \(A_g\) is lower triangular and \(D_g\) is upper triangular.

We write \(-V = -V(r, s)\) for the hermitian space whose metric is \(-\theta_{r,s}\). We define some embeddings of \(GU(r + 1, s + 1) \times GU(-V(r, s))\) into some larger groups. This will be used in the doubling method. First we define \(G(r + s + 1, r + s + 1)'\) to be the unitary similitude group associated to:

$$\begin{pmatrix} 1_b & 1 \\ \theta & 1 \\ -1_b & -1 \\ -1_b & -\theta \\ 1_b \end{pmatrix}$$
and $G(r + s, r + s)'$ to be associated to

$$\begin{pmatrix}
1_b & \\
\theta & -1_b \\
-1_b & -\theta \\
1_b &
\end{pmatrix}.$$

We define an embedding

$$\alpha : \{g_1 \times g_2 \in GU(r + 1, s + 1) \times GU(-V(r, s)), \mu(g_1) = \mu(g_2)\} \to GU(r + s + 1, r + s + 1)'$$

as follows: we consider g_1 as a block matrix with respect to the partition $s + 1 + (r - s) + s + 1$ (this means we use this partition to divide both all the rows and all the columns into blocks) and g_2 as a block matrix with respect to $s + (r - s) + s$, then we define α by requiring the 1, 2, 3, 4, 5th (block wise) rows and columns of $GU(r + 1, s + 1)$ embeds to the 1, 2, 3, 5, 6th (block wise) rows and columns of $GU(r + s + 1, r + s + 1)'$ and the 1, 2, 3th (block wise) rows and columns of $GU(-V(r, s)$ embeds to the 8, 7, 4th rows and columns (block-wise) of $GU(r + s + 1, r + s + 1)'$.

We also define an embedding:

$$\alpha' : \{g_1 \times g_2 \in GU(r, s) \times GU(-V(r, s)), \mu(g_1) = \mu(g_2)\} \to GU(r + s, r + s)'$$

in a similar way as above: consider $GU(r, s)$ and $GU(-V(r, s))$ as block matrices with respect to the partition $s + (r - s) + s$. Putting the 1, 2, 3th (block wise) rows and columns of the first $GU(r, s)$ into the 1, 2, 4th (block wise) rows and columns of $GU(r + s, r + s)'$ and putting the 1, 2, 3th (block wise) rows and columns of the second $GU(r, s)$ into the 6, 5, 4th rows and columns of $GU(r + s, r + s)'$.

We also define an isomorphism:

$$\beta : GU(r + s + 1, r + s + 1)' \overset{\sim}{\longrightarrow} GU(r + s + 1, r + s + 1)$$

and

$$\beta' : GU(r + s, r + s)' \overset{\sim}{\longrightarrow} GU(r + s, r + s)$$
by:

\[g \mapsto S^{-1}gS \]

or

\[g \mapsto S'^{-1}gS' \]

where

\[
S = \begin{pmatrix}
1 & -\frac{1}{2} \\
1 & \frac{1}{2} \\
-\frac{1}{2} & -1 \\
1 & -\frac{1}{2}
\end{pmatrix}
\]

and

\[
S' = \begin{pmatrix}
1 & -\frac{1}{2} \\
1 & -\frac{1}{2} \\
-\frac{1}{2} & 1 \\
1 & \frac{1}{2}
\end{pmatrix}
\]

Remark 2.2.1. (About Unitary Groups) In order to have Shimura varieties for doing p-adic modular forms and Galois representations, we need to use a unitary group defined over \(\mathbb{Q} \). More precisely consider \(V \) as a Hermitian space over \(\mathbb{Q} \) and still denote \(\theta_{r,s} \) to be the metric on it. Then the correct unitary similitude group should be:

\[
GU(A) := \{ g \in GL_{K} \otimes A(V \otimes \mathbb{Q} A) | g \text{ is } K\text{-linear}, g\theta_{r,s}g^* = \mu(g)\theta_{r,s}, \mu(g) \in A \}
\]

This group is smaller than the one we defined before. However this group is not convenient for local computations since we can not treat the primes of \(F \) each independently. So what we do (implicitly) is to construct forms on the larger unitary similitude group defined above and then restrict to the smaller one.
2.3 Hermitian Symmetric Domain

Suppose $r \geq s > 0$. Then the Hermitian symmetric domain for $GU(r, s)$ is

$$X^+ = X_{r,s} = \{ \tau = \begin{pmatrix} x \\ y \end{pmatrix} \mid x \in M_s(\mathbb{C}^\Sigma), y \in M_{(r-s)s}(\mathbb{C}^\Sigma), i(x^* - x) > -iy^*\theta^{-1}y \}.$$

For $\alpha \in GU(r, s)(F_\infty)$ (here $F_\infty := F \otimes_{\mathbb{Q}} \mathbb{R}$) we write

$$\alpha = \begin{pmatrix} a & b & c \\ d & e & f \\ h & l & d \end{pmatrix}$$

according to the standard basis of V together with the block decomposition with respect to $s + (r - s) + s$. There is an action of $\alpha \in G(F_\infty)^+$ (here the superscript $+$ means the component with positive determinant at all Archimedean places) on $X_{r,s}$ defined by:

$$\alpha \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} ax + by + c \\ gx + ey + f \end{pmatrix} (hx + ly + d)^{-1}$$

If $rs = 0$, $X_{r,s}$ consists of a single point written x_0 with the trivial action of G. For an open compact subgroup U of $G(\mathbb{A}_{F, f})$ put

$$M_G(X^+, U) := G(F)^+ \backslash X^+ \times G(\mathbb{A}_{F, f})/U$$

where U is an open compact subgroup of $G(\mathbb{A}_{F, f})$.

2.3.1 Automorphic forms

We will mainly follow [17] to define the space of automorphic forms, with slight modifications. We define a cocycle: $J : R_{F/\mathbb{Q}}G(\mathbb{R})^+ \times X^+ \to GL_r(\mathbb{C}^\Sigma) \times GL_s(\mathbb{C}^\Sigma) := H(\mathbb{C})$ by $J(\alpha, \tau) = (\kappa(\alpha, \tau), \mu(\alpha, \tau))$...
where for $\tau = \begin{pmatrix} x \\ y \end{pmatrix}$ and $\alpha = \begin{pmatrix} a & b & c \\ d & e & f \\ h & l & d \end{pmatrix}$,
\[
\kappa(\alpha, \tau) = \begin{pmatrix} \bar{h}x + \bar{d} & \bar{h}y + \bar{\theta} \\ -\bar{\theta}^{-1}(\bar{y}x + \bar{f}) & -\bar{\theta}^{-1}\bar{y}y + \bar{\theta}^{-1}\bar{e}\bar{\theta} \end{pmatrix}, \quad \mu(\alpha, \tau) = hx + ly + d.
\]

Let i be the point $\begin{pmatrix} i_1 \\ 0 \end{pmatrix}$ on the Hermitian symmetric domain for $GU(r, s)$ (here 0 means the $(r-s) \times s$ matrix 0). Let $GU(r, s)(R)^+$ be the subgroup of $GU(r, s)(R)$ whose similitude factor is positive. Let K_∞^+ be the compact subgroups of $U(r, s)(R)$ stabilizing i and let K_∞ be the groups generated by K_∞^+ and $diag(1_{r+s}, -1_s)$. Then $J : K_\infty^+ \rightarrow H(C), k_\infty \mapsto J(k_\infty, i)$ defines an algebraic representation of K_∞^+.

Definition 2.3.1. A weight k is defined by a set $\{k_\sigma\}_{\sigma \in \Sigma_\infty}$ where each
\[
k_\sigma = (c_{r+s,\sigma}, ..., c_{s,\sigma}; c_{1,\sigma}, ..., c_{s,\sigma})
\]
with $c_{1,\sigma} > ... > c_{r+s,\sigma}$ for the $c_{i,\sigma}$'s in \mathbb{Z}.

Remark 2.3.1. Our convention is different from others in the literature. For example in [17] the
\[
a_{r+1-i} \text{ there for } \leq i \leq r \text{ is our } c_{s+1} \text{ and } b_{s+1-j} \text{ there for } 1 \leq j \leq s \text{ is our } c_j. \Also our } c_i \text{ is the } -c_{r+s+1-i} \text{ in } [37]. \text{ We also note that if each } k_\sigma = (0, ..., 0; \kappa, ..., \kappa) \text{ then } L^{\kappa}(C) \text{ is one dimensional of } \rho^{\kappa}(h) = \det \mu(h, i)^\kappa.
\]

We refer to [17] for the definition of the definition of the algebraic representation $L^{\kappa}(C)$ with the action denoted by ρ_{L^k} (note the different index for weight) and define a model $L^{\kappa}(C)$ of the representation $H(C)$ with the highest weight κ as follows. The underlying space of $L^{\kappa}(C)$ is $L^{\kappa}(C)$ and the group action is defined by
\[
\rho^{\kappa}(h) = \rho_{L^k}(h^{-1}), h \in H(C).
\]
For a weight k, define $\|k\| = \{\|k_\sigma\|\}_{\sigma \in \Sigma} \in \mathbb{Z}[\Sigma]$ by:
\[
\|k\| := -c_{s+1,\sigma} - ... - c_{s+r,\sigma} + c_{1,\sigma} + ... + c_{s,\sigma}
\]
and $|k| \in Z^\Sigma_{\Sigma^c}$ by:

$$
|k| = \sum_{\sigma \in \Sigma} (c_{1,\sigma} + \ldots + c_{s,\sigma}) \sigma - (c_{s+1,\sigma} + \ldots + c_{s+r,\sigma}) \sigma c.
$$

Let χ be a Hecke character of \mathcal{K} with infinite type $|k|$, i.e. the Archimedean part of χ is given by:

$$
\chi(z_\infty) = \prod_{\sigma} (z_\sigma^{c_{1,\sigma}+\ldots+c_{s,\sigma}} z_{\sigma^c}^{-c_{s+1,\sigma}+\ldots+c_{s+r,\sigma}}).
$$

Definition 2.3.2. Let U be an open compact subgroup in $G(A_F,f)$. We denote by $M_k(U,\mathbb{C})$ the space of holomorphic $L_k(\mathbb{C})$-valued functions f on $X^+ \times G(A_F,f)$ such that for $\tau \in X^+$, $\alpha \in G(F)^+$ and $u \in U$ we have:

$$
f(\alpha \tau, \alpha gu) = \mu(\alpha)^{-|\mathbf{k}|} \rho_k(J(\alpha, \tau)) f(\tau, g).
$$

Now we consider automorphic forms on unitary groups in the adelic language. Let $i \in X^+$ and $K^+_\infty \subset U(r,s)(F_\infty)$ be the stabilizer of i. The space of automorphic forms of weight k and level U with central character χ consists of smooth and slowly increasing functions $F : G(A_F) \to L_k(\mathbb{C})$ such that for every $(\alpha, k_\infty, u, z) \in G(F) \times K^+_\infty \times U \times Z(A_F),$

$$
F(zog k_\infty u) = \rho_k(J(k_\infty, i)^{-1}) F(g) \chi^{-1}(z).
$$

2.4 Galois representations Associated to Cuspidal Representations

In this section we follow [34] to state the result of associating Galois representations to cuspidal automorphic representations on $GU(r,s)(A_F)$. First of all let us fix the notations. Let $\tilde{\mathcal{K}}$ be the algebraic closure of \mathcal{K} and let $G_{\tilde{\mathcal{K}}} := \text{Gal}(\tilde{\mathcal{K}}/\mathcal{K})$. For each finite place v of \mathcal{K} let $\tilde{\mathcal{K}}_v$ be an algebraic closure of \mathcal{K}_v and fix an embedding $\tilde{\mathcal{K}} \hookrightarrow \tilde{\mathcal{K}}_v$. The latter identifies $G_{\tilde{\mathcal{K}}_v} := \text{Gal}(\tilde{\mathcal{K}}_v/\mathcal{K}_v)$ with a decomposition group for v in $G_{\tilde{\mathcal{K}}}$ and hence the Weil group $W_{\tilde{\mathcal{K}}_v} \subset G_{\tilde{\mathcal{K}}_v}$ with a subgroup of $G_{\tilde{\mathcal{K}}}$. Let π be a holomorphic cuspidal irreducible representation of $U(r,s)(A_F)$ with weight $k = (c_{r+s,\sigma}, \ldots, c_{s+1,\sigma}; c_{1,\sigma}, \ldots, c_{s,\sigma}) \in \Sigma$ and central character χ_π. Let $\Sigma(\pi)$ be a finite set of primes of F containing all the primes at which π is unramified and all the primes dividing p. Then for some L finite over \mathbb{Q}_p, there is a Galois representation (by [33], [26] and [34]):

$$
R_p(\pi) : G_{\tilde{\mathcal{K}}} \to GL_n(L)
$$
such that:

(a) \(R_p(\pi)^c \cong R_p(\pi) \otimes \rho_{p,\chi_1^c} \epsilon^{1-n} \) where \(\chi_1 \) is the central character of \(\pi \), \(\rho_{p,\chi_1^c} \) denotes the associated Galois character by class field theory and \(\epsilon \) is the cyclotomic character.

(b) \(R_p(\pi) \) is unramified at all finite places not above primes in \(\Sigma(\pi) \cup \{ \text{primes dividing } p \} \), and for such a place \(w \):

\[
\det(1 - R_p(\pi)(\text{frob}_w q_w^{-s})) = L(BC(\pi)_w \otimes \chi_{\pi,w}^c, s + \frac{1-n}{2})^{-1}
\]

Here the \(\text{frob}_w \) is the geometric Frobenius and \(BC \) means the base change from \(U_{r,s} \) to \(GL_{r+s} \).

We write \(V \) for the representation space and it is possible to take a Galois stable \(O_L \) lattice which we denote as \(T \). Suppose \(\pi_v \) is nearly ordinary at all primes \(v \) dividing \(p \) with respect to \(k \) (to be defined later, see section 4.4). Suppose \(v | p \) correspond to \(\sigma \in \Sigma \) under \(\iota: \mathbb{C} \cong \mathbb{C}_p \), then if we write \(\kappa_{i,\sigma} = s - i + c_{i,\sigma} \) for \(\leq i \leq s \) and \(\kappa_{i,\sigma} = c_{i,\sigma} + s + r + s - i \) for \(s + 1 \leq i \leq r + s \), then:

\[
R_p(\pi)|_{G_{K,v}} \simeq \begin{pmatrix}
\xi_{r+s,v} \epsilon^{-\kappa_{r+s,v}} & * & * \\
* & \xi_{r+s-1,v} \epsilon^{-\kappa_{r+s-1,v}} & * \\
0 & * & \xi_{1,v} \epsilon^{-\kappa_{1,v}}
\end{pmatrix}
\]

where \(\xi_{i,v} \) are unramified characters. Using the fact (a) above we know that \(R_p(\pi)_v \) is equivalent to an upper triangular representation as well.

2.5 Selmer Groups

We recall the notion of \(\Sigma \)-primitive Selmer groups, following [35, 3.1] with some modifications. In this section \(F \) is a subfield of \(\overline{\mathbb{Q}} \), not necessarily finite over \(\mathbb{Q} \). For \(T \) a free module over a profinite \(\mathbb{Z}_p \)-algebra \(A \) and assume that \(T \) is equipped with a continuous action of the absolute Galois group \(G_F \) of \(F \). Assume that for each place \(v | p \) of \(F \) we are given a \(G_v \)-stable free \(A \)-direct summand \(T_v \subset T \). Let \(A^* \) be the Pontryagin dual of \(A \). For any finite set of primes \(\Sigma \) we denote by \(\text{Sel}_F^\Sigma(T, (T_v)_{v | p}) \) the kernel of the restriction map:

\[
H^1(F, T \otimes_A A^*) \to \prod_{v \not\in \Sigma, v | p} H^1(I_v, T \otimes_A A^*) \times \prod_{v | p} H^1(I_v, T_v \otimes_A A^*)
\]
We also define:
\[X^\Sigma_F(T, (T_v)_{v|p}) := \text{Hom}_A(\text{Sel}^\Sigma_F(T, (T_v)_{v|p}), A^*) \].

Now let us take \(T \) to be the Galois representation defined in section 2.4. Then for each \(v \in \Sigma_p \) suppose \(R_p(\pi)_v \) is of the above form with respect to the basis \(v_{r+s}, v_1, \ldots, v_{s+1}_v \) then we define \(T_v \) to be the \(\mathcal{O}_L \) span if \(v_{r+s}, v_1, \ldots, v_{s+1}_v \). Also, if \(R_p(\pi)_v \) is upper triangular with respect to the basis \(v_1, \ldots, v_{r+s}, \bar{v} \) then we define \(T_{\bar{v}} \) to be the \(\mathcal{O}_L \) span of \(v_1, \ldots, v_{s+1}_v \).

Remark 2.5.1. The Selmer group defined here is not quite correct. In fact \(T \) does not always satisfy Greenberg’s Panchishkin condition. But it is correct in the "Iwasawa theoretic sense". We will explain this in a moment (remark 2.6.1).

2.6 Iwasawa Theory

Let \(\mathcal{K}_\infty \) be the maximal abelian \(\mathbb{Z}_p \) extension of \(\mathcal{K} \). Write \(\Gamma_\mathcal{K} := \text{Gal}(\mathcal{K}_\infty/\mathcal{K}) \). We define: \(\Lambda_\mathcal{K} := \mathbb{Z}_p[[\Gamma_\mathcal{K}]] \). For any \(A \) a finite extension of \(\mathbb{Z}_p \) define \(\Lambda_\mathcal{K}, A := A[[\Gamma_\mathcal{K}]] \). Let \(\varepsilon_\mathcal{K} : G_\mathcal{K} \to \Gamma_\mathcal{K} \hookrightarrow \Lambda_\mathcal{K}^\times \) be the canonical character. Then by Shapiro’s lemma we have:

\[\text{Sel}^\Sigma_{\kappa_\infty}(T) \simeq \text{Sel}^\Sigma_{\kappa}(T \otimes_A \Lambda_\mathcal{K}, A(\varepsilon_\mathcal{K}^{-1})) \]

So we have a \(\Lambda_\mathcal{K}, A \) module structure for \(X^\Sigma_{\kappa_\infty}(T) \). One can define the Selmer groups for intermediate fields between \(\mathcal{K} \) and \(\kappa_\infty \) as well.

Remark 2.6.1. Later on we will see some control theorems for Selmer groups relating the big Selmer groups for \(\mathcal{K}_\infty \) to those of its subfields. However if we take \(T \) to be the Galois representation coming from automorphic forms then \(\text{Sel}^\Sigma_{\kappa}(T) \) itself is not a Selmer group since \(T \) does not satisfy Greenberg’s Panchishkin conditions (by checking the Hodge-Tate weights). (According to our convention the dual of such \(T \) satisfies this condition.) But by twisting \(T \) by certain Galois character we can make \(T \) satisfy this condition. Also the \(T_v \)’s we put at \(v|p \) are indeed Selmer conditions for such twists in the sense of Greenberg. Therefore our Iwasawa module is indeed interpolating Selmer groups for \(T \) twisted by certain characters.

2.7 \(p \)-adic L-Functions

In a recent work of [5] Eischen, Harris, Li and Skinner construct the \(p \)-adic L-function \(L^\Sigma_{\kappa, \psi} \in A[[\Gamma_\mathcal{K}]] \) (where \(\psi \) is some fixed Hecke character for \(\mathcal{K} \)) interpolating special values of \(L^\Sigma(\pi, \psi \otimes \chi_\phi, s) \)
up to some periods and normalization factors. Here $\phi \in \text{Spec}_K A$ is an arithmetic point (see definition 7.1.1 for a special case) and χ_{ϕ} corresponds to $\phi \circ \epsilon_K$ under the reciprocity map.

2.8 Characteristic Ideals and Fitting Ideals

In this subsection we let A be a Noetherian ring. We write $\text{Fitt}_A(X)$ for the Fitting ideal in A of a finitely generated A-module X. This is the ideal generated by the determinant of the $r \times r$ minors of the matrix giving the first arrow in a given presentation of X:

$$A^s \rightarrow A^r \rightarrow X \rightarrow 0.$$

If X is not a torsion A-module then $\text{Fitt}(X) = 0$.

Fitting ideals behave well with respect to base change. For $I \subset A$ an ideal, then:

$$\text{Fitt}_{A/I}(X/IX) = \text{Fitt}_A(X) \mod I$$

Now suppose A is a Krull domain (a domain which is Noetherian and normal), then the characteristic ideal is defined by:

$$\text{Char}_A(X) := \{ x \in A : \text{ord}_Q(x) \geq \ell_Q(X) \text{ for any } Q \text{ a height one prime } \},$$

where $\ell_Q(X)$ is the length of X at Q. Again if X is not torsion then we define $\text{Char}_A(X) = 0$.

2.9 Main Conjectures

Now we are in a position to formulate the Iwasawa-Greenberg main conjecture, we write $\text{Char}_{\Sigma, \pi, K, \psi}$ for the characteristic ideal for $X_{\Sigma, \pi, K, \psi}$, then:

Conjecture 2.9.1. $\text{Char}_{\Sigma, \pi, K, \psi}$ is principal and generated by $L_{\Sigma, \pi, K, \psi}$.

In our attempt to prove cases of this main conjecture we need to embed some nearly ordinary $f \in \pi$ into a Hida family f of nearly ordinary forms with some coefficient ring \mathcal{I} (taken to be a normal domain). We have a Galois representation $R_p(f)$ on some T a free module over \mathcal{I} of finite rank. It satisfies local conditions at $v|p$ similar to that for f and we define the corresponding Selmer
conditions and thus \(\text{Sel}^{\Sigma}_{f,K,\psi} \) and \(X^\Sigma_{f,K,\psi} \), which is a module over \(\mathbb{I}[[\Gamma_K]] \). On the automorphic side there is still a \(p \)-adic \(L \)-function \(L^\Sigma_{f,K,\psi} \). Then we have the main conjecture for Hida families as well:

Conjecture 2.9.2.

\[
\text{Char}^\Sigma_{f,K,\psi} = (L^\Sigma_{f,K,\psi})
\]

as ideals of \(\mathbb{I}[[\Gamma_K]] \).

2.10 Hilbert Modular Forms

As mentioned in the introduction we can use unitary groups to study the Iwasawa theory for Hilbert modular forms. Let \(f \) (\(\mathfrak{f} \)) be a nearly ordinary Hilbert modular form (or Hida family). Then the associated Galois representations satisfy similar local conditions at \(v \mid p \), namely isomorphic to upper triangular representations and one can define Selmer groups \(\text{Sel}^{\Sigma}_{f,K,\chi} \), \(X^\Sigma_{f,K,\chi} \) (see chapter 6 for details). Also the \(p \)-adic \(L \)-functions \(L^\Sigma_{f,K,\chi} \), \(\tilde{L}^\Sigma_{f,K,\chi} \) (see chapter 11) are essentially those for \(U(1,1) \) with some modifications for interpolation formulas (since now we are using \(GL_2 \) \(L \)-functions of \(f \) instead of that for base change of unitary group automorphic forms). We can formulate the following main conjecture as well.

Conjecture 2.10.1. As ideals of \(\mathbb{I}[[\Gamma_K]] \),

\[
(L^\Sigma_{f,K,\chi}) = \text{Char}^\Sigma_{f,K,\chi}.
\]

We can construct a non-integral \(p \)-adic \(L \)-function \(\tilde{L}^\Sigma_{f,K,\chi} \) in great generality. (This is an element in \(F[[\Gamma_K]] \) instead of \([\Gamma_K] \) which is also interpolating special values of the \(L \)-functions with a slightly different interpolation formula, see chapter 11). This is enough for proving the characteristic 0 results (theorem 1.2.1). However we need certain Gorenstein properties of some Hecke algebras to construct the integral \(p \)-adic \(L \)-function that appears in the conjecture above. Let us briefly discuss this issue.

Let \(f \) be a Hida family of nearly ordinary Hilbert modular eigenforms with tame level \(M \). Let \(\mathbb{I} \) be some finite extension of \(\Lambda^\dagger \), let \(m_f \) be the maximal ideal of the Hecke algebra \(T(M,\mathbb{I}) \) with \(\mathbb{I} \) coefficients correspond to \(f \). Let \(T_{m_f} := T(M,A)_{m_f} \) be the localization. Then we say that it is Gorenstein if \(\text{Hom}_\mathbb{I}(T_{m_f},\mathbb{I}) \) is free of rank 1 over \(T_{m_f} \). This is used to guarantee the existence of a generator of the congruence module. In the case when \(F = \mathbb{Q} \) Wiles [Wiles95] proved that this is true whenever the (irred) and (dist) in [35] (see theorem 1.2.1.) are satisfied. In general the situation is complicated. We record here a theorem of Fujiwara which gives sufficient conditions for \(T_{m_f} \) to
be Gorenstein:

Theorem 2.10.1. (Fujiwara) Let \(\bar{\rho} \) be the modulo \(p \) Galois representation associated to \(f \). Suppose

- \(p \geq 3 \) and \(\bar{\rho}|F(\zeta_p) \) is absolutely irreducible. When \(p = 5 \) the following case is excluded: the projective image \(G \) of \(\bar{\rho} \) is isomorphic to \(\text{PGL}_2(F_p) \) and the mod \(p \) cyclotomic character \(\bar{\chi}_{\text{cycl}} \) factors through \(G_F \to \bar{G}^{ab} \cong \mathbb{Z}/2 \);

- There is a minimal modular lifting of \(\bar{\rho} \).

- The case \(0_E \) defined in [8] section 3.1 does not occur for any finite place \(v \).

- In the case when \(d := [F : \mathbb{Q}] \) is odd the Ihara’s lemma is true for Shimura curves.

Then the ring \(\mathbb{T}_{m,f} \) is Gorenstein.

This is [8, theorem 11.2]. The third condition is put to ensure that the quaternion algebra considered by Fujiwara is not ramified at any finite places so that the quaternionic Hecke algebra is the same as the \(GL_2 \) Hecke algebra. Recall that \(0_E \) in called “exceptional” by Fujiwara and means that \(\bar{\rho}_{I_{F,v}} \) is absolutely irreducible and \(q_v \equiv -1 \mod p \).
Chapter 3

Eisenstein Series and
Fourier-Jacobi Coefficients

The materials of this chapter are straightforward generalizations of parts of [35, chapter 9 and 11] and I use the same notations as loc.cit; so everything in this chapter should eventually be the same as [35] when specializing to the group $GU(2,2)/\mathbb{Q}$.

3.1 Klingen Eisenstein Series

Recall that in chapter 2 we let GU be $GU(r,s)$ defined there. Let $\mathfrak{u}(\mathbb{R})$ be the Lie algebra of $GU(r,s)(\mathbb{R})$. We will often use the notation a,b for $a = r - s$ and $b = s$.

3.1.1 Archimedean Picture

Let v be an infinite place of F so that $F_v \simeq \mathbb{R}$. Let i' and i be the points on the Hermitian symmetric domain for $GU(r,s)$ and $GU(r+1,s+1)$ which are $\begin{pmatrix} i \sqrt{s} \\ 0 \end{pmatrix}$ and $\begin{pmatrix} i \sqrt{s+1} \\ 0 \end{pmatrix}$ respectively (here 0 means the $(r-s) \times s$ or $(r-s) \times (s+1)$ matrix 0). Let $GU(r,s)(\mathbb{R})^+$ be the subgroup of $GU(r,s)(\mathbb{R})$ whose similitude factor is positive. Let K_{∞}^+ and $K_{\infty}^{+'}$ be the compact subgroups of $U(r+1,s+1)(\mathbb{R})$ and $U(r,s)(\mathbb{R})$ stabilizing i or i' and let K_{∞} (K_{∞}') be the groups generated by K_{∞}^+ ($K_{\infty}^{+'}$) and $\text{diag}(1_{r+s+1},-1_{s+1})$ ($\text{diag}(1_{r+s},-1_s)$).

Now let (π,H) be a unitary Hilbert representation of $GU(\mathbb{R})$ with H_{∞} the space of smooth vectors. We define a representation of $P(\mathbb{R})$ on H_{∞} as follows: for $p = mn, n \in N_P(\mathbb{R}), m =$
m(g,a) ∈ M_ρ(R) with a ∈ C^\times, g ∈ GU(R), put

\[\rho(p)v := \tau(a)\pi(g)v, v ∈ H_\infty. \]

We define a representation by smooth induction \(I(H_\infty) := \text{Ind}_{P(R)}^{GU(r+1,s+1)(R)} \rho \) and denote \(I(\rho) \) as the space of \(K_\infty \)-finite vectors in \(I(H_\infty) \). We also define for each \(z ∈ C \) a function

\[f_z(g) := \delta(m)^{(a+2b+1)/2+z} \rho(m)f(k), g = mk ∈ P(R)K_\infty, \]

where \(\delta \) is such that \(\delta^{a+2b+1} = \delta_p \) for \(\delta_p \) the modulus character of \(P \), and an action of \(GU(r + 1, s + 1)(R) \) on it by

\[(\sigma(\rho,z)(g)f)(k) := f_z(kg). \]

Let \((\pi^\vee, V) \) be the irreducible \((\mathfrak{g}u(R), K'_{\infty}) \)-module given by \(\pi^\vee(x) = \pi(\eta^{-1}x) \eta \) for \(\eta = \begin{pmatrix} 1_b \\ -1_a \\ 1_b \end{pmatrix} \) and \(x ∈ \mathfrak{g}u(R) \) or \(K'_{\infty} \), and denote \(\rho^\vee, I(\rho^\vee), I'(H_\infty) \) and \(\sigma(\rho^\vee,z), I(\rho^\vee) \) the representations and spaces defined as above but with \(\pi, \tau \) replaced by \(\pi^\vee \otimes (π \circ \det), \overline{\tau} \). We are going to define an intertwining operator. Let \(w = \begin{pmatrix} 1_b+1 \\ -1_a \\ 1_b \end{pmatrix} \). For any \(z ∈ C, f ∈ I(H_\infty) \) and \(k ∈ K_\infty \) consider the integral:

\[A(\rho, z, f)(k) := \int_{\mathcal{N}_\rho(R)} f_z(wnk)dn. \tag{3.1} \]

This is absolutely convergent when \(\text{Re}(z) > \frac{a+2b+1}{2} \) and \(A(\rho, z, -) ∈ Hom_{C}(I(H_\infty), I'(H_\infty)) \) intertwines the actions of \(\sigma(\rho, z) \) and \(\sigma(\rho^\vee, -z) \).

Suppose \(\pi \) is the holomorphic discrete series representation associated to the (scalar) weight \((0, ..., 0; \kappa, ..., \kappa) \), then it is well known that there is a unique (up to scalar) vector \(v ∈ \pi \) such that \(k.v = \det \mu(k, i)^{-\kappa} \) (here \(\mu \) means the second component of the automorphic factor \(J \) instead of the similitude character) for any \(k ∈ K'_{\infty,v} \) (notation as in section 3.1). Then by Frobenius reciprocity there is a unique (up to scalar) vector \(\tilde{v} ∈ I(\rho) \) such that \(k.\tilde{v} = \det \mu(k, i)^{-\kappa}\tilde{v} \) for any \(k ∈ K'_{\infty} \). We fix \(v \) and scale \(\tilde{v} \) such that \(\tilde{v}(1) = v \). In \(\pi^\vee, \pi(w)v \) (\(w \) is defined in section 3.1) has the action of \(K'_{\infty} \) given by multiplying by \(\det \mu(k, i)^{-\kappa} \). We define \(w' ∈ U(a + b + 1, b + 1) \) by
\[
\begin{pmatrix}
1_b & 1 \\ \\ 1_a & -1 \\ \\ 1_b & 1
\end{pmatrix}
\]

There is a unique vector \(\tilde{v}^\vee \in I(\rho^\vee) \) such that the action of \(K_\infty^+ \) is given by \(\det \mu(k, i)^{-\kappa} \) and \(\tilde{v}^\vee(w') = \pi(w)v \). Then by uniqueness there is a constant \(c(\rho, z) \) such that \(A(\rho, z, \tilde{v}) = c(\rho, z)\tilde{v}^\vee \).

Definition 3.1.1. We define \(F_\kappa \in I(\rho) \) to be the \(\tilde{v} \) as above.

3.1.2 Prime to \(p \) Picture

Our discussion here follows [35, 9.1.2]. Let \((\pi, V)\) be an irreducible, admissible representation of \(GU(F_v) \) which is unitary and tempered. Let \(\psi \) and \(\tau \) be unitary characters of \(K_v^\times \) such that \(\psi \) is the central character for \(\pi \). We define a representation \(\rho \) of \(P(F_v) \) as follows. For \(p = mn, n \in N_P(F_v), m = m(g, a) \in M_P(F_v), a \in K_v^\times, g \in GU(F_v) \) let

\[
\rho(p)v := \tau(a)\pi(g)v, v \in V.
\]

Let \(I(\rho) \) be the representation defined by admissible induction: \(I(\rho) = \text{Ind}_{P(F_v)}^{GU(r+1,s+1)(F_v)} \rho \). As in the Archimedean case, for each \(f \in I(\rho) \) and each \(z \in \mathbb{C} \) we define a function \(f_z \) on \(GU(F_v) \) by

\[
f_z(g) := \delta(m)^{(a+2b+1)/2+z} \rho(m)f(k), g = mk \in P(F_v)K_v
\]

and a representation \(\sigma(\rho, z) \) of \(GU(r+1,s+1)(F_v) \) on \(I(\rho) \) by

\[
(\sigma(\rho, z)(g)f)(k) := f_z(kg).
\]

Let \((\pi^\vee, V) \) be given by \(\pi^\vee(g) = \pi(\eta^{-1}g\eta) \). This representation is also tempered and unitary. We denote by \(\rho^\vee, I(\rho^\vee), (\sigma(\rho^\vee, z), I(\rho^\vee)) \) the representations and spaces defined as above but with \(\pi \) and \(\tau \) replaced by \(\pi^\vee \otimes (\tau \circ \det) \), and \(\tilde{\tau}^\circ \), respectively.

For \(f \in I(\rho), k \in K_v, \) and \(z \in \mathbb{C} \) consider the integral

\[
A(\rho, z, v)(k) := \int_{N_P(F_v)} \int_{N_P(F_v)} f_z(wnk)dn.
\]

(3.2)
As a consequence of our hypotheses on \(\pi \) this integral converges absolutely and uniformly for \(z \) and \(k \) in compact subsets of \(\{ z : \text{Re}(z) > (a + 2b + 1)/2 \} \times K_v \). Moreover, for such \(z \), \(A(\rho, z, f) \in I(\rho^\vee) \) and the operator \(A(\rho, z, -) \in \text{Hom}_C(I(\rho), I(\rho^\vee)) \) intertwines the actions of \(\sigma(\rho, z) \) and \(\sigma(\rho^\vee, -z) \).

For any open subgroup \(U \subseteq K_v \) let \(I(\rho) \subseteq I(\rho) \) be the finite-dimensional subspace consisting of functions satisfying \(f(ku) = f(k) \) for all \(u \in U \). Then the function \(z \in C : \text{Re}(z) > (a + 2b + 1)/2 \rightarrow \text{Hom}_C(I(\rho)_U, I(\rho^\vee)_U) \), \(z \mapsto A(\rho, z, -) \), is holomorphic. This map has a meromorphic continuation to all of \(C \).

We finally remark that when \(\pi \) and \(\tau \) are unramified then there is a unique up to scalar unramified vector \(F_{\rho_v} \in I(\rho) \).

3.1.3 Global Picture

We follow [35, 9.1.4] for this part. Let \((\pi, V)\) be an irreducible cuspidal tempered automorphic representation of \(\text{GU}(\mathbb{A}_F) \). It is an admissible \((\mathfrak{g}_u(\mathbb{R}), K'_\infty, v|\infty \times \text{GU}(\mathbb{A}_f) \) -module which is a restricted tensor product of local irreducible admissible representations. Let \(\psi, \tau : \mathbb{A}_F^* \rightarrow \mathbb{C}^* \) be Hecke characters such that \(\psi \) is the central character of \(\pi \). Let \(\tau = \otimes \tau_w \) and \(\psi = \otimes \psi_w \) be their local decompositions, \(w \) running over places of \(F \). Define a representation of \((P(F_\infty) \cap K_\infty) \times P(\mathbb{A}_{E,f}) \) by putting:

\[
\rho(p)_v := \otimes (\rho_w(p_w)v_w),
\]

Let \(I(\rho) \) be the restricted product \(\otimes I(\rho_w) \)'s with respect to the \(F_{\rho_w} \)'s at those \(w \) at which \(\tau_w, \psi_w, \pi_w \) are unramified. As before, for each \(z \in C \) and \(f \in I(\rho) \) we define a function \(f_z \) on \(\text{GU}(r+1, s+1)(\mathbb{A}) \) as

\[
f_z(g) := \otimes f_{w,z}(g_w)
\]

where \(f_{w,z} \) are defined as before and an action \(\sigma(\rho, z) \) of \((\mathfrak{g}_u, K_\infty) \otimes \text{GU}(r+1, s+1)(\mathbb{A}_f) \) on \(I(\rho) \) by \(\sigma(\rho, z) := \otimes \sigma(\rho_w, z) \). Similarly we define \(\rho^\vee, I(\rho^\vee) \), and \(\sigma(\rho^\vee, z) \) but with the corresponding things replaced by their \(\vee \)'s.

Definition 3.1.2. Let \(\Sigma \) be a finite set of primes of \(F \) containing all the infinite places, primes dividing \(p \) and places where \(\pi \) or \(\tau \) is ramified. Then we call the triple \(D = (\pi, \tau, \Sigma) \) an Eisenstein Datum.
I am sorry to use the same notation as the CM type in section 2.1. The meaning should be clear in the context.

3.1.4 Kling-\textit{t}ype Eisenstein Series on G

We follow [35, 9.1.5] as in this subsection. Let $\pi, \psi,$ and τ be in the above subsection. For $f \in I(\rho), z \in \mathbb{C},$ there are maps from $I(\rho)$ and $I(\rho^\vee)$ to spaces of automorphic forms on $P(\mathbb{A}_F)$ given by

$$f \mapsto (g \mapsto f_z(g)(1)).$$

In the following we often write f_z for the automorphic form given by this recipe.

If $g \in GU(r + 1, s + 1)(\mathbb{A}_F)$ it is well known that

$$E(f, z, g) := \sum_{\gamma \in P(\mathbb{F}) \backslash G(\mathbb{F})} f_z(\gamma g)$$

converges absolutely and uniformly for (z, g) in compact subsets of \{z $\in \mathbb{C} : Re(z) > \frac{a+2b+1}{2}\} \times GU(r + 1, s + 1)(\mathbb{A}).$ Therefore we get some automorphic forms which are called Kling-\textit{t} Eisenstein series.

\textbf{Definition 3.1.3.} For any parabolic subgroup R of $GU(r + 1, s + 1)$ and an automorphic form φ we define φ_R to be the constant term of φ along $R.$

The following lemma is well-known (see [35, lemma 9.1.6]).

\textbf{Lemma 3.1.1.} Let R be a standard F-parabolic of $GU(r + 1, s + 1)$ (i.e, $R \supset B$ where B is the standard Borel). Suppose $Re(z) > \frac{a+2b+1}{2}.$

(i) If $R \neq P$ then $E(f, z, g)_R = 0;$

(ii) $E(f, z, -)_P = f_z + A(\rho, f, z)_{-z}.$

3.2 Siegel Eisenstein Series on G_n

3.2.1 Local Picture

Our discussion in this section follows [35, 11.1-11.3] closely. Let $Q = Q_n$ be the Siegel parabolic subgroup of GU_n consisting of matrices $\begin{pmatrix} A_q & B_q \\ 0 & D_q \end{pmatrix}.$ It consists of matrices whose lower-left $n \times n$ block is zero. For a place v of F and a character χ of \mathbb{K}_v^\times we let $I_v(\chi)$ be the space of smooth
$K_{n,v}$-finite functions (here $K_{n,v}$ means the maximal compact subgroup $G_n(O_{F,v})$) $f : K_{n,v} \to \mathbb{C}$ such that $f(qk) = \chi(\det D_q f(k)$ for all $q \in Q_n(F_v) \cap K_{n,v}$ (we write q as block matrix $q = \begin{pmatrix} A_q & B_q \\ 0 & D_q \end{pmatrix}$). For $z \in \mathbb{C}$ and $f \in I(\chi)$ we also define a function $f(z,-) : G_n(F_v) \to \mathbb{C}$ by

$$f(z,qk) = \chi(\det D_q)|_{\det A_q D_q^{-1} | z + n/2 f(k)}, q \in Q_n(F_v) \text{ and } k \in K_{n,v}.$$

Let χ be a unitary character of K_v^\times, v a place of F. For $f \in I_n(\chi)$, $z \in \mathbb{C}$, and $k \in K_{n,v}$, the intertwining integral is defined by:

$$M(z,f)(k) := \overline{\chi_n(\mu_n(k))} \int \chi_n(F_v) f(z,w_n r k) dr.$$

For z in compact subsets of $\{ \Re(z) > n/2 \}$ this integral converges absolutely and uniformly, with the convergence being uniform in k. In this case it is easy to see that $M(z,f) \in I_n(\overline{\chi})$. A standard fact from the theory of Eisenstein series says that this has a continuation to a meromorphic section on all of \mathbb{C}.

Let $U \subseteq \mathbb{C}$ be an open set. By a meromorphic section of $I_n(\chi)$ on U we mean a function $\varphi : U \to I_n(\chi)$ taking values in a finite dimensional subspace $V \subset I_n(\chi)$ and such that $\varphi : U \to V$ is meromorphic.

3.2.2 Global Picture

For an idele class character $\chi = \otimes \chi_v$ of K_v^\times we define a space $I_n(\chi)$ to be the restricted tensor product defined using the spherical vectors $f_v^{sph} \in I_n(\chi_v), f_v^{sph}(K_{n,v}) = 1$, at the finite places v where χ_v is unramified.

For $f \in I_n(\chi)$ we consider the Eisenstein series

$$E(f; z, g) := \sum_{\gamma \in Q_n(F) \setminus G_n(F)} f(z, \gamma g).$$

This series converges absolutely and uniformly for (z, g) in compact subsets of $\{ \Re(z) > n/2 \} \times G_n(\mathbb{A}_F)$. The defined automorphic form is called Siegel Eisenstein series.

The Eisenstein series $E(f; z, g)$ has a meromorphic continuation in z to all of \mathbb{C} in the following sense. If $\varphi : U \to I_n(\chi)$ is a meromorphic section, then we put $E(\varphi; z, g) = E(\varphi(z); z, g)$. This is defined at least on the region of absolute convergence and it is well known that it can be meromorphically
continued to all \(z \in \mathbb{C} \).

Now for \(f \in I_n(\chi), z \in \mathbb{C}, \) and \(k \in \prod_{v \mid \infty} K_{n,v} \prod_{v \mid \infty} K_{\infty} \) there is a similar intertwining integral \(M(z, f)(k) \) as above but with the integration being over \(N_{Q_n}(\mathbb{A}_F) \). This again converges absolutely and uniformly for \(z \) in compact subsets of \(\{ \text{Re}(z) > n/2 \} \times K_n \). Thus \(z \mapsto M(z, f) \) defines a holomorphic section \(\{ \text{Re}(z) > n/2 \} \to I_n(\bar{\chi}^c) \). This has a continuation to a meromorphic section on \(\mathbb{C} \). For \(\text{Re}(z) > n/2 \), we have

\[
M(z, f) = \otimes_v M(z, f_v), \quad f = \otimes_v f_v.
\]

The functional equation for Siegel Eisenstein series is:

\[
E(f, z, g) = \chi^n(\mu(g))E(M(z, f); -z, g)
\]

in the sense that both sides can be meromorphically continued to all \(z \in \mathbb{C} \) and the equality is understood as of meromorphic functions of \(z \in \mathbb{C} \).

3.2.3 the Pull-Back Formulas

Let \(\chi \) be a unitary idele class character of \(\mathbb{A}_F^\times \). Given a cuspform \(\phi \) on \(GU(r, s) \) we consider

\[
F_\phi(f; z, g) := \int_{U(r,s)(\mathbb{A}_F)} f(z, S^{-1_\alpha}(g, g_1 h)S) \bar{\chi}(\det g_1 g) \phi(g_1 h) dg_1,
\]

\[
f \in I_{r+s+1}(\chi), g \in GU(r+1, s+1)(\mathbb{A}_F), h \in GU(r, s)(\mathbb{A}_F), \mu(g) = \mu(h).
\]

This is independent of \(h \). The pull-back formulas are the identities in the following proposition.

Proposition 3.2.1. Let \(\chi \) be a unitary idele class character of \(\mathbb{A}_F^\times \).

(i) If \(f \in I_{r+s}(\chi) \), then \(F_\phi(f; z, g) \) converges absolutely and uniformly for \((z, g) \) in compact sets of \(\{ \text{Re}(z) > r + s \} \times GU(r, s)(\mathbb{A}_F) \), and for any \(h \in GU(r, s)(\mathbb{A}_F) \) such that \(\mu(h) = \mu(g) \)

\[
\int_{U(r,s)(\mathbb{A}_F) \setminus U(r,s)(\mathbb{A}_F)} E(f; z, S^{-1_\alpha}(g, g_1 h)S') \bar{\chi}(\det g_1 h) \phi(g_1 h) dg_1 = F_\phi(f; z, g).
\]

(ii) If \(f \in I_{r+s+1}(\chi) \), then \(F_\phi(f; z, g) \) converges absolutely and uniformly for \((z, g) \) in compact sets
of \{Re(z) > r + s + 1/2\} \times GU(r + 1, s + 1)(\mathbb{A}_F) such that \mu(h) = \mu(g)

\[E(f; z, S^{-1}a(g, g_1h)S)\bar{\chi}(\det g_1h)\phi(g_1h)dg_1 \]

\[= \sum_{\gamma \in P(F) \setminus G(r + 1, s + 1)(\mathbb{A}_F)} F_{\phi}(f; z, \gamma g), \quad (3.5) \]

with the series converging absolutely and uniformly for \((z, g)\) in compact subsets of \{Re(z) > r + s + 1/2\} \times G(r + 1, s + 1)(\mathbb{A}_F).

Proof. (i) is proved by Piatetski-Shapiro and Rallis and (ii) is a straight-forward generalization by Shimura [31]. See also [35, proposition 11.2.3]. \(\square\)

3.3 Fourier-Jacobi Expansion

We will usually use the notation \(e_\mathbb{A}(x) = e_{\mathbb{A}_F}(\text{Tr}_{\mathbb{A}_F/\mathbb{A}_0} x)\) for \(x \in \mathbb{A}_F\). For any automorphic form \(\varphi\) on \(GU(r, s)(\mathbb{A}_F)\), \(\beta \in S_m(F)\) for \(m \leq s\). We define the Fourier-Jacobi coefficient at \(g \in GU(r, s)(\mathbb{A}_F)\):

\[\varphi_\beta(g) = \int_{S_m(F) \setminus S_m(\mathbb{A}_F)} \varphi(\begin{pmatrix} I_s & S & 0 \\ 0 & 0 & 0 \\ 0 & 1_{r-s} & 0 \end{pmatrix} g) e_\mathbb{A}(\text{Tr}(\beta S)) dS. \]

In fact we are mainly interested in two cases: \(m = s\) or \(r = s\) and arbitrary \(m \leq s\). In particular, suppose \(G = G_n = GU(n, n), 0 \leq m \leq n\) are integers, \(\beta \in S_m(F)\). Let \(\varphi\) be a function on \(G(F) \setminus G(\mathbb{A})\). The \(\beta\)-th Fourier-Jacobi coefficient \(\varphi_\beta\) of \(\varphi\) at \(g\) is defined by

\[\varphi_\beta(g) := \int \varphi(\begin{pmatrix} I_n & S & 0 \\ 0 & 0 & 0 \\ 1_n \end{pmatrix} g) e_\mathbb{A}(\text{Tr}(\beta S)) dS. \]

Now we prove a useful formula on the Fourier Jacobi coefficients for Siegel Eisenstein series.

Definition 3.3.1. \(\text{let:}\)

\[Z := \left\{ \begin{pmatrix} 1_n & z & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1_n \end{pmatrix} \mid z \in \text{Her}_m(\mathcal{K}) \right\} \]
\[V := \left\{ \begin{pmatrix} 1_n & x & z & y \\ 1_{n-m} & y^* & 0 \\ 0_n & 1_m \\ -x^* & 1_{n-m} \end{pmatrix} \middle| x,y \in M_{m(n-m)}(K), z - xy^* \in \text{Her}_m(K) \right\} \]

\[X := \left\{ \begin{pmatrix} 1_m & x \\ 1_{n-m} & 0_n \\ 0_n & 1_m \\ -x^* & 1_{n-m} \end{pmatrix} \middle| x \in M_{m(n-m)}(K) \right\} \]

\[Y := \left\{ \begin{pmatrix} 1_n & z & y \\ y^* & 0 \\ 0_n & 1_n \end{pmatrix} \middle| y \in M_{m(n-m)}(K) \right\} \]

Proposition 3.3.1. Suppose \(f \in I_n(\tau) \) and \(\beta \in S_m(F) \), \(\beta \) is totally positive. If \(E(f; z, g) \) is the Siegel Eisenstein Series on \(GU \) defined by \(f \) for some \(\text{Re}(z) \) sufficiently large then the \(\beta \)-th Fourier-Jacobi coefficient \(E_\beta(f; z, g) \) satisfies:

\[
E_\beta(f; z, g) = \sum_{\gamma \in Q_{n-m}(F) \setminus GU_{n-m}(F)} \sum_{y \in Y} \int_{S_m(K)} f(w_n) \begin{pmatrix} 1_n & S \\ \tilde{y} & 0 \\ 1_n \end{pmatrix} \alpha_{n-m}(1, \gamma) e_h(-\text{Tr}\beta S) dS.
\]

Proof. We follow [21, section 3]. Let \(H \) be the normalizer of \(V \) in \(G \). Then

\[
G_n(F) = \bigcup_{i=1}^m Q_n(F) \xi_i H(F)
\]
for $\xi_i := \begin{pmatrix} 0_{m-i} & 0 & -1_{m-i} & 0 \\ 0 & 1_{n-m+i} & 0 & 0 \\ 1_{m-i} & 0 & 0_{m-i} & 0 \\ 0 & 0_{n-m+i} & 0 & 1_{n-m+i} \end{pmatrix}$, then unfold the Eisenstein series we get:

$$E_\beta(f; z, g) = \sum_{i > 0} \sum_{\gamma \in Q_n(F) \setminus Q_n(F) \xi_i H(F)} f(\gamma) e_m(-Tr(\beta S)) dS$$

by in [21, lemma(3.1)] (see loc.cit P628), the first term vanishes. Also, we have (loc.cit)

$$Q_n(F) \setminus Q_n(F) \xi_0 H(F)$$

$$= \xi_0 Z(F) X(F) Q_{n-m}(F) \setminus G_{n-m}(F)$$

$$= \xi_0 X(F) Q_{n-m}(F) \setminus G_{n-m}(F) \cdot Z(F)$$

$$= w_n Y(F) S_m(F) w_{n-m} Q_{n-m}(F) \setminus G_{n-m}(F)$$

(note that S_m commutes with X and G_{n-m}). So

$$E_\beta(f; z, g) = \sum_{\gamma \in Q_{n-m}(F) \setminus G_{n-m}(F)} \sum_{y \in Y(F)} \int_{S_m(K)} f(w_n) e_m(-Tr(\beta S))$$

Note that the final integral is essentially a product of local ones.

Now we record some useful formulas:

Definition 3.3.2. If $g_v \in U_{n-m}(F_v), x \in GL_m(K_v)$, then define:

$$FJ_\beta(f_v; z, y, g, x) = \int_{S_m(F_v)} f(w_n) e_m(-Tr(\beta S))$$
where if \(g_1 = \begin{pmatrix} A & B \\ C & D \end{pmatrix}, g_2 = \begin{pmatrix} A' & B' \\ C' & D' \end{pmatrix} \) then:

\[
\alpha(g_1, g_2) = \begin{pmatrix} A & B \\ D' & C' \\ C & D \\ B' & A' \end{pmatrix}
\]

Since

\[
\begin{pmatrix} 1_n & S & X \\ X^t & 1_n \end{pmatrix} \begin{pmatrix} 1_m & A^{-1} \\ 1_m & A \end{pmatrix} = \begin{pmatrix} 1_m & XBA^{-1} \\ 1_m & A^{-1} \\ B^{-1} & A \end{pmatrix} \begin{pmatrix} 1_n & S - XB'A^{-1} \\ A^{-1} \\ 1_n \end{pmatrix}
\]

it follows that:

\[
FJ_\beta(f; z, X, \begin{pmatrix} A & BA^{-1} \\ A^{-1} \end{pmatrix}, g, Y) = \tau_v(\det A)^{-1}|\det A A|^{z+n/2} \cdot e_v(-tr(\bar{X} \beta X)) FJ_\beta(f; z, XA, g, Y)
\]

Also we have:

\[
FJ_\beta(f; z, y, g, x) = \tau_v(\det x)^{-\frac{1}{2}(z + \frac{m}{2} - m)} FJ_\beta(f; x^{-1}y, g, 1)
\]

3.3.1 Weil Representations

The local set-up.

Let \(v \) be a place of \(F \). Let \(h \in S_n(F_v), \det h \neq 0 \). Let \(U_h \) be the unitary group of this matric and denote \(V_v \) to be the corresponding Hermitian space. Let \(V_{n-m} := K_v^{(n-m)} \oplus K_v^{(n-m)} := X_v \oplus Y_v \) be the Hermitian space associated to \(U(n - m, n - m) \). Let \(W := V_v \otimes K_v V_{n-m,v} \). Then \((-,-) := Tr_{K_v/F_v} < -, -, > = \) is a \(F_v \) linear pairing on \(W \) that makes \(W \) into an \(4m(n - m) \)-dimensional symplectic space over \(F_v \). The canonical embedding of \(U_h \times U_{n-m} \) into \(Sp(W) \) realizes the pair \((U_h, U_{n-m})\) as a dual pair in \(Sp(W) \). Let \(\lambda_v \) be a character of \(K_v^{\times} \) such that \(\lambda_v|_{F_v^{\times}} = \chi_{K_v/F_v}^\lambda \). It is well known (see [23]) that there is a splitting \(U_h(F_v) \times U_{n-m}(F_v) \hookrightarrow Mp(W, F_v) \)
of the metaplectic cover $Mp(W, F_v) \to Sp(W, F_v)$ determined by the character λ_v. This gives the Weil representation $\omega_{h,v}(u, g)$ of $U_h(F_v) \times U_{n-m}(F_v)$ where $u \in U_h(F_v)$ and $g \in U_{n-m}(F_v)$, via the Weil representation of $Mp(W, F_v)$ on the space of Schwartz functions $S(V_v \otimes_{K_v} X_v)$. Moreover we write $\omega_{h,v}(g)$ to mean $\omega_{h,v}(1, g)$. For $X \in M_{m \times (n-m)}(K_v)$, we define $\langle X, X \rangle_h := \overline{X} \beta X$ (note that this is a $(n-m) \times (n-m)$ matrix). We record here some useful formulas for $\omega_{h,v}$ which are generalizations of the formulas in [35, chapter 10].

- $\omega_{h,v}(u, g)\Phi(X) = \omega_{h,v}(1, g)\Phi(u^{-1}X)$
- $\omega_{h,v}(\text{diag}(A, \overline{A}^{-1}))\Phi(X) = \lambda(\det A)|\det A|_{K_v}\Phi(XA),$
- $\omega_{h,v}(r(S))\Phi(x) = \Phi(x)e_v(\text{tr} < X, X >_h S),$
- $\omega_{h,v}(\eta)\Phi(x) = |\det h|_v \int \Phi(Y)e_v(Tr_{K_v/F_v}(\text{tr} < Y, X >_h))dY.$

global setup:

Let $h \in S_m(F), h > 0$. We can define global versions of U_h, GU_h, W, and $(-, -)$, analogously to the above. Fixing an idele class character $\lambda = \otimes \lambda_v$ of $\mathbb{A}^\times_K/K^\times$ such that $\lambda|_{F_v} = \chi_{K_v/F_v}$, the associated local splitting described above then determine a global splitting $U_h(\mathbb{A}_F) \times U_1(\mathbb{A}_F) \hookrightarrow Mp(W, \mathbb{A}_F)$ and hence an action $\omega_h := \otimes \omega_{h,v}$ of $U_h(\mathbb{A}_F) \times U_1(\mathbb{A}_F)$ on the Schwartz space $S(V_{\mathbb{A}_K} \otimes X)$.

31
Chapter 4

Local Computations

In this chapter we do the local computations for Klingen Eisenstein sections realized as the pullbacks of Siegel Eisenstein sections. We will mainly compute the Fourier and Fourier-Jacobi coefficients for the Siegel sections and the pullback Klingen Eisenstein section. From now on we will usually write w_n for $\begin{pmatrix} 1 & n \\ -1 & n \end{pmatrix}$.

4.1 Archimedean Computations

Let v be an Archimedean place of F.

4.1.1 Fourier Coefficients

Now we recall a lemma from [35, 11.4.2]. Let $J_n(g, i 1_n) := \det(C_gi + D_g)$ for $g = \begin{pmatrix} A_g & B_g \\ C_g & D_g \end{pmatrix}$.

Lemma 4.1.1. If we define $f_{\kappa,n}(z, g) = J_n(g, i 1_n)^{-\kappa} |J_n(g, i 1_n)|^{\kappa - 2z - n}$, suppose $\beta \in S_n(\mathbb{R})$. Then the function $z \to f_{\kappa,\beta}(z, g)$ has a meromorphic continuation to all of \mathbb{C}. Furthermore, if $\kappa \geq n$ then $f_{\kappa,n,\beta}(z, g)$ is holomorphic at $z_\kappa := (\kappa - n)/2$ and for $g \in \text{GL}_n(\mathbb{C}), f_{\kappa,n,\beta}(z_\kappa, \text{diag}(y, ty^{-1})) = 0$ if $\det \beta \leq 0$ and if $\det \beta > 0$ then

$$f_{\kappa,n,\beta}(z_\kappa, \text{diag}(y, ty^{-1})) = \frac{(-2)^{-n}(2\pi i)^{n\kappa}(2/\pi)^{n(n-1)/2}}{\prod_{j=0}^{\kappa-1} (\kappa - j - 1)!} e^{i \text{Tr}(\beta ty)} \det(\beta)^{\kappa-n} \det \bar{y}^\kappa.$$

Later on our $f_{\kappa,n}$ will be defined differently, but it is just the one defined above translated by matrices of the form $\text{diag}(y, ty^{-1})$. So the Fourier coefficient can be deduced from the above lemma.
4.1.2 Pullback Sections

Now we assume that our π is the holomorphic discrete series representation associated to the (scalar) weight $(0,\ldots,0;\kappa,\ldots,\kappa)$ and let ϕ be the unique (up to scalar) vector such that the action of K_∞^+ (see section 3.1) is given by $\det \mu(k,i)^{-\kappa}$. Recall also that in section 3.1 we have defined the Klingen section $F_\kappa(z,g)$ there. Recall that:

$$S = \begin{pmatrix} 1 & & & & & -\frac{1}{2} \\ & 1 & & & & \\ & & 1 & & -\zeta & \\ & & & -1 & \frac{1}{2} & \\ & & & & 1 & \frac{1}{2} \\ & -1 & & & -\zeta & \\ -1 & & & & & -\frac{1}{2} \end{pmatrix}$$

and

$$S' = \begin{pmatrix} 1 & & & & & -\frac{1}{2} \\ & 1 & & & & -\frac{\zeta}{2} \\ & & -1 & \frac{1}{2} & \\ & & & 1 & \frac{1}{2} & \\ & & & & -\zeta & \\ -1 & & & & & -\frac{1}{2} \end{pmatrix}$$

Let $i := \begin{pmatrix} \frac{1}{2} l_b \\ i \\ \frac{\zeta}{2} a \end{pmatrix}$ be a point in the symmetric domain for $GU(n,n)$ or $GU(n+1,n+1)$ for $n = a + 2b$, where the block matrices i are of size $b \times b$ or $(b+1) \times (b+1)$. We define archimedean sections to be:

$$f_\kappa(g) = J_{n+1}(g,i)^{-\kappa}|J_{n+1}(g,i)|^{\kappa - 2z - n - 1}$$

and

$$f'_\kappa(g) = J_n(g,i)^{-\kappa}|J_n(g,i)|^{\kappa - 2z - n}$$
and the pull back sections on $GU(a + b + 1, b + 1)$ and $GU(a + b, a)$ to be

$$F_{\kappa}(z, g) := \int_{U_{a+b,b}(\mathbb{R})} f_{\kappa}(z, S^{-1}a(g, g_1)S)\tau(\det g_1)\pi(g_1)d\mu g_1$$

and

$$F'_{\kappa}(z, g) := \int_{U_{a+b,b}(\mathbb{R})} f'_{\kappa}(z, S^{-1}a(g, g_1)S')\tau(\det g_1)\pi(g_1)d\mu g_1$$

Lemma 4.1.2. The integrals are absolutely convergent for $\text{Re}(z)$ sufficiently large and for such z, we have:

(i) \[F_{\kappa}(z, g) = c_{\kappa}(z)F_{\kappa, z}(g); \]

(ii) \[F'_{\kappa}(z, g) = c'_{\kappa}(z)\pi(g)\phi; \]

where

\[c'_{\kappa}(z, g) = 2^{\nu}|\det \theta|^b \left\{ \begin{array}{ll}
\pi(a_n + b_n)\Gamma_b(z + \frac{n+k}{2} - a_v - b_v)\Gamma_b(z + \frac{n+k}{2} - 1), & b > 0 \\
1, & \text{otherwise}. \end{array} \right. \]

and \(c_{\kappa}(z, g) = c'_{\kappa}(z + \frac{1}{2}, g). \) Here \(\Gamma_m := \pi^{\frac{m(m+1)}{2}} \prod_{k=0}^{m-1} \Gamma(s - k) \) and \(\nu := (a + 2b)db \) (recall that \(d = [F : \mathbb{Q}]. \))

Proof. See [31, 22.2, A2.9]. Note that the action of \((\beta, \gamma) \in U(r, s) \times U(r, s)\) is given by \((\beta', \gamma')\) defined there. Taking this into consideration, our conjugation matrix \(S \) are Shimura’s \(S \) times \(\Sigma^{-1}, \) which is defined in (22.1.2) in [31]. Also our result differs from [35, 11.4.4] by some powers of 2 since we are using a different \(S \) here. \(\square \)

4.1.3 Fourier-Jacobi Coefficients

Lemma 4.1.3. Let \(z_\kappa = \frac{\kappa - n}{2}, \beta \in S_m(\mathbb{R}), m < n, \det \beta > 0. \) then:

(i) \(FJ_{\beta, \kappa}(z_\kappa, x, \eta, 1) = f_{\kappa, m, \beta}(z_\kappa + \frac{n-m}{2}, 1)e(iTr(X\beta X)); \)

(ii) If \(g \in U_{n-m}(\mathbb{R}), \) then

\[FJ_{\beta, \kappa}(z_\kappa, X, g, 1) = e(iTr\beta)\phi_m(\beta, \kappa) f_{\kappa-m, n-m}(z_\kappa, g')w_{\beta}(g')\Phi_{\beta, \infty}(x). \]
where \(g' = \begin{pmatrix} 1_n & -1_n \\ 1_n & 1_n \end{pmatrix} g \begin{pmatrix} 1_n & 1_n \\ -1_n & 1_n \end{pmatrix} \), \(c_t(\beta, \kappa, \eta, 1) = \left(-2 \right)^{-\frac{1}{2}} \left(2\pi i \right)^{(t-1)/2} \prod_{j=0}^{n-1} (\kappa - j - 1) \det \beta^{\kappa - t} \) and \(\Phi_{\beta, \infty} = e^{-2\pi \text{Tr}(<x, x>)}. \)

Proof. For (i) we first assume that \(m \leq n/2 \), then there is a matrix \(U \in U_{n-m} \) such that \(XU = (0, A) \) for \(A \) a \((m \times m) \) positive semi-definite Hermitian matrix. It then follows that \(FJ_{\beta, \kappa}(z, X, \eta, 1) = FJ_{\beta}(z, (0, A), \eta, 1) \) and \(e(i\text{Tr}(X^2 \beta)) = e(i\text{Tr}(U^{-1}X^2 \beta U)) \), so we are reduced to the case when \(X = (0, A) \).

Let \(C \) be a \((m \times m) \) positive definite Hermitian matrix defined by \(C = \sqrt{A^2 + 1}. \) (Since \(A \) is positive semi-definite Hermitian, this \(C \) exists by linear algebra.)

\[
\begin{pmatrix}
1_n \\
A \\
1_n
\end{pmatrix}
= \begin{pmatrix}
C & 1 \\
C & AC^{-1} & C^{-1} \\
AC^{-1} & 1 & C^{-1}
\end{pmatrix}
\begin{pmatrix}
C^{-1} & C^{-1}A \\
C^{-1}A & C^{-1} & 1
\end{pmatrix}
\]

write \(k(a) \) for the second matrix in the right of above which belongs to \(K^{+}_{n, \infty} \), then as in [35, lemma 11.4.3],

\[
\begin{pmatrix}
1_n & S \\
t_x & U
\end{pmatrix}
= \begin{pmatrix}
C^{-1} & \times & \times & \times \\
\times & \times & \times & \times \\
\times & \times & C & \times \\
\times & \times & C
\end{pmatrix}
\begin{pmatrix}
U^{-1}SU^{-1} \\
1_n
\end{pmatrix}
\begin{pmatrix}
k(a)
\end{pmatrix}
\]

Thus

\[
FJ_{\beta, \kappa}(z_{\kappa}, (0, A), \eta, 1) = (\det C)^{2m-2n} FJ_{\beta', \kappa}(z_{\kappa}, 0, \eta, 1, \beta') = C\beta C
\]

\[
= (\det C)^{2m-2n} f_{\kappa, m, \beta}(z_{\kappa} + \frac{n-m}{2}, 1)
\]

\[
= f_{\kappa, m, \beta}(z + \frac{n-m}{2}, 1) e(i\text{Tr}(C\beta C - \beta)).
\]
But

\[
e(iTr(C\beta C - \beta)) = e(iTr(C^2 \beta - \beta)) = e(iTr((C^2 - 1)\beta)) = e(iTr(A^2 \beta)) = e(iTr(A\beta A)).
\]

This proves part (i).

Part (ii) is proved completely the same as in [35, lemma 11.4.3].

In the case when \(m > \frac{n}{2} \) we proceed similarly as in [35, lemma 11.4.3], replacing \(a \) and \(u \) there by corresponding block matrices just as above. We omit the details.

\[\square\]

4.2 Finite Primes, Unramified Case

4.2.1 Fourier-Jacobi Coefficients

Let \(v \) be a prime of \(F \) not dividing \(p \) and \(\tau \) a character of \(K_v^\times \). For \(f \in I_n(\tau) \) and \(\beta \in S_m(F_v), 0 \leq m \leq n \), we have defined the local Fourier-Jacobi coefficient to be

\[
f_\beta(z; g) := \int_{S_m(F_v)} f(z, w_n \begin{pmatrix} S & 0 \\ 0 & 0 \\ 1_n \end{pmatrix} g) e_v(-Tr\beta S) dS.
\]

We first record a generalization of [35, lemma 11.4.6] to any fields (Proposition 18.14 and 19.2 of [31]).

Lemma 4.2.1. Let \(\beta \in S_n(F_v) \) and let \(r := rank(\beta) \). Then for \(y \in GL_n(K_v) \),

\[
f_{v,\beta}(z, \text{diag}(y, t\bar{y}^{-1})) = \tau(\text{det}y) |\text{det}y|^z D_v^{-n(n-1)/4} \times \prod_{i=1}^{n-1} \frac{L(2z+i-n+1, \chi^\tau \chi_{F_v})}{\Gamma(2z+i-n+1, \chi_{F_v})} h_v, t\bar{y} y (\bar{\tau'}(\bar{\tau}) q_v^{-2z-n}),
\]

where \(h_v, t\bar{y} y \in \mathbb{Z}[X] \) is a monic polynomial depending on \(v \) and \(t\bar{y} y \) but not on \(\tau \). If \(\beta \in S_n(O_{F_v}) \) and \(\text{det} \in O_{F_v}^\times \), then we say that \(\beta \) is \(v \)-primitive and in this case \(h_{v,\beta} = 1 \).

Lemma 4.2.2. Suppose \(v \) is unramified in \(K \). Let \(\beta \in S_m(F_v) \) such that \(\text{det} \beta \neq 0 \). Let \(y \in GL_{n-m}(K_v) \) such that \(t\bar{y} y \in S_m(O_{F_v}) \), let \(\lambda \) be an unramified character of \(K_v^\times \) such that \(\lambda|_{F_v} = 1 \).
(i) If $\beta, y \in GL_m(O_v)$, then for $u \in U_{\beta}(F_v)$:

$$FJ_{\beta}(f_{n}^{\text{sph}}; z, x, g, uy) = \tau([\det u]_{v}^{-z+1/2} f_{n}^{\text{sph}}(z, g) \omega_{\beta}(u, g) \Phi_{0,y}(x) \prod_{i=0}^{m-1} L(2z + n - i, \tau' \chi_{K})).$$

(ii) If $\bar{y} \beta y \in GL_m(O_v)$, then for $u \in U_{\beta}(F_v)$;

$$FJ_{\beta}(f_{n}^{\text{sph}}; z, x, g, uy) = \tau([\det uy]_{K}^{-z+1/2} f_{n}^{\text{sph}}(z, g) \omega_{\beta}(u, g) \Phi_{0,y}(x) \prod_{i=0}^{m-1} L(2z + n - i, \tau' \chi_{K})).$$

4.2.2 Pull-Back Integrals

Lemma 4.2.3. Suppose π, ψ and τ are unramified and $\phi \in \pi$ is a newvector. If $\Re(z) > (a + b)/2$ then the pull back integral converges and

$$F_{\phi}(f_{v}^{\text{sph}}, z, g) = \frac{L(\pi, \varpi_{v}, z + 1)}{\prod_{i=0}^{a+2b-1} L(2z + a + 2b + 1 - i, \varpi_{K})} F_{\rho,z}(g)$$

where F_{ρ} is the spherical section.

This is computed in [25, proposition 3.3].

4.3 Prime to p Ramified Case

4.3.1 Pull Back integrals

Again let v be a prime of F not dividing p. The choices in this section are not quite important. In fact in applications we are going to change it according to our needs. The purpose for this section is only to convince the reader that such kinds of sections do exist. We define f^v to be the Siegel section supported on the cell $Q(F_v)w_{a+2b+1}Q_{(F_v)}$ where $w_{a+2b+1} = \left(\begin{array}{c}1_{a+2b+1} \\ -1_{a+2b+1}\end{array}\right)$ and the value at $N_{Q}(Q_{F,v})$ equals 1. We fix some x and y in K which are divisible by some high power of ϖ_{v}. (When we are moving things p-adically the x and y are not going to change).

Definition 4.3.1.

$$f_{v,\text{sieg}}(g) := f\left(\begin{array}{c}1_{a+2b+1} \\ \frac{1}{2}1_{a+2b+1}\end{array}\right) g \left(\begin{array}{c}1_{a+2b+1} \\ 2.1_{a+2b+1}\end{array}\right) \tilde{\gamma}_{v}.$$
where \(\tilde{\gamma} \) is defined to be:

\[
\begin{pmatrix}
1 &
\frac{1}{y} \\
1 &
\frac{1}{y} \\
1 &
\frac{1}{y} \\
1 &
1 \\
1 &
1 \\
1 &
1
\end{pmatrix}
\]

Lemma 4.3.1. Let \(K_v^{(2)} \) be the subgroup of \(G(F_v) \) of the form

\[
\begin{pmatrix}
1 & d \\
a & 1 & f & b & c \\
1 & g \\
1 & e \\
1 & 1
\end{pmatrix}
\]

where \(e = -\bar{a}, \)

\(b = \bar{d}, g = -\theta f, c = \bar{c}, a \in (x), e \in (\bar{x}), f \in (y\bar{y}), g \in (2\zeta y\bar{y}) \). Then \(F_\phi(z;g,f) \) is supported in \(P \omega K_v^{(2)} \) and is invariant under the action of \(K_v^{(2)} \).

Proof. Let \(S_{x,y} \) consists of matrices: \(S :=
\begin{pmatrix}
S_{11} & S_{12} & S_{13} & S_{14} \\
S_{21} & S_{22} & S_{23} & S_{24} \\
S_{31} & S_{32} & S_{33} & S_{34} \\
S_{41} & S_{42} & S_{43} & S_{44}
\end{pmatrix}
\) in the space of Hermitian \((a + 2b + 1) \times (a + 2b + 1)\) matrices (the blocks are with respect to the partition \(b + 1 + a + b \)) such that the entries of \(S_{13}, S_{21} \) are divisible by \(y \), the entries of \(S_{14}, S_{24} \) are divisible by \(x \), the entries of \(S_{31}, S_{32} \) are divisible by \(\bar{y} \), the entries of \(S_{41}, S_{42} \) are divisible by \(\bar{x} \), the entries of \(S_{33} \) are divisible by \(y\bar{y} \), the entries of \(S_{43} \) are divisible by \(x\bar{y} \), the entries of \(S_{34} \) are divisible by \(x\bar{y} \), the entries of \(S_{44} \) are divisible by \(x\bar{x} \). Let \(Q_{x,y} := Q(F_v) \cdot
\begin{pmatrix}
1 \\
S_{x,y}
\end{pmatrix}
\)
For $g = \begin{pmatrix} a_1 & a_2 & a_3 & b_1 & b_2 \\ a_4 & a_5 & a_6 & b_3 & b_4 \\ a_7 & a_8 & a_9 & b_5 & b_6 \\ c_1 & c_2 & c_3 & d_1 & d_2 \\ c_4 & c_5 & c_6 & d_3 & d_4 \end{pmatrix}$, we have:

$$\gamma(g, 1) \in \text{supp} f_{x, \text{sig}g}$$

$$\Leftrightarrow \quad \gamma(g, 1)w_{a+2b+1}d_{x,y} \bar{\gamma}^{-1} \in Q_{x,y}$$

$$\Leftrightarrow \quad \gamma(gw, \eta \text{diag}(\bar{x}^{-1}, 1, x))w'd_y \bar{\delta}^{-1} \in Q_{x,y}.$$
divisible by $\bar{y}yx\zeta$.

Lemma 4.3.2. Let $\phi_x = \pi(\text{diag}(\bar{x}, 1, x^{-1})\eta^{-1})\phi$ where ϕ is invariant under the action of \mathfrak{g} defined above, then $F_{\phi_x}(z, w) = \tau(\bar{y}yx)|(\bar{y}y)^2x\bar{x}l^{-\frac{\text{dim} \mathfrak{g}}{2}}\text{Vol}(\mathfrak{g}).\phi$.

Proof.

\[
\begin{pmatrix}
1 \\
1 \\
\frac{1}{\zeta} \\
\frac{1}{\zeta} \\
1 \\
1 \\
-\frac{1}{\zeta} \\
1 \\
\end{pmatrix} \begin{pmatrix}
1 \\
1 \\
\frac{1}{\zeta} \\
\frac{1}{\zeta} \\
1 \\
1 \\
-\frac{1}{\zeta} \\
1 \\
\end{pmatrix} \begin{pmatrix}
1 \\
1 \\
a_1 \\
\frac{1}{\zeta} \\
1 \\
1 \\
a_7 \\
1 \\
\end{pmatrix} \begin{pmatrix}
1 \\
1 \\
a_3 \\
ant \\
1 \\
a_9 \\
a_6 \\
1 \\
\end{pmatrix} \begin{pmatrix}
1 \\
1 \\
1 \\
1 \\
1 \\
-1 \\
-1 \\
1 \\
\end{pmatrix} \begin{pmatrix}
1 \\
1 \\
a_2 \\
\frac{1}{\zeta} \\
a_4 \\
a_6 \\
a_5 \\
1 \\
\end{pmatrix} \begin{pmatrix}
1 \\
1 \\
a_1 \\
a_2 \\
1 \\
-1 \\
-1 \\
1 \\
\end{pmatrix} \begin{pmatrix}
1 \\
1 \\
a_3 \\
\frac{1}{\zeta} \\
a_9 \\
\frac{1}{\zeta} \\
a_6 \\
\frac{1}{\zeta} \\
\end{pmatrix} \begin{pmatrix}
1 \\
1 \\
a_2 \\
\frac{1}{\zeta} \\
a_4 \\
a_6 \\
a_5 \\
1 \\
\end{pmatrix} \begin{pmatrix}
1 \\
1 \\
a_1 \\
a_2 \\
1 \\
-1 \\
-1 \\
1 \\
\end{pmatrix} \begin{pmatrix}
1 \\
1 \\
a_3 \\
\frac{1}{\zeta} \\
a_9 \\
\frac{1}{\zeta} \\
a_6 \\
\frac{1}{\zeta} \\
\end{pmatrix} \begin{pmatrix}
1 \\
1 \\
\frac{1}{\zeta} \\
\frac{1}{\zeta} \\
1 \\
1 \\
-\frac{1}{\zeta} \\
1 \\
\end{pmatrix} \begin{pmatrix}
1 \\
1 \\
a_2 \\
\frac{1}{\zeta} \\
1 \\
\frac{1}{\zeta} \\
-1 \\
1 \\
\end{pmatrix} \begin{pmatrix}
1 \\
1 \\
a_3 \\
\frac{1}{\zeta} \\
a_9 \\
\frac{1}{\zeta} \\
a_6 \\
\frac{1}{\zeta} \\
\end{pmatrix} \begin{pmatrix}
1 \\
1 \\
\frac{1}{\zeta} \\
\frac{1}{\zeta} \\
1 \\
1 \\
-\frac{1}{\zeta} \\
1 \\
\end{pmatrix} \begin{pmatrix}
1 \\
1 \\
a_2 \\
\frac{1}{\zeta} \\
1 \\
\frac{1}{\zeta} \\
-1 \\
1 \\
\end{pmatrix} \begin{pmatrix}
1 \\
1 \\
a_3 \\
\frac{1}{\zeta} \\
a_9 \\
\frac{1}{\zeta} \\
a_6 \\
\frac{1}{\zeta} \\
\end{pmatrix} \begin{pmatrix}
1 \\
1 \\
\frac{1}{\zeta} \\
\frac{1}{\zeta} \\
1 \\
1 \\
-\frac{1}{\zeta} \\
1 \\
\end{pmatrix} \begin{pmatrix}
1 \\
1 \\
a_2 \\
\frac{1}{\zeta} \\
1 \\
\frac{1}{\zeta} \\
-1 \\
1 \\
\end{pmatrix} \begin{pmatrix}
1 \\
1 \\
a_3 \\
\frac{1}{\zeta} \\
a_9 \\
\frac{1}{\zeta} \\
a_6 \\
\frac{1}{\zeta} \\
\end{pmatrix} \begin{pmatrix}
1 \\
1 \\
\frac{1}{\zeta} \\
\frac{1}{\zeta} \\
1 \\
1 \\
-\frac{1}{\zeta} \\
1 \\
\end{pmatrix} \begin{pmatrix}
1 \\
1 \\
a_2 \\
\frac{1}{\zeta} \\
1 \\
\frac{1}{\zeta} \\
-1 \\
1 \\
\end{pmatrix} \begin{pmatrix}
1 \\
1 \\
a_3 \\
\frac{1}{\zeta} \\
a_9 \\
\frac{1}{\zeta} \\
a_6 \\
\frac{1}{\zeta} \\
\end{pmatrix} \begin{pmatrix}
1 \\
1 \\
\frac{1}{\zeta} \\
\frac{1}{\zeta} \\
1 \\
1 \\
-\frac{1}{\zeta} \\
1 \\
\end{pmatrix} \begin{pmatrix}
1 \\
1 \\
a_2 \\
\frac{1}{\zeta} \\
1 \\
\frac{1}{\zeta} \\
-1 \\
1 \\
\end{pmatrix} \begin{pmatrix}
1 \\
1 \\
a_3 \\
\frac{1}{\zeta} \\
a_9 \\
\frac{1}{\zeta} \\
a_6 \\
\frac{1}{\zeta} \\
\end{pmatrix} \begin{pmatrix}
1 \\
1 \\
\frac{1}{\zeta} \\
\frac{1}{\zeta} \\
1 \\
1 \\
-\frac{1}{\zeta} \\
1 \\
\end{pmatrix} \begin{pmatrix}
1 \\
1 \\
a_2 \\
\frac{1}{\zeta} \\
1 \\
\frac{1}{\zeta} \\
-1 \\
1 \\
\end{pmatrix} \begin{pmatrix}
1 \\
1 \\
a_3 \\
\frac{1}{\zeta} \\
a_9 \\
\frac{1}{\zeta} \\
a_6 \\
\frac{1}{\zeta} \\
\end{pmatrix} \begin{pmatrix}
1 \\
1 \\
\frac{1}{\zeta} \\
\frac{1}{\zeta} \\
1 \\
1 \\
-\frac{1}{\zeta} \\
1 \\
\end{pmatrix} \begin{pmatrix}
1 \\
1 \\
a_2 \\
\frac{1}{\zeta} \\
1 \\
\frac{1}{\zeta} \\
-1 \\
1 \\
\end{pmatrix} \begin{pmatrix}
1 \\
1 \\
a_3 \\
\frac{1}{\zeta} \\
a_9 \\
\frac{1}{\zeta} \\
a_6 \\
\frac{1}{\zeta} \\
\end{pmatrix}
\end{array}
\]

One checks the above matrix belongs to $Q_{x,y}$ if and only if the a_i’s satisfy the conditions required by the definition of \mathfrak{g}. The lemma follows by a similar argument as in lemma 4.4.12 below. $$\Box$$
Definition 4.3.2. We fix a constant C_v such that $C_v \text{Vol}(\mathfrak{D})$ is a p-adic integer.

When we are moving things in p-adic families, this constant is not going to change.

4.3.2 Fourier-Jacobi Coefficient

Here we record a lemma on the Fourier-Jacobi coefficient for $f^\dagger_v \in I_n(\tau_v)$ and $\beta \in S_m(F_v)$.

Lemma 4.3.3. If $\beta \notin S_m(\mathcal{O}_{F_v})^*$ then $FJ_\beta(f^\dagger; z, u, g, hy) = 0$. If $\beta \in S_m(\mathcal{O}_{F_v})^*$ then

$$FJ_\beta(f^\dagger; z, u, g, 1) = f^\dagger(z, g'\eta)\omega_\beta(h, g'\eta^{-1})\Phi_{0,\beta}(u)\text{Vol}(S_m(\mathcal{O}_{F_v})),\$$

where $g' = \begin{pmatrix} 1_{n-m} & 0 \\ -1_{n-m} & 1_{n-m} \end{pmatrix} g \begin{pmatrix} 1_{n-m} \\ -1_{n-m} \end{pmatrix}$.

The proof is similar to [35, lemma 11.4.16].

4.4 p-adic Computations

In this section we first prove that under some ‘generic conditions’ the unique up to scalar nearly ordinary vector in $I(\rho)$ is just the unique up to scalar vector with certain prescribed level action. Then we construct a section F^\dagger in $I(\rho^\vee)$ which is the pull back of a Siegel section f^\dagger supported in the big cell. We can understand the level action of this section. Then we define F^0 to be the image of F^\dagger under the intertwining operator. By checking the level action of F^0 we can prove that it is just the nearly ordinary vector.

4.4.1 Nearly Ordinary Sections

Let $\lambda_1, \ldots, \lambda_n$ be n characters of \mathbb{Q}_p^\times, $\pi = \text{Ind}_{GU}^{GL_n}(\lambda_1, \ldots, \lambda_n)$.

Definition 4.4.1. Let $n = r + s$ and $k = (c_{r+s}, \ldots, c_{s+1}; c_1, \ldots, c_s)$ be a weight. We say $(\lambda_1, \ldots, \lambda_n)$ is nearly ordinary with respect to k if the set:

$$\{\text{val}_p \lambda_1(p), \ldots, \text{val}_p \lambda_n(p)\}$$

$$= \{c_1 + s - 1 - \frac{n}{2} + \frac{1}{2}, c_2 + s - 2 - \frac{n}{2} + \frac{1}{2}, \ldots, c_s - \frac{n}{2} + \frac{1}{2}, c_{s+1} + r + s - 1 - \frac{n}{2} + \frac{1}{2}, \ldots, c_{r+s} + s - \frac{n}{2} + \frac{1}{2}\}$$

We denote the set as $\{\kappa_1, \ldots, \kappa_{r+s}\}$. Thus $\kappa_1 > \ldots > \kappa_{r+s}$.
Let $A_p := \mathbb{Z}_p[t_1, t_2, ..., t_n, t_{n-1}]$ be the Atkin-Lehner ring of $G(\mathbb{Q}_p)$, where t_i is defined by $t_i = N(\mathbb{Z}_p)\alpha_i N(\mathbb{Z}_p)$, $\alpha_i = \begin{pmatrix} 1_{n-i} \\ p^{1_{i}} \end{pmatrix}$. Then t_i acts on $\pi^{N(\mathbb{Z}_p)}$ by

$$v|t_i = \sum_{x \in N(\alpha_i^{-1} N(\mathbb{Z}_p))} x_i \alpha_i^{-1} v.$$

We also define a normalized action with respect to the weight k following ([12]):

$$v|t_i := \delta(\alpha_i)^{-1/2} p^{k_1 + \cdots + k_i} v|t_i$$

Definition 4.4.2. A vector $v \in \pi$ is called nearly ordinary if it is an eigenvector for all $||t_i||$’s with eigenvalues that are p-adic units.

We identify π as a set of smooth functions on $GL_n(\mathbb{Q}_p)$:

$$\pi = \{ f : GL_n(\mathbb{Q}_p) \to \mathbb{C}, f(bx) = \lambda(b) \delta(b)^{1/2} f(x) \}.$$

Let w_ℓ be the longest Weyl element $\begin{pmatrix} 1 & & & 1 \\ & & & \\ & & \vdots \\ & & & 1 \end{pmatrix}$, and let f^ℓ be the element in π such that f^ℓ is supported in $Bw_\ell N(\mathbb{Z}_p)$ and invariant under $N(\mathbb{Z}_p)$; f^ℓ is unique up to scalar. We have:

Lemma 4.4.1. f^ℓ is an eigenvector for all t_i’s.

Proof. Note that for any i, $f^\ell |t_i$ is invariant under $N(\mathbb{Z}_p)$. By looking at the definition of $v|t_i$ for the above model for π it is not hard to see that $f^\ell |t_i$ is supported in $B(\mathbb{Q}_p)w_\ell B(\mathbb{Z}_p)$. So $f^\ell |t_i$ must be a multiple of f^ℓ.

Lemma 4.4.2. Suppose that $(\lambda_1, ..., \lambda_n)$ is nearly ordinary with respect to k and suppose

$$\nu_p(\lambda_1(p)) > \nu_p(\lambda_2(p)) > \cdots > \nu_p(\lambda_n(p))$$

then the eigenvalues of $||t_i||$ acting on f^ℓ are p-adic units. In other words f^ℓ is an ordinary vector.

Proof. A straightforward computation gives that

$$f^\ell |t_i = \lambda_1 ... \lambda_i (p^{-1}) p^{k_1 + \cdots + k_i} f^\ell$$

42
which is clearly a p-adic unit by the definition of $(\lambda_1, \ldots, \lambda_n)$ to be nearly ordinary with respect to k.

Lemma 4.4.3. Let $\lambda_1, \ldots, \lambda_{a+2b}$ be a set characters of \mathbb{Q}_p^\times such that $\text{cond}(\lambda_{a+2b}) > \ldots > \text{cond}(\lambda_{b+1}) > \text{cond}(\lambda_1) > \ldots > \text{cond}(\lambda_0)$. In this case we say $\lambda := (\lambda_1, \ldots, \lambda_{a+2b})$ is generic. We define a subgroup K_λ of $\text{GL}_{a+2b}(\mathbb{Z}_p)$ to be those matrices whose below diagonal entries of the ith column are divisible by $\text{cond}(\lambda_{a+2b+1-i})$ for $1 \leq i \leq a+b$, and the left to diagonal entries of the jth row are divisible by $\text{cond}(\lambda_{a+2b+1-j})$ for $a+b+2 \leq j \leq a+2b$. Let λ^{op} be the character of K_λ defined by:

$$\lambda_{a+2b}(g_{11})\lambda_{a+2b-1}(g_{22})\ldots\lambda_1(g_{a+2b,a+2b}).$$

Then f^ℓ is the unique (up to scalar) vector in π such that the action of K_λ is given by multiplying λ^{op}.

Proof. This can be proven in the same way as [35, 9.2.6].

We let $w_1 := \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{pmatrix}$. Now let $\tilde{B} = B^{w_1}$ and $\tilde{K}_\lambda = K_\lambda^{w_1}$.

Corollary 4.4.1. Denote $a_i := \nu_p(\lambda_i(p))$. Suppose $\lambda_1, \ldots, \lambda_{a+2b}$ are such that $\text{cond}(\lambda_1) > \ldots > \text{cond}(\lambda_{a+2b})$ and $a_1 < \ldots < a_{a+b} < a_{a+2b} < \ldots < a_{a+b+1}$. Then the unique (up to scalar) ordinary section with respect to \tilde{B} is

$$f^{\text{ord}}(x) = \begin{cases} \lambda_1(g_{11})\ldots\lambda_{a+2b}(g_{a+2b,a+2b}), & g \in \tilde{K}_\lambda, \\ 0 & \text{otherwise}. \end{cases}$$

Proof. We only need to prove that $\pi(w_1)f^{\text{ord}}(x)$ is ordinary with respect to $\tilde{B}^{w_1} = B$. Let $\lambda_1' = \lambda_{a+b+1}, \ldots, \lambda_b' = \lambda_{a+2b}, \lambda_{b+1}' = \lambda_{a+b}, \ldots, \lambda_{a+2b}' = \lambda_1$. Then λ' satisfies lemma 4.4.2 and thus the ordinary section for B (up to scalar) is $f_{\lambda'}^\ell$. Since λ' also satisfies the assumptions of lemma 4.4.3, $f_{\lambda'}^\ell$ is the unique section such that the action of K_λ is given by $\lambda'(g_{11})\ldots\lambda'(g_{a+2b,a+2b})$. But λ is clearly regular, so $\text{Ind}_{B}^{\text{GL}_{a+2b}}(\lambda) \simeq \text{Ind}_{B}^{\text{GL}_{a+2b}}(\lambda')$. So the ordinary section of $\text{Ind}_{B}^{\text{GL}_{a+2b}}(\lambda)$ for B also has the action of K_λ given by this character. It is easy to check that $\pi(w_1)f^{\text{ord}}$ has this property and the uniqueness (up to scalar) gives the result.

43
4.4.2 Pull Back Sections

In this section we construct a Siegel section on $U(a+2b+1, a+2b+1)$ which pulls back to the nearly ordinary Klingen sections on $U(a+b+1, b+1)$. We need to re-index the rows and columns since we are going to study large block matrices and the new index will greatly simplify the explanation. One can check that the Klingen Eisenstein series we construct in this section, when going back to our previous index, is nearly ordinary with respect to the Borel:

$$
\begin{pmatrix}
* & * & * & * \\
* & * & * & \\
* & & & \\
* & & & \\
\end{pmatrix},
$$

where the diagonal blocks are upper, upper, upper, lower, lower triangular, while the one we need is nearly ordinary with respect to the Borel:

$$
\begin{pmatrix}
* & * & * & * & * \\
* & * & * & * & \\
* & * & * & \\
* & * & & \\
\end{pmatrix},
$$

(it is for this one we can use the Λ-adic Fourier-Jacobi expansions). (here the blocks are with respect to the partition: $b+1+a+b+1$.) However we will see that the nearly ordinary sections with respect to different Borels only differ by right translation by some Weyl element depending on a and b. We will specify this Weyl element when doing arithmetic applications.

Now we explain the new index. Let $V_{a,b}$ be the hermitian space with metric

$$
\begin{pmatrix}
\zeta 1_a & 1_b \\
-1_b & \\
\end{pmatrix}
$$

and $V_{a,b+1}$ be the hermitian space with metric

$$
\begin{pmatrix}
\zeta 1_a & 1_{b+1} \\
-1_{b+1} & \\
\end{pmatrix}
$$

The matrix S for the embedding:

$$
\begin{pmatrix}
\zeta 1_a & 1_b \\
-1_b & \\
\end{pmatrix}
$$

44
\[U(V_{a,b}) \times U(V_{a,b+1}) \hookrightarrow U(V_{a+2b+1}) \] becomes:

\[
\begin{pmatrix}
1 & -\frac{\zeta}{2} & 1 & \frac{1}{2} \\
1 & 1 & \frac{1}{2} \\
-1 & \frac{1}{2} \\
1 & 1 & \frac{1}{2} \\
-1 & -\frac{\zeta}{2} & 1 & -\frac{1}{2}
\end{pmatrix}
\]

Siegel-Weil section at \(p \)

Let \(\tau \) be character of \(\mathbb{Q}_p^* \times \mathbb{Q}_p^* \). Suppose \(\tau = (\tau_1, \tau_2^{-1}) \) and let \(p^{s_1} \) be the conductor of \(\tau_i, i = 1, 2 \). Let \(\chi_1, \ldots, \chi_a, \chi_{a+1}, \ldots, \chi_{a+2b} \) be characters of \(\mathbb{Q}_p^* \) whose conductors are \(p^{s_1}, \ldots, p^{s_{a+2b}} \). Suppose we are in the:

Generic case:

\[t_1 > t_2 > \ldots > t_{a+b} > s_1 > t_{a+b+1} > \ldots > t_{a+2b} > s_2 \]

Also, let \(\xi_i = \chi_i \tau_1^{-1} \) for \(1 \leq i \leq a+b \), \(\xi_j = \chi_j^{-1} \tau_2 \) for \(a+b+2 \leq j \leq a+2b+1 \). Let \(\xi_{a+2b+1} = 1 \).

Let \(\Phi_1 \) be the following Schwartz function: let \(\Gamma \) be the subgroup of \(GL_{a+2b+1}(\mathbb{Z}_p) \) consists of matrices \(\gamma = (\gamma_{ij}) \) such that \(p^{s_k} \) divides the below diagonal entries of the \(k \)th column for \(1 \leq k \leq a+b \) and \(p^{s_i} \) divides \(\gamma_{ij} \) when \(a+b+2 \leq j \leq a+2b+1, i \leq a+b+1 \) or \(i > j \). Let \(\xi_i = \chi_i \tau_1^{-1}, 1 \leq i \leq a+b, \xi_j = \chi_j^{-1} \tau_1, a+b+2 \leq j \leq a+2b+1, \) and \(\xi_{a+b+1} = \tau_1 \tau_2^{-1} \). (Thus \(\xi_k = \xi_k \tau_1 \tau_2^{-1} \) for any \(k \)).

Definition 4.4.3.

\[
\Phi_1(x) = \begin{cases}
0 & x \not\in \Gamma \\
\prod_{k=1}^{a+b+1} \xi_k^{x_{kk}}(x_{kk}) & x \in \Gamma
\end{cases}
\]

Now we define another Schwartz function \(\Phi_2 \).

Let \(\mathcal{X} \) be the following set: if \(\mathcal{X} \ni x = \begin{pmatrix}
A_{11} & A_{12} & A_{13} & A_{14} \\
A_{21} & A_{22} & A_{23} & A_{24} \\
A_{31} & A_{32} & A_{33} & A_{34} \\
A_{41} & A_{42} & A_{43} & A_{44}
\end{pmatrix}
\) is in the block form with respect to the partition: \(a+2b+1 = a+b+1+b \), then:
- x has entries in \mathbb{Z}_p;

- \[\begin{pmatrix} A_{11} & A_{14} \\ A_{21} & A_{24} \end{pmatrix} \]
 has ℓ-upper-left minors A_ℓ so that $(\det A_\ell) \in \mathbb{Z}_p^\times$ for $\ell = 1, 2, \ldots, a+b$;

- and A_{42} has ℓ-upper-left minors B_ℓ so that $(\det B_\ell) \in \mathbb{Z}_p^\times$ for $\ell = 1, 2, \ldots, b$.

We define:

\[
\Phi_\xi(x) = \begin{cases}
0 & x \notin X \\
\xi_1/\xi_2(\det A_1)\ldots\xi_{a+b-1}/\xi_{a+b}(\det A_{a+b}) \\
\times\xi_{a+b+2}/\xi_{a+b+3}(\det B_1)\ldots\xi_{a+2b}/\xi_{a+2b+1}(\det B_{b-1})\xi_{a+2b+1}(\det B_b). & x \in X
\end{cases}
\]

Let

\[\Phi_2(x) := \Phi_\xi(x) = \int_{M_{a+2b+1}} (\mathbb{Q}_p) \Phi_\xi(y) e_p(-t y x^t) dy. \]

Let Φ be the Schwartz function on $M_{a+2b+1,2(a+2b+1)}(\mathbb{Q}_p)$ defined by:

\[\Phi(X,Y) := \Phi_1(X)\Phi_2(Y), \]

and define a Siegel-(Weil) section by:

\[f^\Phi(g) = \tau_2(\det g) |\det g|_p^{-a+2b+1} \times \int_{GL_{a+2b+1}(\mathbb{Q}_p)} \Phi((0,X)g) \tau_1^{-1} \tau_2(\det X)|\det X|_p^{-2s+a+2b+1} d^X X. \]

Lemma 4.4.4. If $\gamma \in \Gamma$, then:

\[\Phi_\xi(\gamma X) = \prod_{k=1}^{a+2b+1} (\xi_k(\gamma k)) \Phi_\xi(X) \]

Proof. Straightforward. \qed

Fourier Coefficients (at p)
If $\beta \in \text{Herm}_{a+2b+1}(K)$ the Fourier coefficient is defined by:

$$f^\Phi_\beta(1,s) = \int_{M_{a+2b+1}} (Q_p) f^\Phi \left(\begin{array}{cc} 1_{a+2b+1} \\ -1_{a+2b+1} \end{array} \right) \left(\begin{array}{c} N \\ 1 \end{array} \right) e_p(-tr\beta N) dN$$

$$= \int_{M_{a+2b+1}(Q_p)} \int_{GL_{a+2b+1}(Q_p)} \Phi((0,X) \left(\begin{array}{cc} 1_{a+2b+1} \\ -1_{a+2b+1} \end{array} \right) \tau^{-1}_1 \tau_2(\det X)$$

$$\times |\det X|_p^{-2s+a+2b+1} e_p(-tr\beta N) dN d^\times X$$

$$= \int_{GL_{a+2b+1}(Q_p)} \Phi_1(-X) \Phi_\xi(-X^{-1}\beta) \tau^{-1}_1 \tau_2(\det X) |\det X|_p^{-2s} d^\times X$$

$$= \tau^{-1}_1 \tau_2(-1) \text{vol}(\Gamma) \Phi_\xi(\beta).$$

Definition 4.4.4. Let $\tilde{f}^\dagger = \tilde{f}^\dagger_{a+2b+1}$ be the Siegel section supported on $Q(Q_p)w_{a+2b+1}$

$$\left(\begin{array}{cc} 1 \\ \tau^{-1}_1 \tau_2(\det \beta) \end{array} \right)$$

and $\tilde{f}^\dagger(w \left(\begin{array}{c} X \\ 1 \end{array} \right)) = 1$ for $X \in M_{a+2b+1}(Z_p)$.

Lemma 4.4.5.

$$\tilde{f}^\dagger(1) = \begin{cases} 1 & \beta \in M_{a+2b+1}(Z_p) \\ 0 & \beta \notin M_{a+2b+1}(Z_p) \end{cases}$$

(Here we used the projection of β into its first component in $K_v = F_v \times F_v$ where the first component correspond to the element inside our CM-type Σ under $\iota := C \simeq C_p$ (see section 2.1).

Definition 4.4.5.

$$f^\dagger := \frac{f^\Phi}{\tau^{-1}_1 \tau_2(-1) \text{Vol}(\Gamma)}$$

Thus $f^\dagger_\beta = \Phi_\xi(\beta)$.

Remark 4.4.1. This ensures that when we are moving our Eisenstein datum p-adically, the Siegel Eisenstein series also move p-adic analytically.

Now we recall a lemma from [35, 11.4.12] which will be useful later.

Lemma 4.4.6. Suppose $v|p$ and $\beta \in S_n(Q_v)$, $\det \beta \neq 0$.

(i) If $\beta \notin S_n(Z_v)$ then $M(z, \tilde{f}^\dagger_n)_\beta(-z,1) = 0$;

(ii) Suppose $\beta \in S_n(Z_v)$. Let $c := \text{ord}_v(\text{cond}(\tau'))$. Then:

$$M(z, \tilde{f}^\dagger_n)_\beta(-z,1) = \tau'(\det \beta)|\det \tilde{\beta}|_v^{-2} g(\tau')^n c_n(\tau',z).$$
where
\[
\begin{aligned}
 c_n(\tau', z) := \\
 \begin{cases}
 \tau'(p^{nc})p^{2nz-cn(n+1)/2} & c > 0 \\
 p^{2nz-n(n+1)/2} & c = 0.
 \end{cases}
\end{aligned}
\]

Note that our $\tilde f^\dagger$ is the f^\dagger in [35] and our τ is their χ.

Now we want to write down our Siegel-Weil section f^Φ in terms of $\tilde f^\dagger$. First we prove the following:

Lemma 4.4.7. Suppose Φ_ξ is the function on $M_n(\mathbb{Q}_p)$ defined as follows: if $\text{cond}(\xi_i) = (p^{t_i})$ for $i = 1, 2, ..., n$, let
\[
\tilde x_\xi := N(\mathbb{Z}_p) \begin{pmatrix}
 p^{-t_1} \mathbb{Z}_p^\times \\
 ... \\
 p^{-t_n} \mathbb{Z}_p^\times
\end{pmatrix} N^{\text{opp}}(\mathbb{Z}_p).
\]
then the Fourier transform $\hat{\Phi}_\xi$ of Φ_ξ is the following function:
\[
\frac{\hat{\Phi}_\xi(x)}{\prod_{i=1}^n G(\xi_i)} = \begin{cases}
 0 & x \notin \tilde x_\xi \\
 \prod_{i=1}^n \xi_i(x, p^{t_i}) & \tilde x_\xi \ni x = \begin{pmatrix}
 1 \\
 ... \\
 ... \\
 1
 \end{pmatrix} \begin{pmatrix}
 x_1 \\
 ... \\
 ... \\
 x_n
 \end{pmatrix} \begin{pmatrix}
 1 & ... & ... \\
 ... & ... & ... \\
 ... & ... & 1
 \end{pmatrix}
\end{cases}
\]

Proof. First suppose x is supported in the "big cell": $N(\mathbb{Q}_p)T(\mathbb{Q}_p)N^{\text{opp}}(\mathbb{Q}_p)$ where the superscript 'opp' means the opposite parabolic. It is easily seen that we can write x in terms of block matrices:
\[
x = \begin{pmatrix}
 I_{n-1} & u \\
 1
\end{pmatrix} \begin{pmatrix}
 z \\
 w
\end{pmatrix} \begin{pmatrix}
 1_{n-1} \\
 1
\end{pmatrix}
\]
where $z \in M_{n-1}(\mathbb{Q}_p)$ and $w \in \mathbb{Q}_p$. A first observation is that $\hat{\Phi}_\xi$ is invariant under right multiplication by $N^{\text{opp}}(\mathbb{Z}_p)$ and left multiplication by $N(\mathbb{Z}_p)$. We show that $v \in M_{1 \times (n-1)}(\mathbb{Z}_p)$ if $\hat{\Phi}_\xi(x) \neq 0$.

48
By definition:

\[\Phi_\xi(x) = \int_{M_n(Q_p)} \Phi_\xi(y) e_p(try^t x) dy \]

\[
\begin{pmatrix}
1 & \ell \\
\ell & 1
\end{pmatrix}
\begin{pmatrix}
a_{n-1} \\
1
\end{pmatrix}
\begin{pmatrix}
a_{n-1} & m \\
1 & 1
\end{pmatrix}
\begin{pmatrix}
a_{n-1} & a_{n-1}m \\
\ell a_{n-1} & \ell a_{n-1}m + b
\end{pmatrix}
\]

\[
= \int_{a \in X_{\ell,n-1}, m \in M(Z_p), \ell \in M(Z_p), b \in Z_p^n} \Phi_\xi\left(\begin{pmatrix}
1 & \ell \\
\ell & 1
\end{pmatrix}
\begin{pmatrix}
a & 1 \\
b & 1
\end{pmatrix}
\begin{pmatrix}
1 & m \\
1 & 1
\end{pmatrix}
\right) e_p(tr(1)) dy
\]

\[
= \int \Phi_\xi\left(\begin{pmatrix}
a & 1 \\
b & 1
\end{pmatrix}
\begin{pmatrix}
1 & \ell + u \\
1 & 1
\end{pmatrix}
\right) e_p(az + ((m + v)a(\ell + u) + b)w) dy
\]

(Note that \(\Phi_\xi \) is invariant under transpose.)

If \(\Phi_\xi(x) \neq 0 \), then it follows from the last expression that: \(w \in p^{-t_n}Z_p^x \) and suppose \(v \notin M_{1 \times (n-1)}(Z_p) \), then \(m + v \notin M_{1 \times (n-1)}(Z_p) \). We let \(a, m, b \) to be fixed and let \(\ell \) to vary in \(M_{1 \times (n-1)}(Z_p) \), we find that this integral must be 0. (Notice that \(a \in X_{\ell,n-1} \) and \(w \in p^{-t_n}Z_p^x \), thus \((m + v)aw \notin M_{1 \times n-1}(Z_p) \)) Thus a contradiction. Therefore, \(v \in M_{1 \times n-1}(Z_p) \), similarly \(u \in M_{n-1,1}(Z_p) \). Thus by the observation at the beginning of the proof we may assume \(u = 0 \) and \(v = 0 \) without lose of generality.

Thus if we write \(\phi_{\ell,n-1} \) as the restriction of \(\Phi_\xi \) to the up-left \((n-1) \times (n-1)\) minor,

\[\Phi_\xi(x) = \int \Phi_\xi\left(\begin{pmatrix}
a & 1 \\
b & 1
\end{pmatrix}
\begin{pmatrix}
1 & \ell + u \\
1 & 1
\end{pmatrix}
\right) e_p(az + (m + v)a(\ell + u) + b)w) dy
\]

\[= p^{-n^2} \phi(\xi_n) \xi_n(wp^n) \int_{a \in X_{\ell,n-1}} \Phi_{\ell,n-1}(a) e_p(az) dy \]

49
by an induction procedure one gets:

\[
\hat{\Phi}_\xi(x) = \begin{cases}
0 & x \not\in \tilde{X}_{\xi,n} \\
p^{-\sum_{i=1}^{a} i c_i} \prod_{i=1}^{a} \vartheta(\xi_i) \prod_{i=1}^{a} \xi_i(x, p^{t_i}) & x \in \tilde{X}_\xi.
\end{cases}
\]

Since \(\tilde{X}_{\xi,n}\) is compact, now that we have proved that \(\hat{\Phi}_{\xi,n}\) when restricting to the "big cell" has support in \(\tilde{X}_{\xi,n}\), therefore \(\hat{\Phi}_{\xi,n}\) itself must be supported in \(\tilde{X}_{\xi,n}\).

Lemma 4.4.8. Let \(\tilde{X}_\xi\) be the support of \(\Phi_2 = \hat{\Phi}_\xi\), then a complete representative of \(\tilde{X}_\xi\) mod \(M_{a+2b+1}(\mathbb{Z}_p)\) is given by:

\[
\begin{pmatrix}
A & B \\
C & D \\
E
\end{pmatrix}
\]

where the blocks are with respect to the partition \(a+b+1+b\) where \(\begin{pmatrix} A & B \\
C & D \end{pmatrix}\) runs over the following set:

\[
\begin{pmatrix}
1 & m_{12} & \ldots & m_{1,a+b} \\
& \ldots & \ldots & \ldots \\
& \ldots & \ldots & \ldots \\
& \ldots & \ldots & \ldots \\
1
\end{pmatrix}
\begin{pmatrix}
x_1 \\
\ldots \\
x_{a+b}
\end{pmatrix}
\begin{pmatrix}
1 \\
n_{21} \\
\ldots \\
n_{a+b,1} \\
n_{a+b,a+b-1}
\end{pmatrix}
\begin{pmatrix}
1 & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots \\
1
\end{pmatrix}
\]

where \(x_i\) runs over \(p^{-t_i} \mathbb{Z}_p^\times\) mod \(\mathbb{Z}_p\), \(m_{ij}\) runs over \(\mathbb{Z}_p\) mod \(p^{t_j}\) and \(n_{ij}\) runs over \(\mathbb{Z}_p\) mod \(p^{t_i}\), and \(E\) runs over the following set:

\[
\begin{pmatrix}
1 & k_{12} & \ldots & k_{1,b} \\
& \ldots & \ldots & \ldots \\
& \ldots & \ldots & \ldots \\
1
\end{pmatrix}
\begin{pmatrix}
y_1 \\
\ldots \\
y_{b}
\end{pmatrix}
\begin{pmatrix}
1 \\
\ell_{21} \\
\ldots \\
\ell_{b,1} \\
\ell_{b,b-1}
\end{pmatrix}
\begin{pmatrix}
1 & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots \\
1
\end{pmatrix}
\]

where \(y_i\) runs over \(p^{-t_i} \mathbb{Z}_p^\times\) mod \(\mathbb{Z}_p\), \(k_{ij}\) runs over \(\mathbb{Z}_p\) mod \(p^{t_{i+j}}\), \(\ell_{ij}\) runs over \(\mathbb{Z}_p\) mod \(p^{t_{i+b+j}}\).

Proof. This is elementary and we omit it here.

Now we define several sets: Let \(\mathfrak{B}'\) be the set of \((a+b) \times (a+b)\) upper triangular matrices of
the form
\[
\begin{pmatrix}
 1 & m_{12} & \ldots & m_{1,a+b} \\
 \vdots & \ddots & \ddots & \vdots \\
 \vdots & \ddots & \ddots & \vdots \\
 \ldots & \ldots & \ldots & 1 \\
\end{pmatrix}
\begin{pmatrix}
 x_1 \\
 \vdots \\
 \vdots \\
 \ldots \\
\end{pmatrix}
\begin{pmatrix}
 \ldots \\
 \ldots \\
 \ldots \\
 x_{a+b} \\
\end{pmatrix}
\]

where \(x_i\) runs over \(p^{-t_i} \mathbb{Z}_p^\times \mod \mathbb{Z}_p\), \(m_{ij}\) runs over \(\mathbb{Z}_p \mod p^{t_j}\).

Let \(\mathcal{C}'\) be the set of \(b \times b\) lower triangular matrices of the form
\[
\begin{pmatrix}
 1 \\
 n_{21} \\
 \vdots \\
 n_{a+b,1} \\
\end{pmatrix}
\begin{pmatrix}
 \ldots \\
 \ldots \\
 \ldots \\
 1 \\
\end{pmatrix}
\]

where \(n_{ij}\) runs over \(\mathbb{Z}_p \mod p^{t_i}\).

Let \(\mathcal{E}'\) be the set of \(b \times b\) upper triangular matrices of the form
\[
\begin{pmatrix}
 1 & k_{12} & \ldots & k_{1,b} \\
 \vdots & \ddots & \ddots & \vdots \\
 \vdots & \ddots & \ddots & \vdots \\
 \ldots & \ldots & \ldots & 1 \\
\end{pmatrix}
\]

where \(k_{ij}\) runs over \(\mathbb{Z}_p \mod p^{t_{a+b+i}}\).

Let \(\mathcal{D}'\) be the set of \((a + b) \times (a + b)\) lower triangular matrices of the form
\[
\begin{pmatrix}
 y_1 \\
 \vdots \\
 y_b \\
\end{pmatrix}
\begin{pmatrix}
 1 \\
 \ell_{21} \\
 \vdots \\
 \ell_{b,1} \\
\end{pmatrix}
\begin{pmatrix}
 \ldots \\
 \ldots \\
 \ldots \\
 1 \\
\end{pmatrix}
\]

where \(y_i\) runs over \(p^{-t_i} \mathbb{Z}_p^\times \mod \mathbb{Z}_p\); \(\ell_{ij}\) runs over \(\mathbb{Z}_p \mod p^{t_{a+b+i}}\). Also we define for \(g \in GL_{a+2b}(\mathbb{Q}_p)\), \(g' = \begin{pmatrix}
 g \\
 1_{b \times b} \\
\end{pmatrix}\).
Corollary 4.4.2.

\[f^\dagger(z,g) = p^{-\sum_{i=1}^{a+b} - \sum_{i=1}^{a+b+1+i} \prod_{i=1}^{a+b} g(\xi_i) \xi_i(-1) \prod_{i=1}^{b} g(\xi_{a+b+1+i}) \xi_{a+b+1+i}(-1) \]

\[
\times \sum_{A,B,C,D,E} \prod_{i=1}^{a+b} \xi_i(A_i) \prod_{i=1}^{b} \xi_{a+b+1+i}(D_i) \times \prod_{i=1}^{b} \tilde{\xi}_i^{(a+b+1+i)}(E_i) \tilde{f}^\dagger(z,g \left(\begin{array}{cccc}
A & B \\
C & D \\
E & 1_{a+2b+1}
\end{array} \right))
\]

Proof. using the lemma above, we see that both hand sides have the same \(\beta \)'th fourier coefficients for all \(\beta \in S_{a+2b+1}(\mathbb{Q}_p) \), thus they must be the same.

thus if \(B', C', D', E' \) runs over the set \(\mathfrak{B}', \mathfrak{C}', \mathfrak{D}', \mathfrak{E}' \), then

\[f^\dagger(z,g) = p^{-\sum_{i=1}^{a+b} - \sum_{i=1}^{a+b+1+i} \prod_{i=1}^{a+b} g(\xi_i) \xi_i(-1) \prod_{i=1}^{b} g(\xi_{a+b+1+i}) \xi_{a+b+1+i}(-1) \]

\[
\times \sum_{B', C', D', E'} \prod_{i=1}^{a+b} \xi_i(B'_i) \prod_{i=1}^{b} \xi_{a+b+1+i}(D'_i) \times \prod_{i=1}^{b} \tilde{\xi}_i^{(a+b+1+i)}(E'_i) \tilde{f}^\dagger(z,g \left(\begin{array}{cccc}
B' \\
C' \\
D' \\
E'
\end{array} \right))^{-1}
\]

\[
= p^{-\sum_{i=1}^{a+b} - \sum_{i=1}^{a+b+1+i} \prod_{i=1}^{a+b} g(\xi_i) \xi_i(-1) \prod_{i=1}^{b} g(\xi_{a+b+1+i}) \xi_{a+b+1+i}(-1) \]

\[
\times \sum_{B', C', D', E'} \prod_{i=1}^{a+b} \xi_i(B'_i) \prod_{i=1}^{b} \xi_{a+b+1+i}(D'_i) \prod_{i=1}^{B} \tilde{\xi}_i(B'_i) \prod_{i=1}^{\tilde{B}} \tilde{\xi}_i(D'_i) \]

\[
\times \tilde{f}^\dagger(z,g \left(\begin{array}{cccc}
B' \\
C' \\
D' \\
E'
\end{array} \right))^{-1}
\]

52
where $A' = \begin{pmatrix} p^{-t_1} & & & & \\ & \ddots & & & \\ & & p^{-t_2} & & \\ & & & \ddots & p^{-t_{a+1}} \\ & & & & \ddots \\ p^{-t_{a+b+1}} & & & & \ddots \\ & \cdots & & \ddots & p^{-t_{a+b}} \end{pmatrix}$

We let $\gamma = \begin{pmatrix} \zeta^{-1} & -\zeta^{-1} \\ & 1 \\ & 1 \\ & 1/2 & 1/2 \\ & \vdots & \ddots & \ddots & \ddots \\ & 1 & 1 & & \end{pmatrix}$.

Definition 4.4.6. *(pull back section)* If f is a Siegel section and $\phi \in \pi_p$, then

$$F_\phi(z, f, g) := \int_{GL_{a+2b+2}(\mathbb{Q}_p)} f(z, \gamma \alpha(g, g_1) \gamma^{-1}) \phi(\det g_1) \rho(g_1) \phi dg_1$$

Now we define a subset K of $GL_{a+2b+2}(\mathbb{Z}_p)$ to be so that $k \in K$ if and only if p^{t_i} divides the below diagonal entries of the ith column for $1 \leq i \leq a + b$, p^{s_1} divides the below diagonal entries of the $(a + b + 1)$th column, and $p^{t_{a+b+j}}$ divides the right to diagonal entries of the $(a + b + 1 + j)$th row for $1 \leq j \leq b - 1$. We also define ν, a character of K by:

$$\nu(k) = \tau_1(k_{a+b+1,a+b+1}) \tau_2(k_{a+2b+2,a+2b+2}) \prod_{i=1}^{a+b} \chi_i(k_{ii}) \prod_{i=1}^{b} \chi_{a+b+i}(k_{a+b+i+1,a+b+i+1})$$
for any $k \in K$, we also define $\tilde{\nu}$ a character of \tilde{K} by:

$$\tilde{\nu}(k) = \prod_{i=1}^{b} \chi_{a+i}(k_{i,i}) \prod_{i=1}^{a} \chi_{b+i,b+i}(k_{b+i,b+i}) \prod_{i=1}^{b} \chi_{a+b+i}(k_{a+b+i,a+b+i}).$$

We also define Υ to be the element in $U(n,n)(F_v) (= U(n,n)(Q_p))$ such that the projection to the first component of $K_v = F_v \times F_v$ equals that of γ (note that $\gamma \not\in U(n,n)(F_v)$).

Lemma 4.4.9. Let $K' \subset K$ be the compact subset defined by:

$$\begin{pmatrix} a_1 & a_2 & a_3 & b_1 & b_2 \\ a_4 & a_5 & a_6 & b_3 & b_4 \\ a_7 & a_8 & a_9 & b_5 & b_6 \\ c_1 & c_2 & c_3 & d_1 & d_2 \\ c_4 & c_5 & c_6 & d_3 & d_4 \end{pmatrix}$$

$h(a+b+1+b+1)$ if and only if:

$p^t j$ divides the (i,j)th entry of c_1 for $1 \leq i \leq b$, $1 \leq j \leq a$ and $p^t a+b+j$ divides the (i,j)th entry of c_2 for $1 \leq i \leq b$, $1 \leq j \leq b$. (it is not hard to check that this is a group).

Then: $F_{\phi}(z,\rho(\Upsilon)f^1,gk) = \nu(k)F_{\phi}(z,\rho(\Upsilon)f^1,g)$ for any $\phi \in \pi$ and $k \in K'$

Proof. this follows directly from the action of K' on the Siegel Weil section f^1.

We define K'' to be the subset of K consists of matrices

$$\begin{pmatrix} 1 \\ 1 \\ 1 \\ c_1 & c_2 & 1 \\ 1 \end{pmatrix}$$

such that p^{i} divides the (i,j)th entry of c_1 for $1 \leq i \leq b$, $1 \leq j \leq a$ and p^{i+j} divides the (i,j)th entry of c_2 for $1 \leq i \leq b$, $1 \leq j \leq b$.

Definition 4.4.7. Let $\tilde{K} \subset GL_{a+2b}(\mathbb{Z}_p)$ be the set of matrices

$$\begin{pmatrix} a_1 & a_3 & a_2 \\ a_7 & a_9 & a_8 \\ a_4 & a_6 & a_5 \end{pmatrix}$$

(blocks are with respect to $(b+a+b)$) such that the column's of a_3,a_6 are divisible by $p^{a_i},...,p^{a_i}$; the column's of a_4 are divisible by p^{a+b},p^{a+b}; p^{a+b} divides the below diagonal entries of the i'th column of a_1 ($1 \leq i \leq b$); p^{a_i} divides the below diagonal entries of the j's column of a_9 ($1 \leq j \leq a$); p^{a+b+b} divides the above diagonal entries of the k'th row of a_5.

54
Let $\mathcal{K}' \subset \tilde{K}$ be the set such that $p_{i+b+1+t+1}$ divides the (i,j)th entry of a_4 for $1 \leq i \leq b$, $1 \leq j \leq b$ and $p_{i+b+1+t}$ divides the (i,j)th entry of a_6 for $1 \leq i \leq b$, $1 \leq j \leq a$. We also define \mathcal{K}'' to be the subset of \tilde{K} consisting of matrices:

$$
\begin{pmatrix}
1 & 1 \\
a_4 & a_6 & 1
\end{pmatrix}
$$

such that p_{i+b+1} divides the (i,j)th entry of a_4 for $1 \leq i \leq b$, $1 \leq j \leq b$ and p_{i+b} divides the (i,j)th entry of a_6 for $1 \leq i \leq b$, $1 \leq j \leq a$.

The following lemma would be useful in identifying our pull back section:

Lemma 4.4.10. Suppose $F_\phi(z, \rho(\Upsilon)f^\dagger, g)$ as a function of g is supported in PwK and

$$
F_\phi(z, \rho(\Upsilon)f^\dagger, gk) = \nu(k)F_\phi(z, \rho(\Upsilon)f^\dagger, g)
$$

for $k \in K'$, and $F_\phi(z, \rho(\Upsilon)f^\dagger, w)$ is invariant under the action of $(\mathcal{K}'')^\dagger$. Then $F_\phi(a, \rho(\Upsilon)f^\dagger, g)$ is the unique section (up to scalar) whose action by $k \in K$ is given by multiplying by $\nu(k)$.

Proof. This is easy from the fact that $K = K'K'' = K''K'$. The uniqueness follows from lemma 4.4.3.

We define a matrix w to be

$$
\begin{pmatrix}
1_a \\
1 & 1_b \\
-1_b & 1
\end{pmatrix}
$$

Lemma 4.4.11. If $\gamma(\alpha(g, 1)\gamma^{-1}) \in \text{supp}(\rho(\Upsilon)f^\dagger)$ then $g \in PwK$. (Here ρ denotes the action of $GU_{a+2b+1}(F_v)$ on the Siegel sections given by right translation.)

Proof. since f^\dagger is of the form $\sum_{A \in \mathcal{X}} f^\dagger(-\begin{pmatrix} 1 & A \\ 1 & 1 \end{pmatrix})$, where \mathcal{X} is some set, we only have to check the lemma for each term.
First recall we defined:

\[A' = \begin{pmatrix} -p^{-t_1} & \cdots & \cdots & \cdots & -p^{i_{a+1}} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ -p^{-t_{a+b+1}} & \cdots & \cdots & \cdots & -p^{i_{a+b+1}} \end{pmatrix} \]

where the blocks are with respect to \(a + b + 1 + b \). Let \(\zeta_v \) and \(\gamma_v \) be the projection of \(\zeta \) and \(\gamma_v \) to the first component of \(K_v \cong F_v \times F_v \), then:

\[\begin{pmatrix} \zeta_v^{-1} & -\zeta_v^{-1} \\ 1 & \vdots \end{pmatrix} = \begin{pmatrix} 2\zeta_v^{-1} & -\zeta_v^{-1} \\ 1 & \vdots \end{pmatrix} \begin{pmatrix} 1 \\ \zeta_v \end{pmatrix} \]

we denote the last term \(\tilde{\gamma}_v \). Some times we omit the subscript \(v \) if no confusions arise.

Using the expression for \(f^\dagger \) involving the \(B', C', D', E' \)'s as above and the fact that \(\gamma(m(g,1),g) \in Q \) and that \(K \) is invariant under the right multiplication of \(B \)'s and \(C \)'s, we only need to check that if

\[\tilde{\gamma}_v \alpha(g,1) \tilde{\gamma}_v^{-1} \in supp(\Upsilon) \rho \left(\begin{pmatrix} 1 & A \\ 1 \end{pmatrix} f^\dagger \right), \text{ then } g \in PwK. \]

If \(gw = \begin{pmatrix} a_1 & a_2 & a_3 & b_1 & b_2 \\ a_4 & a_5 & a_6 & b_3 & b_4 \\ a_7 & a_8 & a_9 & b_5 & b_6 \\ c_1 & c_2 & c_3 & d_1 & d_2 \\ c_4 & c_5 & c_6 & d_3 & d_4 \end{pmatrix} \) then this is equivalent to
\[
\begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
\end{pmatrix}
\begin{pmatrix}
a_1 & a_2 & a_3 & b_1 & b_2 \\
a_4 & a_5 & a_6 & b_3 & b_4 \\
a_7 & a_8 & a_9 & b_5 & b_6 \\
c_1 & c_2 & c_3 & d_1 & d_2 \\
c_4 & c_5 & c_6 & d_3 & d_4 \\
1 & 1 & 1 & 1 \\
\end{pmatrix}
\]
being in \(\text{supp}\hat{f}^\dagger \), which is equivalent to

\[
\tilde{\gamma}_\alpha(g, 1) \begin{pmatrix} 1_b & \cdots & 1_a \\ -1_b & \cdots & -1_a \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \\ 1_b & \cdots & 1_a \\ -1_b & \cdots & -1_a \\ \ddots & \ddots & \ddots \\ \ddots & \ddots & \ddots \\ \ddots & \ddots & \ddots \\ 1_b & \cdots & 1_a \\ -1_b & \cdots & -1_a \\ \ddots & \ddots & \ddots \\ \ddots & \ddots & \ddots \\ \ddots & \ddots & \ddots \\ 1_b & \cdots & 1_a \\ -1_b & \cdots & -1_a \\ \ddots & \ddots & \ddots \\ \ddots & \ddots & \ddots \\ \ddots & \ddots & \ddots \\ 1_b & \cdots & 1_a \\ -1_b & \cdots & -1_a \\ \ddots & \ddots & \ddots \\ \ddots & \ddots & \ddots \\ \ddots & \ddots & \ddots \\ 1_b & \cdots & 1_a \\ -1_b & \cdots & -1_a \\ \ddots & \ddots & \ddots \\ \ddots & \ddots & \ddots \\ \ddots & \ddots & \ddots \\ 1_b & \cdots & 1_a \\ -1_b & \cdots & -1_a \\ \ddots & \ddots & \ddots \\ \ddots & \ddots & \ddots \\ \ddots & \ddots & \ddots \end{pmatrix} \begin{pmatrix} p^{t_{a+b+1}} \\ \vdots \end{pmatrix} w_{a+2b+1} \gamma^{-1},
\]

and thus also, \(\tilde{\gamma}_\alpha(g, 1) w_{a+2b+1} \gamma^{-1} \), belonging to:

\[
\text{supp}(\begin{pmatrix} p^{-t_1} \\ \vdots \end{pmatrix} w_{a+2b+1} \hat{f}^\dagger, \]

The right hand side is contained in: \(Q_t := Q \{ \begin{pmatrix} 1 \\ S \end{pmatrix} : S \in S_t = \begin{pmatrix} S_{11} & S_{12} & S_{13} & S_{14} \\ S_{21} & S_{22} & S_{23} & S_{24} \\ S_{31} & S_{32} & S_{33} & S_{34} \\ S_{41} & S_{42} & S_{43} & S_{44} \end{pmatrix} \} \] where

the blocks for \(S_t \) are with respect to \(a + b + 1 + b \) and consist of matrices such that \(S_{ij} \in M(\mathbb{Z}_p) \), \(p^t_1 \) divides the \(i \)th column for \(1 \leq i \leq a \), \(p^{t_{a+i}} \) divides the \((a + b + 1 + i) \)th column for \(1 \leq i \leq b \), \(p^{t_{a+b+i}} \) divides the \((a + b + 1 + i) \)th row for \(1 \leq i \leq b \), and the \((i, j) \)-th entry of \(S_{4i} \) and \(S_{44} \) are divisible by \(p^{t_{a+b+i+j}} \) and \(p^{t_{a+b+i+j}} \) respectively. Observe that we have only to show that if
\[
\gamma \alpha(gw, 1) = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \gamma^{-1} \in Q_t \text{ then } g \in PwK, \text{ i.e. } gw \in PK^w \text{ for } K^w := wK^w.
\]

Let
\[
\tilde{\gamma}(g, 1)w\tilde{\gamma}^{-1} = \begin{pmatrix} -a_1 & a_2 & a_3 & b_1 & a_1 & b_2 \\
-a_4 & a_5 & a_6 & -b_3 & a_4 & b_4 \\
-a_7 & a_8 & a_9 & -b_5 & a_7 & b_6 \\
-c_1 & c_2 & c_3 & -d_1 & c_1 & d_2 \\
-c_4 & c_5 & c_6 & -d_3 & c_4 & d_4 \\
-a_4 & a_5 & a_6 & b_3 & a_4 & b_4 & 1 \end{pmatrix} := H.
\]

Thus if \(H \in Q_t \), then there exists \(S \in S_t \) such that:
\[
\begin{pmatrix} 1 - a_1 & a_2 & a_3 & -b_1 \\
-c_1 & c_2 & c_3 & 1 - d_1 \\
-c_4 & c_5 & c_6 & -d_3 \\
-a_4 & a_5 & a_6 & -b_3 \end{pmatrix} = \begin{pmatrix} a_1 & b_1 & b_2 \\
c_1 & d_1 & d_2 \\
c_4 & d_3 & d_4 \\
a_4 & b_3 & b_4 & 1 \end{pmatrix} S
\]

By looking at the 3rd row (block-wise), one finds \(d_4 \neq 0 \), so by multiplying \(g \) by a matrix
\[
\begin{pmatrix} 1 & \times \\
1 & \times \\
1 & \times \\
d_4^{-1} \end{pmatrix}
\]

(which does not change the assumption and conclusion) we may assume that \(d_4 = 1 \) and \(d_2 = 0, b_2 = \)
0, b_4 = 0, b_6 = 0, b_5 = 0. So we assume that gw is of the form:

\[
\begin{pmatrix}
 a_1 & a_2 & a_3 & b_1 \\
 a_4 & a_5 & a_6 & b_3 \\
 a_7 & a_8 & a_9 & \\
 c_1 & c_2 & c_3 & d_1 \\
 c_4 & c_5 & c_6 & d_3 \\
 1 & 1 & & \\
\end{pmatrix}
\]

Next by looking at the 2nd row (block-wise) and noting that d_2 = 0 we find that d_1 is of the form

\[
\begin{pmatrix}
 \mathbb{Z}_p^x & \mathbb{Z}_p & \cdots & \mathbb{Z}_p \\
 p^{a_1} \mathbb{Z}_p & \mathbb{Z}_p^x & \cdots & \mathbb{Z}_p \\
 \cdots & p^{a_2} \mathbb{Z}_p & \mathbb{Z}_p^x & \cdots \\
 p^{a_3} \mathbb{Z}_p & \cdots & \cdots & \mathbb{Z}_p^x \\
\end{pmatrix}
\]

And by looking at the 3rd row again we see c_4 = (p^{a_1} \mathbb{Z}_p, \ldots, p^{a_4} \mathbb{Z}_p), d_3 = (p^{a_5}, \ldots, p^{a_6}), c_1 \in M_{b \times 1}(p^{a_1} \mathbb{Z}_p), M_{b \times 1}(p^{a_2} \mathbb{Z}_p), \ldots, M_{b \times 1}(p^{a_4} \mathbb{Z}_p), c_2 \in M_{b \times b}(\mathbb{Z}_p), c_3 \in M_{b \times 1}(\mathbb{Z}_p).

By looking at the 1st row and note that b_2 = 0 we know a_1 \in \begin{pmatrix}
 \mathbb{Z}_p^x & \mathbb{Z}_p & \cdots & \mathbb{Z}_p \\
 p^{a_1} \mathbb{Z}_p & \mathbb{Z}_p^x & \cdots & \mathbb{Z}_p \\
 \cdots & p^{a_2} \mathbb{Z}_p & \mathbb{Z}_p^x & \cdots \\
 p^{a_3} \mathbb{Z}_p & \cdots & \cdots & \mathbb{Z}_p^x \\
\end{pmatrix}

b_1 \in (M_{a \times 1}(p^{a_1} \mathbb{Z}_p), M_{a \times 1}(p^{a_2} \mathbb{Z}_p), \ldots, M_{a \times 1}(p^{a_4} \mathbb{Z}_p)). \quad \text{Finally looking at the 4th row (block-

b_3 \in (M_{b \times 1}(p^{a_5} \mathbb{Z}_p), M_{b \times 1}(p^{a_6} \mathbb{Z}_p), \ldots, M_{b \times 1}(p^{a_6} \mathbb{Z}_p)), \quad \text{wise), we note that b_4 = 0. Similarly, a_4 \in (M_{b \times 1}(p^{a_1} \mathbb{Z}_p), M_{b \times 1}(p^{a_2} \mathbb{Z}_p), \ldots, M_{b \times 1}(p^{a_6} \mathbb{Z}_p))}, \quad \text{and a_5} - 1 \in \begin{pmatrix}
 M_{1 \times 1}(p^{a_1} \mathbb{Z}_p) \\
 M_{1 \times 1}(p^{a_2} \mathbb{Z}_p) \\
 \cdots \\
 M_{1 \times 1}(p^{a_6} \mathbb{Z}_p) \\
 \end{pmatrix}

b_3 \in (M_{b \times 1}(p^{a_5} \mathbb{Z}_p), M_{b \times 1}(p^{a_6} \mathbb{Z}_p), \ldots, M_{b \times 1}(p^{a_6} \mathbb{Z}_p)), \quad \text{and a_5} - 1 \in \begin{pmatrix}
 M_{1 \times 1}(p^{a_1} \mathbb{Z}_p) \\
 M_{1 \times 1}(p^{a_2} \mathbb{Z}_p) \\
 \cdots \\
 M_{1 \times 1}(p^{a_6} \mathbb{Z}_p) \\
 \end{pmatrix}

Now we prove that gw \in PK^w using the properties proven above. First we multiply gw by
$$\begin{pmatrix} 1 & 1 \\ -d_1^{-1}c_1 & -d_1^{-1}c_2 \\ -c_4 & -c_5 \end{pmatrix} \in K^w,$$ which does not change the above properties or what needs to be proven, so without loss of generality we assume that $c_4 = 0, c_5 = 0, c_6 = 0, d_3 = 0, c_1 = 0, c_2 = 0, c_3 = 0, d_1 = 0$. Moreover we set \(\begin{pmatrix} a_1 & a_2 \\ a_4 & a_5 \end{pmatrix}^{-1} \begin{pmatrix} a_3 \\ a_6 \end{pmatrix} := T \). Then

$$\begin{pmatrix} 1 & T_1 \\ 1 & T_2 \\ 1 & \end{pmatrix} \in K^w,$$ and it is now clear that $gw \in PK^w$. \(\Box \)

Now suppose that π is nearly ordinary with respect to k. We denote ϕ to be the unique (up to scalar) nearly ordinary vector in π. Let $\phi_w = \pi(w)\phi, \phi_{aux} = \sum_{x \in J} \pi(x) \phi_w$ where

$$x = \begin{pmatrix} 1 & x_{12} & \ldots & x_{16} \\ \ldots & \ldots & \ldots \\ \ldots & \ldots \\ 1 & \end{pmatrix}$$

with x_{ij} running through representatives of $[\mathbb{Z}_p : p^{t_{a+b+1}-t_{a+b}}/\mathbb{Z}_p]$. Note that ϕ_{aux} apparently depends on the choices of the representatives.

Now write

$$\phi' = \rho\left(\begin{pmatrix} p_{-t_{a+b+1}} \\ \vdots \\ p_{t_1} \\ \vdots \\ p_{t_{a+1}} \\ \vdots \end{pmatrix} \right)^\epsilon \begin{pmatrix} -1_b \\ 1_a \\ 1_b \\ 1_b \\ \vdots \end{pmatrix} \phi_{aux}. \right)$$
We want to compute the value $F_{\phi'}(z, \rho(\Upsilon) f^\dagger, w)$. In fact it is equal to:

$$\sum_{B,C,D,E} \int \mathbb{G} L_{a+2b}(Q_\rho) \tilde{f}^\dagger(\tilde{\gamma} \alpha(w \begin{pmatrix} B \\ 1 \\ C \\ 1 \end{pmatrix}) w_1 g_1 \begin{pmatrix} E \\ D \end{pmatrix} p^{-t_{a+b+1}} \ldots \ldots p^{f_1} \ldots p^{f_{a+1}} \ldots)$$

$$\times \left(\begin{array}{c} p^{-t_1} \\ \ldots \\ p^{-t_a} \\ 1 \\ 1 \\ p^{-t_{a+1}} \\ \ldots \\ p^{-t_{a+b}} \\ 1 \\ 1 \\ p^{f_{a+b+1}} \\ \ldots \\ p^{f_{a+2b}} \end{array} \right)$$

$$\times w_{a+2b+1}^{-1} \bar{\tau}(\det g_1) \rho(g_1^\dagger) \phi' dg_1$$

where $w' = \begin{pmatrix} 1 \\ 1 \\ 1 \\ -1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$ and the sum is over $B \in \mathfrak{B}, C \in \mathfrak{C}, D \in \mathfrak{D}, E \in \mathfrak{E}$. A
direct computation gives: \(\tilde{\gamma} \alpha(1, \begin{pmatrix} a_1 & a_3 & a_2 \\ a_7 & a_9 & a_8 \\ a_4 & a_6 & a_5 \end{pmatrix}^\varepsilon, \begin{pmatrix} \alpha \end{pmatrix}, \begin{pmatrix} \iota \end{pmatrix}, w') \tilde{\gamma}^{-1} \) equals

\[
\begin{pmatrix}
-1 & 1 \\
1 & 0 \\
-\alpha_3 & -\alpha_2 & \alpha_1 & \alpha_2 \\
-\alpha_9 - 1 & -\alpha_8 & \alpha_7 & 1 & \alpha_8 \\
-\alpha_3 & -\alpha_2 & \alpha_1 - 1 & 1 & \alpha_2 \\
-\alpha_6 & 1 - \alpha_5 & \alpha_4 & \alpha_5 \\
\end{pmatrix}
\]

Now we define \(\mathcal{Y} \) to be the subset of \(GL_{a+2b}(\mathbb{Z}_p) \) consisting of block matrices

\[
\begin{pmatrix}
a_1 & a_3 & a_2 \\
a_7 & a_9 & a_8 \\
a_4 & a_6 & a_5 \\
\end{pmatrix}
\]

such that \(\tilde{\gamma} \alpha(1, \begin{pmatrix} a_1 & a_3 & a_2 \\ a_7 & a_9 & a_8 \\ a_4 & a_6 & a_5 \end{pmatrix}^\varepsilon, \begin{pmatrix} \alpha \end{pmatrix}, \begin{pmatrix} \iota \end{pmatrix}, w') \tilde{\gamma}^{-1} \) is in the \(Q_t \) defined in the proof of lemma 4.4.11. It is not hard to prove that it can be described as follows: the \(i \)-th column of \(a_9 - 1 \) and \(a_3 \) are divisible by \(p^{\varepsilon_i} \) for \(1 \leq i \leq a \), the \(i \)-th column of \(a_7, a_1 - 1 \) are divisible by \(p^{\varepsilon_{a+i}} \), the \((i,j)\)-th entry of \(a_6 \) is divisible by \(p^{\varepsilon_{a+i} + \varepsilon_{b+j}} \), the \((i,j)\)-th entry of \(a_4 \) is divisible by \(p^{\varepsilon_{a+i} + \varepsilon_{b+j}} \), the \(i \)-th row of \(1 - a_5 \) is divisible by \(p^{\varepsilon_{a+i}} \).
divisible by p^{a+b+i}. The entries in a_2 and a_8 are in \mathbb{Z}_p. Then the pull back section is equal to

$$\sum_{B,C,D,E} \int \tilde{f}(\gamma (1, g_1)) w^\gamma \bar{\tau} \left(\det g_1 \right) \rho(g_1) \phi dg_1$$

where the integration is over the set:

$$g_1 \in \begin{pmatrix} B & \gamma \choose C \end{pmatrix} \gamma_1 \begin{pmatrix} E & 1_b \choose D_{\text{conj}} & 1_a \end{pmatrix} \begin{pmatrix} p^{a+b+1} & \cdots & 1_b \\ \cdots & \cdots & \cdots \\ -1_b & \cdots & p^{-t_1} \end{pmatrix} \begin{pmatrix} \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots \\ p^{-t_{a+b}} & \cdots & \cdots \end{pmatrix}$$
for:

\[
\left(\begin{array}{l} E \\ D \end{array} \right)_{\text{conj}} := \left(\begin{array}{cccc} l_b & 1_b & \ldots & p^{-t_1} \\ -1_b & l_a & \ldots & p^{-t_{a+1}} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & -1_b \end{array} \right) \left(\begin{array}{l} E \\ D \end{array} \right)
\]

\[
\left(\begin{array}{l} \ldots \\ p^{-t_{a+b+1}} \\ \ldots \\ 1_b \end{array} \right) \times \left(\begin{array}{cccc} 1_b & \ldots & p^{t_1} & \ldots \\ \ldots & \ldots & \ddots & \ldots \\ \ldots & \ldots & \ddots & 1_b \\ \ldots & \ldots & \ldots & l_a \\ p^{t_{a+1}} & \ldots & \ldots & 1_b \\ \ldots & \ldots & \ldots & \ldots \end{array} \right)
\]

The value of \(\bar{f}^{\dagger} \) when \(g_1 = \left(\begin{array}{cccc} 1_b & \ldots & p^{t_1} & \ldots \\ \ldots & \ldots & \ddots & \ldots \\ \ldots & \ldots & \ddots & 1_b \\ \ldots & \ldots & \ldots & l_a \\ p^{t_{a+1}} & \ldots & \ldots & 1_b \\ \ldots & \ldots & \ldots & \ldots \end{array} \right) \) is

\[
\tau((p^{t_{a+b+1}+\ldots+t_{a+b}},p^{t_{a+b+1}+\ldots+t_{a+b}})|p^{t_1+\ldots+t_{a+2b}}|^{-z-a+b+1}2}\]

thus straightforward computation tells us the following:

Lemma 4.4.12. If \(\phi \) and \(\phi' \) are defined as after the proof of lemma 4.4.11 then:

\[
F_{\phi'}(z,\rho(\Upsilon)|^{f^{\dagger}},w) = \tau((p^{t_1+\ldots+t_{a+b}},p^{t_{a+b+1}+\ldots+t_{a+b+2}})|p^{t_1+\ldots+t_{a+2b}}|^{-z-a+b+1}2)\text{Vol}(K')
\]

\[
\times p^{-\sum_{i=1}^{a+b} t_i - \sum_{i=1}^{a+b+1} t_{a+b+1+i}} \prod_{i=1}^{a+b} g(\xi_i) \xi_i(-1) \prod_{i=1}^{b} g(\xi_{a+b+1+i}) \xi_{a+b+1+i}(-1) \phi_w.
\]

Combining the 3 lemmas above, we get the following:

Proposition 4.4.1. Assumptions are as in the above lemma. \(F_{\phi'}(z,\rho(\Upsilon)|^{f^{\dagger}},g) \) is the unique section supported in \(PwK \) such that the right action of \(K \) is given by multiplying the character \(\nu \) and its
value at w is:

$$F_{\varphi'}(z, \rho(\Upsilon)f^1, w) = \tau((p_1^{a+1}+\cdots+p_{a+b}^{a+1}+\cdots+p_{a+2b}^{a+1}))|p_1^{a+b}\cdots p_{a+2b}^{a+b}-z-\frac{a+2b+1}{2}|p \cdot \sum_{i=1}^{a+b} \sum_{j=1}^{b} \sum_{k=1}^{a+b+1} g(\xi_i)\xi_j(-1) \prod_{i=1}^{b} g(\xi_{a+b+i+1})\xi_{a+b+i+1}(-1)\phi_w$$

Proof. ϕ_w is clearly invariant under $(\tilde{K}''\iota)^*$. □

This $F_{\varphi'}(z, \rho(\Upsilon)f^1, g)$ we constructed is not going to be the nearly ordinary vector unless we apply the intertwining operator to it. So now we start with a $\rho = (\pi, \tau)$. We require that $\rho^\vee = (\pi^\vee, \pi^\vee)$ satisfies the conditions at the beginning of this section about the conductors. We define our Siegel section $f^0 \in I_{a+2b+1}(\bar{\tau})$ to be:

$$f^0(z; g) := M(\pi, f^1)_z(g)$$

where $f^1 \in I_{a+2b+1}(\pi^\vee)$. We recall the following proposition from [35] (in a generalized form)

Proposition 4.4.2. Suppose our data (π, τ) comes from the local component at v of a global data. Then there is a meromorphic function $\gamma^{(2)}(\rho, z)$ such that

$$F_{\varphi'}(-z, M(z, f), g) = \gamma^{(2)}(\rho, z)A(\rho, z, F_{\varphi}(f; z, -)\pi^\vee, z)$$

moreover if $\pi_v \simeq \pi(\chi_1, ..., \chi_{a+2b})$ then if we write $\gamma^{(1)}(\rho, z) = \gamma^{(2)}(\rho, z - \frac{1}{2})$ then

$$\gamma^{(1)}(\rho, z) = \psi(1)\epsilon(\tilde{\pi}, \pi^\vee, z + \frac{1}{2}) L(\pi, \tau, 1/2, z) L(\pi^\vee, 2, z + 1/2)$$

where c is the constant appearing in lemma 4.4.6

Proof. The same as [35, 11.4.13], □

Remark 4.4.2. Note that here we are using the L-factors for the base change from the unitary groups while [35] uses the GL_2 L-factor for π so our formula appears slightly different.

Now we are going to show that:

$$F^0_v(z; g) := F_{\varphi'}(z, \rho(\Upsilon)f^0, g)$$

is a constant multiple of the nearly ordinary vector if our ρ comes from the local component of the global Eisenstein data (see section 3.1). Return to the situation of our Eisenstein Data. Suppose
that at the archimedean places our representation is a holomorphic discrete series associated to
the (scalar) weight: \(k = (0, \ldots, 0; \kappa, \ldots, \kappa) \) with \(r \) 0’s and \(s \kappa \)'s. Here \(r = a + b, s = b \). Suppose
\(\pi \cong \text{Ind}(\chi_1, \ldots, \chi_{a+2b}) \) is nearly ordinary with respect to the weight \(k \). We suppose \(\nu_p(\chi_1(p)) = s - \frac{r}{2} + \frac{1}{2}, \ldots, \nu_p(\chi_r(p)) = r + s - 1 - \frac{r}{2} + \frac{1}{2}, \nu_p(\chi_{r+1}(p)) = \kappa - \frac{r}{2} + \frac{1}{2}, \ldots, \nu_p(\chi_{r+s}(p)) = \kappa + s - 1 - \frac{r}{2} + \frac{1}{2}, \)
and \(\nu_p(\tau_1(p)) = \frac{s}{2}, \nu_p(\tau_2(p)) = \frac{r}{2}, \) so
\[
\nu_p(\chi_1(p)) < \ldots < \nu_p(\chi_{a+b}(p)) < \nu_p(\tau_1(p)p^{-z_\kappa}) < \nu_p(\tau_2(p)p^{z_\kappa}) < \nu_p(\chi_{a+v+1}(p)) < \ldots < \nu_p(\chi_{a+2b}(p))
\]
where \(z_\kappa = \frac{s-r-s-1}{2} \). It is easy to see that \(I(\rho_v, z_\kappa) \cong \text{Ind}(\chi_1, \ldots, \chi_{r+s}, \tau_1, \tau_2, \tau_3) \). By definition \(I(\rho_v, z_\kappa) \) is nearly ordinary with respect to the weight \((0, \ldots, 0; \kappa, \ldots, \kappa) \) with \((r+1) \) 0’s and \(s \kappa \)'s. First of all from the form of \(F_{\pi'}(z, f^1; g) \) and the above proposition we have a description for \(F_{\pi}^0(z, g) \): it is supported in \(P(Q_p)K_v \),
\[
F_{\pi}^0(z, 1) = \gamma^{(2)}(\rho_v, -z) \pi''((p_1^{t_1} + \ldots + t_{a+b}, p_{a+b+1}', \ldots + t_{a+2b})) |p_1^{t_1} + \ldots + t_{a+2b}|^{z_\kappa} \text{Vol}(\tilde{K}')
\times p^{-\sum_{i=1}^{a+b}(i+1)t_i - \sum_{i=1}^{a+b+1}t_{a+b+i}} \prod_{i=1}^{a+b} \theta(\xi_i)(-1) \prod_{i=1}^{a+b+1} \theta(\xi_{a+b+i})(-1) \phi
\]
and the right action of \(K_v \) is given by the character
\[
\chi_1(g_1) \ldots \chi_{a+b}(g_{a+b} a+b) \tau_1(g_{a+b+1} a+b+1) \chi_{a+b+1}(g_{a+b+2} a+b+2) \ldots \times \chi_{a+2b}(g_{a+2b+1} a+2b+1) \tau_2(g_{a+2b+2} a+2b+2).
\]
(It is easy to compute \(A(V, z, F_{\pi'}(\rho(\mu)f^1; z, -)) = (1) \) and we use the uniqueness of the vector with the required \(K_v \) action. Here on the second row of the above formula for \(F_{\pi}^0(z, 1) \) the power for \(p \)
is slightly different from that for the section \(F(z, f^1, w) \). This comes from the computations for the intertwining operators for Klingen Eisenstein sections.)
Thus Corollary 4.4.1 tells us that \(F_{\pi}^0(z, g) \) is a nearly ordinary vector in \(I(\rho) \).
Now we describe \(f^0 \):

Definition 4.4.8. Suppose \((p^t) = \text{cond}(\tau') \) for \(t \geq 1 \) then define \(f_t \) to be the section supported in \(Q(Q_p)K_Q(p^t) \) and \(f_t(k) = \tau(dx) \) on \(K_Q(p^t) \).
Lemma 4.4.13.
\[f^0_z := M(-z, f^1)z = f_{t,z}. \]

Proof. This is just [35, 11.4.10]. \qed

4.4.3 Fourier Coefficients for \(f^0 \)

We record a formula here for the Fourier Coefficients for \(f^0 \) which will be used in \(p \)-adic interpolation.

Lemma 4.4.14. Suppose \(|\det \beta| \neq 0 \) then:

(i) If \(\beta \not\in S_{a+2b+1}(\mathbb{Z}_p) \) then \(f^0_{\beta}(z, 1) = 0 \);

(ii) Let \(t := \text{ord}_p(\text{cond}(\tau')). \) If \(\beta \in S_{a+2b+1}(\mathbb{Z}_p) \), then:

\[f^0_{\beta}(z, 1) = \tau'(\det \beta) |\det \beta|^2 z^a |\det \beta|^{a+2b+1} c_{a+2b+1}(\tau', z) \Phi_\xi(\beta). \]

where \(c_{a+2b+1} \) is defined in lemma 4.4.6 and \(\Phi_\xi \) is defined at the beginning of this section.

Proof. This follows from [35, 11.4.12]. and the argument of corollary 4.4.2 where we deduce the form of \(f^1 \) from the section \(\tilde{f}^1 \). \qed

4.4.4 Fourier-Jacobi Coefficients

Now let \(m = b + 1 \). For \(\beta \in S_m(F_v) \cap GL_m(O_v) \) we are going to compute the Fourier Jacobi coefficient for \(f_t \) at \(\beta \)

Lemma 4.4.15. Let \(x := \begin{pmatrix} 1 & \varepsilon \\ D & 1 \end{pmatrix} \) (this is a block matrix with respect to \((a + b) + (a + b))\).

(a) \(FJ_{\beta}(f_t; -z, v, xv^{-1} - 1) = 0 \) if \(D \in p^a M_{a+b}(\mathbb{Z}_p) \);

(b) If \(D \in p^a M_n(\mathbb{Z}_p) \) then \(FJ_{\beta}(f_t; -z, v, xv^{-1} - 1) = c(\beta, \tau, z) \Phi_0(v) \), where

\[c(\beta, \tau, z) := \tau(-\det \beta) |\det \beta|^2 z^{a+2} m^m c_m(\tau', -z - \frac{n-m}{2}) \]

and \(c_m \) is defined in lemma 4.4.6

Proof. We only give the detailed proof for the case when \(a = 0 \). The case when \(a > 0 \) is even easier to treat.
Assuming \(a = 0 \), we temporarily write \(n \) for \(b \) and save the letter \(b \) for other use. We have:

\[
\begin{pmatrix}
1_{2n+1} & S & v \\
\bar{t} & D & \\
1_{2n+1}
\end{pmatrix}
\begin{pmatrix}
1_{n+1} \\
-1_n \\
-1_{n+1} \\
D & -\bar{t} & -1_n
\end{pmatrix} = \alpha(1, \eta^{-1})
\]

This belongs to \(Q_{2n+1}(\mathbb{Q}_p)K_{2n+1}(p^t) \) if and only if \(S \) is invertible, \(S^{-1} \in p^t M_{n+1}(\mathcal{O}_v), S^{-1} v \in p^t M_{(n+1) \times n}(\mathcal{O}_v) \) and \(\bar{t} S^{-1} v - D \in p^t M_n(\mathbb{Z}_p) \). Since \(v = \gamma'(b,0) \) for some \(\gamma \in SL_{n+1}(\mathcal{O}_v) \) and \(b \in M_n(K_v) \) we are reduced to the case \(v = \gamma'(b,0) \). Writing \(b = (b_1, b_2) \) with \(b_i \in M_n(\mathbb{Q}_p) \) and \(S = (T, T) \) with \(T \in M_{n+1}(\mathbb{Q}_p) \) and \(T^{-1} = \begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix} \) where \(a_1 \in M_n(\mathbb{Q}_p), a_2 \in M_{n \times 1}(\mathbb{Q}_p), a_3 \in M_{1 \times n}(\mathbb{Q}_p) \), \(a_4 \in M_1(\mathbb{Q}_p) \), the conditions on \(S \) and \(v \) can be rewritten as:

\((*) \ \det T \neq 0, a_i \in p^t M_n(\mathbb{Z}_p), a_1 b_1 \in p^t M_n(\mathbb{Z}_p), a_3 b_1 \in p^t M_{1 \times n}(\mathbb{Z}_p), \bar{t} a_1 b_2 \in p^t M_n(\mathbb{Z}_p), \bar{t} a_2 b_2 \in p^t M_n(\mathbb{Z}_p), b_2 a_1 b_1 - D \in p^t M_n(\mathbb{Z}_p) \)

Now we prove that: if the integral for \(F J_\beta \) is non-zero then \(b_1, b_2 \in M_n(\mathbb{Z}_p) \). Suppose otherwise, then without lose of generality we assume \(b_1 \) has an entry which has the maximal \(p \)-adic absolute value among all entries of \(b_1 \) and \(b_2 \). Suppose it is \(p^w \) for \(w > 0 \) (throughout the paper \(w \) means this only inside this lemma). Also, for any matrix \(A \) of given size we say \(A \in \mathcal{H}_\gamma^w \) if and only \(\mathcal{H}_\gamma A \) has all entries in \(\mathbb{Z}_p \) (of course we assume the sizes of the matrices are correct so that the product makes sense).

Now, let

\[
\Gamma := \left\{ \gamma \begin{pmatrix} h & j \\ k & l \end{pmatrix} \in GL_{n+1}(\mathbb{Z}_p) : \begin{array}{c}
h \in GL_{n+1}(\mathbb{Z}_p), l \in \mathbb{Z}_p^*, \\
h - 1 \in \mathcal{H}_\gamma^w \cap p^t M_n(\mathbb{Z}_p), j \in \mathbb{Z}_p^n \cap \mathcal{H}_\gamma^w, k \in p^t M_{1 \times n}(\mathbb{Z}_p) \end{array} \right\}
\]

Suppose that our \(b_1, b_2, D \) are such that there exist \(\alpha_i \)'s satisfying \((*)\), then one can check that \(\Gamma \) is a subgroup, and if \(T \) satisfies \((*)\), so does \(T \gamma \) for any \(\gamma \in \Gamma \). Let \(\mathcal{T} \) denote the set of \(T \in M_{n+1}(\mathbb{Q}_p) \) satisfying \((*)\). Then \(F J_\beta(f_\gamma; z, v, \begin{pmatrix} 1 \\ D \\ 1 \end{pmatrix} \eta^{-1}, 1) \) equals

\[
\sum_{T \in \mathcal{T}/\Gamma} |\det T|_{\mathbb{Q}_p}^{3n+2-2z} \int_{\Gamma} \tau'(-\det T \gamma) c_p(-tr \beta T \gamma) d\gamma.
\]

70
Let $T' := \beta T = \begin{pmatrix} c_1 & c_2 \\ c_3 & c_4 \end{pmatrix}$ (blocks with respect to $n+1$), then the above integral is zero unless $c_1 \in p^{-t}M_n(\mathbb{Z}_p) + [b_2]_{n \times n}, c_4 \in p^{-t}M_n(\mathbb{Z}_p), c_3 \in [b_2]_{1 \times n} + M_{1 \times n}(\mathbb{Z}_p)$. Here $[b_2]_{i \times n}$ means the set of $i \times n$ matrices such that each row is a \mathbb{Z}_p-linear combination of the rows of b_2.

But then

$$\beta \begin{pmatrix} b_1 \\ 0 \end{pmatrix} = T'^{-1} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} c_1 a_1 b_1 + c_2 a_2 b_1 \\ c_3 a_1 b_1 + c_4 a_3 b_1 \end{pmatrix}$$

since $\beta \in GL_{n+1}(\mathbb{Z}_p)$, the left must contain some entry with p-adic absolute value p^{w}. But it is not hard to see that all entries on the right hand side have p-adic values strictly less than p^{w}, a contradiction, thus we conclude that $b_1 \in M_n(\mathbb{Z}_p)$ and $b_2 \in M_n(\mathbb{Z}_p)$. By (*): $b_2 a_1 b_1 - D \in p^t M_n(\mathbb{Z}_p), a_1 \in p^t M_n(\mathbb{Z}_p)$ so $D \in p^t M_n(\mathbb{Z}_p)$.

The value claimed in part (ii) can be deduced similarly as in [35, 11.4.22]
Chapter 5

Global Computations

5.1 Klingen Eisenstein Series

Now we are going to construct the nearly ordinary Klingen Eisenstein series (and will p-adically interpolate in families). First of all, recall that for a Hecke character τ which is of infinite type $(\kappa_2, -\kappa_2)$ at all infinite places (here the convention is that the first infinite place of K is inside our CM type) we construct a Siegel Eisenstein series E associated to the Siegel section:

$$
f = \prod_{v} f_v f_v^0 \prod_{v \in \Sigma \setminus \{p\}} f_v^{sp}\prod_{v \in \Sigma} f_v^{sieg} \in I_{a+2b+1}(\tau, z).
$$

Here Υ_v is the Υ defined in the section of p-adic computations. We warn the reader that the matrix form of it is not quite the one given there, due to our re-index of the rows and columns mentioned at the beginning of subsection 4.4.2. Recall that we write $D := \{\pi, \tau, \Sigma\}$ for the Eisenstein datum where Σ (see definition 3.1.2) is a finite set containing all the infinite places, primes dividing p and the places where π or τ is ramified. Then define the normalization factor:

$$
B_D := \frac{1}{\Omega_{\infty}^2 \prod_{v} (\tau'_{v})^{a+2b+1} e_{a+2b+1}(\tau'_{v}, z_{v})^{-1}} \prod_{v \in \Sigma} \tau^{-1}(y_{v} y_{v} x_{v}) |(y_{v} y_{v})^2 x_{v} x_{v}|^{\frac{a+2b+1}{2}} C_v
$$

Here Ω_{∞} is the CM period in section 2.1. First note that since π is nearly ordinary with respect to the scalar weight κ and $\phi = \phi^{ord}$ is a holomorphic nearly ordinary vector. Then its contragradient is also nearly ordinary. (But the nearly ordinary vector is not the one whose neben-type is the inverse of ϕ^{ord}). We denote this representation as $\tilde{\pi}$. We choose a nearly ordinary vector of this
representation which we choose to be “p-adically primitive”, i.e. integral but not divisible by p in terms of Fourier Jacobi expansion. In general we will need some Gorenstein properties of certain Hecke algebras to make primitive forms in Hida families. But we do not touch this at the moment.

We consider $E(\gamma(g, -))$ as an automorphic form on $U(a + b, b)$. For each $v \nmid p$ there is a level group $\tilde{K}_{v,s} \subset U(a + b, b)_v$ such that

$$\prod_{v \mid p} \rho(\gamma(1, \eta \operatorname{diag}(\bar{x}_v^{-1}, 1, x_v)))(E(\gamma(g, -)) \otimes \bar{\tau}((\det -))$$

is invariant under its action. Now let $\tilde{\pi}$ be the contragradient automorphic representation of π. Suppose $\tilde{\phi}^{\text{ord}}$ is a “new form” with level group \tilde{K}_v so that $\tilde{\pi}_{v,K}$ is 1-dimensional for each v and that its infinity components are in the contragradient K_∞-type of ϕ^{ord}. (We will make everything explicit in a future work. Right now let us content ourselves with these vague definitions for simplicity.)

Assume also that there is a Hecke action $1_{\tilde{\pi}}$ with respect to the level group $\prod_v \tilde{K}_v$ which takes any nearly ordinary automorphic form for this level to its $\tilde{\pi}$ component (which is a multiple of $\tilde{\phi}^{\text{ord}}$).

Remark 5.1.1. In a future work we will see that when deforming everything in families, the (Fourier coefficients of the) Siegel Eisenstein series $B_D E$ moves p-adic analytically. This enables us to construct the p-adic analytic family E_{Kling}. This is the reason for introducing B_D.

We define E_{Kling} by:

$$B_D E_{Kling} = \prod_{v \mid p} \text{tr}_{\tilde{K}_v/\tilde{K}_{v,s}} \rho(\gamma(1, \eta \operatorname{diag}(\bar{x}_v^{-1}, 1, x_v)))(E(\gamma(g, -)) \otimes \bar{\tau}((\det -)) = E_{Kling}(g) \boxtimes \tilde{\phi}^{\text{ord}}$$

Here we used the superscript low to mean that under $U(a + b + 1, b + 1) \times U(a + b, b) \hookrightarrow U(a + 2b + 1, a + 2b + 1)$ the action is for the group $U(a + b, b)$. We remark that when $a \neq 0$, this E_{Kling} is nearly ordinary with some Borel which is not quite the one we want. Therefore we need to translate both the Siegel Eisenstein series and the Klingen Eisenstein series by some Weyl element at primes dividing p. We leave the precise computations for this to the future when doing arithmetic applications in the $a \neq 0$ cases.

Recall that for $v|p$ we have defined $\phi_{aux,v} = \sum_{x \in J} \pi \begin{pmatrix} 1 & 0 \\ 0 & x \end{pmatrix} \phi_{w,v}$ where x runs through J.

73
\[
\begin{pmatrix}
1 & x_{12} & \ldots & x_{1b} \\
\vdots & \ddots & \ddots & \vdots \\
\vdots & & \ddots & \vdots \\
1 & & & 1 \\
\end{pmatrix}
\]
with \(x_{ij}\) running through representatives of \([\mathbb{Z}_p : p^{t_a+b+1-t_a+b+1}/\mathbb{Z}_p]\). \(\phi_{aux,v}\) apparently depends on the choices of the representatives. We write \(\phi_w\) and \(\phi_{aux}\) as the vector obtained by applying the corresponding operators at all primes dividing \(p\) to \(\phi = \phi^{ord}\). We write \(<-,->\) as the integration the product of the two forms over \(U(F)\backslash U(\mathbb{A}_F)\). We use the Haar measure here, normalized so that it is the product of Haar measures of local groups in which the measure of each \(U(r,s)(\mathcal{O}_{F,v})\) is 1 and the Archimedean measures are the ones chosen in [31]. This induces natural pairing between \(\pi\) and \(\tilde{\pi}\), then

\[
< \prod_{v|p} tr_{\mathcal{K}_v/\mathcal{K}_v} \rho(\gamma(1, \eta \text{diag}(x_v^{-1}, 1, x_v))(E(\gamma(g, -))\bar{\tau}(\det -)),
\]

\[
\rho(\prod_{v|p} (\begin{pmatrix}
p^{t_a+b+1} & \vdots & \vdots \\
\vdots & \ddots & \vdots \\
p^{t_a+1} & \vdots & \vdots \\
1 & \cdots & 1 \\
\end{pmatrix})^t)
\]

\[
= < \rho^{low}(\prod_{v|p} (\begin{pmatrix}
p^{t_a+b+1} & \vdots & \vdots \\
\vdots & \ddots & \vdots \\
p^{t_a+1} & \vdots & \vdots \\
1 & \cdots & 1 \\
\end{pmatrix})^t) \prod_{v|p} tr_{\mathcal{K}_v/\mathcal{K}_v} \rho(\gamma(1, \eta \text{diag}(x_v^{-1}, 1, x_v))(E(\gamma(g, -))\bar{\tau}(\det -),
\]

\[
\rho(\prod_{v|p} (\begin{pmatrix}
1 & \cdots & 1 \\
\vdots & \ddots & \vdots \\
1 & \cdots & 1 \\
\end{pmatrix})^t)
\]

Since \(E(\gamma(g, -))\) satisfies the property that if \(\mathcal{K}^{mm}\) is the subgroup of \(\mathcal{K}\) (defined in the last chapter)
consisting of matrices\[
\begin{pmatrix}
a_1 & a_3 & a_2 \\
a_7 & a_9 & a_8 \\
a_4 & a_6 & a_5
\end{pmatrix}^\iota
\]
such that the \((i, j)\)-th entry of \(a_7\) is divisible by \(p_{t_i+t_{a+b}+j}\) and the \((i, j)\)-th entry of \(a_4\) is divisible by \(p^{t_i+a}+t_{a+b}+j\), the \(i\)-th row of \(a_8\) and the right diagonal entries of \(a_9\) are divisible by \(p^{t_i}\) for \(i = 1, \ldots, a\), the \(i\)-th column of the below diagonal entries of \(a_1\) are divisible by \(p^{t_i+b}+a+b\), the \(i\)-th row of the up to diagonal entries of \(a_5\) are divisible by \(p^{t_i} \cdot \beta^{-1}\) for \(\beta = \begin{pmatrix} p^{t_i+a+b+1} & \cdots & 1_a \\ 1_b & p^{t_i} & \cdots \\ \vdots & \vdots & \ddots \\ 1_b & \cdots & p^{t_{a+b+1}} \end{pmatrix}\).

Then the right action of \(h^\iota \in \tilde{K}''\) on \(E(\gamma(g, -))\) is given by the character \(\lambda(h^\iota) = \bar{\chi}_{a+b+1}(h_{11}) \cdots \bar{\chi}_{a+b+2}((h_{bb}) \bar{\chi}_{1}(h_{bb+1,b+1}) \cdots \bar{\chi}_{a+b+1}(h_{a+b+1,a+b+1}) \cdots \bar{\chi}_{a+b+2}(h_{a+b+2,a+b+2})\).

It is elementary to check that the above expression equals:

\[
(\prod_{v \mid p} \frac{1}{\prod_{i=1}^a p^{t_{a+b}+1}(a+b)}) \cdot \left(\prod_{v \mid p} (\sum y \rho^{low}(y) \rho^{low}(\begin{pmatrix} p^{t_{a+b+1}} \\ \vdots \\ 1_a \\ 1_b \end{pmatrix}^{\iota})) \right) \\
\pi \rho(\prod_{v \mid p} \left(\begin{pmatrix} 1_b \\ p^{t_1} \\ \vdots \\ p^{t_{a+b+1}} \\ \vdots \\ 1_b \end{pmatrix}^{\iota}) \right) \phi_{\omega} >
\]

where \(y\) runs over \(N(\mathbb{Z}_p)/\beta N(\mathbb{Z}_p)\beta^{-1}\) and \(\beta = \begin{pmatrix} p^{t_{a+b+1}} & \cdots & 1_a \\ 1_b & p^{t_{a+b+1}} & \cdots \\ \vdots & \vdots & \ddots \\ 1_b & \cdots & p^{t_{a+b+1}} \end{pmatrix}\). For \(v \mid p\) define \(T^{low}_{\beta,v}\) to be the Hecke action corresponding to \(\beta\) just in terms of double cosets. (no normalization factors involved). By checking the level actions we can see that the \(\tilde{\pi}\) component of the left part when viewed as an automorphic form on \(U(a+b, a)\) is a multiple of \(\tilde{\phi}_{ord}\) defined right before remark 5.1.1.
Suppose its eigenvalue for the Hecke operator $T_{\beta, v}^{low}$ is $\tilde{\lambda}_{\beta, v}$. Let

$$
\phi' = \prod_{v|\infty} \phi_v \prod_{v \notin \Sigma} \phi_v \prod_{v \in \Sigma, v \neq p} \phi_v \prod_{v \mid p} \rho(v) \begin{pmatrix} p^{-t_{a+b+1}} & \cdots & p^{l_1} & \cdots & p_{t_{a+1}} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ p^{l_1} & \cdots & p_{t_{a+1}} & \cdots & \vdots \\ \vdots & \cdots & \vdots & \cdots & \vdots \\ 1_b & \cdots & 1_b & \cdots & -1_b \end{pmatrix} \phi_{aux, v}
$$

and

$$
\phi'' = \prod_{v|\infty} \phi_v \prod_{v \notin \Sigma} \phi_v \prod_{v \in \Sigma, v \neq p} \phi_v \prod_{v \mid p} \rho(v) \begin{pmatrix} p^{-t_{a+b+1}} & \cdots & p^{l_1} & \cdots & p_{t_{a+1}} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ p^{l_1} & \cdots & p_{t_{a+1}} & \cdots & \vdots \\ \vdots & \cdots & \vdots & \cdots & \vdots \\ 1_b & \cdots & 1_b & \cdots & -1_b \end{pmatrix} \phi_w.
$$

Here for $v|\infty$ the ϕ_v is the unique up to scalar vector mentioned before definition 3.1.1. Then we have

Proposition 5.1.1. With these notations we have:

$$
E_{Kling}(g) = \mathcal{B}_D \prod_{v \mid p} \prod_{i=0}^{l_{a+b+1}} \frac{p_{i}}{\lambda_{\beta, v}} \cdot \frac{< \prod_{v \mid p} tr_{K_v/K_{s, v}} \rho(\gamma(1, \eta \text{diag}(x_v^{-1}, 1, x_v))) E(\gamma(g, -)), \phi' >}{< \phi', \phi'' >}
$$

Proof. The $\tilde{\tau}$-component of the left part of the inner product above is:

$$
\prod_{v \mid p} T_{\beta, v}^{low} \cdot \tilde{\tau} - \text{component of } \prod_{v \mid p} tr_{K_v/K_{s, v}} \rho(\gamma(1, \eta \text{diag}(x_v^{-1}, 1, x_v))) E(\gamma(g, -)) \tilde{\tau}(\det -)
$$

$$
= e^{low} \cdot \prod_{v \mid p} T_{\beta, v}^{low} \cdot \tilde{\tau} - \text{component of } \prod_{v \mid p} tr_{K_v/K_{s, v}} \rho(\gamma(1, \eta \text{diag}(x_v^{-1}, 1, x_v))) E(\gamma(g, -)) \tilde{\tau}(\det -)
$$

$$
= \prod_{v \mid p} T_{\beta, v}^{low} \cdot e^{low} \cdot \tilde{\tau} - \text{component of } e^{low} \prod_{v \mid p} tr_{K_v/K_{s, v}} \rho(\gamma(1, \eta \text{diag}(x_v^{-1}, 1, x_v))) E(\gamma(g, -)) \tilde{\tau}(\det -)
$$

$$
= \prod_{v \mid p} \tilde{\lambda}_{\beta, v} \cdot \tilde{\tau} - \text{component of } e^{low} \prod_{v \mid p} tr_{K_v/K_{s, v}} \rho(\gamma(1, \eta \text{diag}(x_v^{-1}, 1, x_v))) E(\gamma(g, -)) \tilde{\tau}(\det -)
$$

$$
= \prod_{v \mid p} \tilde{\lambda}_{\beta, v} \cdot \tilde{\tau} - \text{component of } e^{low} \prod_{v \mid p} tr_{K_v/K_{s, v}} \rho(\gamma(1, \eta \text{diag}(x_v^{-1}, 1, x_v))) E(\gamma(g, -)) \tilde{\tau}(\det -)
$$

76
Thus

\[\tilde{\pi} - \text{component of } c_{\text{low}} \prod_v \text{tr}_{K_v/\tilde{K}_v}\rho(\gamma(1, \eta \text{diag}(\tilde{e}_v^{-1}, 1, x_v))(E(\gamma(g, -))\tilde{\pi}(\det -)) \]

\[= \prod_v \frac{\langle \text{tr}_{K_v/\tilde{K}_v}\rho(\gamma(1, \eta \text{diag}(\tilde{e}_v^{-1}, 1, x_v))(E(\gamma(g, -))\tilde{\pi}(\det -)), \phi' \rangle_{\phi^{\text{ord}}}}{\langle \phi^{\text{ord}}, \phi' \rangle_{\phi^{\text{ord}}}} \]

Thus we get the proposition. \qed

5.2 Constant Terms

5.2.1 Archimedean Computation

Suppose \(\pi \) is associated to the weight \((0, ..., 0; \kappa, ..., \kappa)\), then it is well known that there is a unique (up to scalar) vector \(v \in \pi \) such that \(k.v = \det \mu(k, i)^{-\kappa} \) for any \(k \in K^\times \) (notation as in section 3.1). Then by Frobenius reciprocity law there is a unique (up to scalar) vector \(\tilde{v} \in I(\rho) \) such that \(k.\tilde{v} = \det \mu(k, i)^{-\kappa}\tilde{v} \) for any \(k \in K^\times \). We fix \(v \) and scale \(\tilde{v} \) such that \(\tilde{v}(1) = v \). In \(\pi' \), \(\pi(w)v \) (\(w \) is defined in section 3.1) has the action of \(K^\times_\infty \) given by multiplying by \(\det \mu(k, i)^{-\kappa} \). We define \(w' \in U(a + b + 1, b + 1) \) by \(w' = \begin{pmatrix} 1 & b & 1 \\ 1 & a & 1 \\ 1 & b & -1 \end{pmatrix} \). Then there is a unique vector \(\tilde{v}' \in I(\rho') \) such that the action of \(K^\times_\infty \) is given by \(\det \mu(k, i)^{-\kappa} \) and \(\tilde{v}'(w') = \pi(w)v \). Then by uniqueness there is a constant \(c(\rho, z) \) such that \(A(\rho, z, \tilde{v}) = c(\rho, z)\tilde{v}' \).

Lemma 5.2.1. Assumptions are as above, then:

\[c(\rho, z) = \pi^{a+2b+1} \prod_{i=0}^{b-1} \left(\frac{1}{\pi - \frac{1}{2} + i - a} \right) \prod_{i=0}^{a-1} \left(\frac{1}{\pi - \frac{1}{2} + i + 2b} \right) \frac{\Gamma(2z+\alpha)}{\Gamma((2z+a)2-1-2z+2b)} \det(i\theta/2)^{-2}. \]

Proof. It follows the same way as [35, 9.2.2]. \qed

Corollary 5.2.1. In case when \(\kappa > \frac{3}{2}a + 2b \) or \(\kappa \geq 2b \) and \(a = 0 \), we have \(c(\rho, z) = 0 \) at the point \(z = \frac{\kappa-a-2b-1}{2b-1} \).

Let \(F \) be the Klingen section which is the tensor product of the local Klingen sections defined...
in the last Chapter by pulling back of the corresponding Siegel sections. In the case when κ is sufficiently large the intertwining operator:

$$A(\rho, z_\kappa, F) = A(\rho_\infty, z_\kappa, F_\kappa) \otimes A(\rho_f, z_\kappa, F_f)$$

and all terms are absolutely convergent. Thus as a consequence of the above corollary we have $A(\rho, z_\kappa, F) = 0$. Therefore the constant term of E_{Kling} is just BDF_{z_κ}. It is essentially

$$\frac{L_\Sigma(\tilde{\pi}, \tilde{\pi}_e, z_\kappa + 1)}{\Omega_{2e\Sigma} < \phi^{ord}, \phi''^{''}} L_\Sigma(2z_\kappa + 1, \tilde{\pi}'_K a^{+2b}) \phi.$$

up to a product of normalization factors at local places.
Chapter 6

Hilbert Modular Forms and Selmer Groups

From now on we are in part two where we specialize to $U(1,1) \hookrightarrow U(2,2)_F$ and prove our main theorem.

6.1 More Notations

Now we are going to define more notations that we are going to use from now on. We define μ_p^∞ as the set of roots of unity with order powers of p. Let $\delta_K, \mathfrak{d} = \mathfrak{d}_F, D_K, D_F$ be the different and discriminant of K and F. Let $\tilde{\delta}_K$ be the different from K to F and $\tilde{D}_K = \text{Nm}_{K/F}(\tilde{\delta}_K)$. We denote N to be the level of f and M the prime to p part of it. Here $N, M, \delta_K, \mathfrak{d}, D_K, D_F$ are all elements in the ideles of F, K or \mathbb{Q} supported at the finite primes (also the M_D defined later)! This is much more convenient when working in the adelic language. For each $v|p$ we suppose $p^r_v \parallel N_v$ (we save the notation r_v for other use). We assume that K is split over all primes dividing the d_F. This assumption makes the computation of Fourier-Jacobi coefficients easier. Let $h = h_F$ be the narrow ideal class number of F, we divide the ideal classes $Cl(K)$ into $I_1 \sqcup \ldots \sqcup I_h$ corresponding to the image of the norm map to $Cl_n(F)$ and suppose I_1 are those mapping to the trivial class. (Here n stands for narrow). We assume that K is disjoint from the narrow Hilbert class field of F and thus it is easy to see that the norm map above is surjective. Also we write $\langle f, g \rangle$ (integration over $U(1,1)(F) \setminus U(1,1)(\mathbb{A}_F)$) to be the integration of f, \bar{g} along $U(1,1)(F) \setminus U(1,1)(\mathbb{A}_F)$. Note that this convention is different from part one since we are taking the complex conjugation of g here. For f
and g Hilbert modular forms such that the product of the central characters of f and g are trivial then we denote $< , >_{GL_2}$ to be the inner product on GL_2 (integration over $GL_2(F) \mathbb{A}_F \backslash GL_2(\mathbb{A}_F)$, note that we need to mod out by the center here). We also write, for example $< , >_{U_P}$, $< , >_{GL_2,\mathbb{A}_F[N]}$ the inner product with respect to the indicated level group, i.e. $[U(1,1)(\mathcal{O}_F) : U_P]$, $< , >$, etc.

For v a finite prime of F, as in [35, chapter 8] we define the level group $K_{r,t} \subset GU(2,2)(\mathbb{F}_v)$ for $r, t > 0$ as follows: for Q and P being the Siegel and Klingen parabolic, $K_{r,t} = K_{Q,v}(\varpi_v) \cap w_2^t K_P(\varpi_v) w_2^s$ where ϖ_v is a uniformizer for v, $K_{Q,v}(\varpi_v)$ means the matrices which are in $Q(\mathbb{O}_{F,v})$ modulo ϖ_v and $K_{P,v}(\varpi_v)$ means matrices which are in $P(\mathbb{O}_{F,v})$ modulo ϖ_v, and $w_2^s = \begin{pmatrix} 1 & 1 \\ & 1 \\ & & 1 \end{pmatrix}$.

Finally for any domain A we usually write F_A for the fraction field of A.

6.2 Hilbert Modular Forms

6.2.1 Hilbert Modular Forms

We set up the basic notions of Hilbert modular forms, following [11] with minor modifications. Let I be the set of all field embedding of F into \bar{F}, and \mathcal{I} be the set of all field embedding of F into \bar{Q}. We may regard I as the set of infinite places of F via ι_{∞}. The weight of a Hilbert modular form over F is a pair of elements (κ, w) in the free module $\mathbb{Z}[I]$ generated by I. We identify $F_\infty = F \otimes_{\mathbb{Q}} \mathbb{R}$ with \mathbb{R}^I and embed F into \mathbb{R}^I via the diagonal map $a \mapsto (a^\sigma)_{\sigma \in I}$. Then the identity component G_∞^+ of $GL_2(F_\infty)$ naturally acts on $\mathcal{L} = \mathcal{H}$ with \mathcal{H} the Poincare half plane. We write C_∞^+ for the stabilizer in G_∞^+ of the center point $z_0 = (\sqrt{-1}, \sqrt{-1}, \ldots, \sqrt{-1}) \in \mathcal{L}$. Then for each open compact subgroup U of $GL_2(F_\kappa)$, we denote by $M_{\kappa,w}(U; \mathbb{C})$ the space of holomorphic modular forms of weight (κ, w) with respect to S. Namely $M_{\kappa,w}(U; \mathbb{C})$ is the space of smooth functions $f : GL_2(\mathbb{A}_F) \to \mathbb{C}$ satisfying the automorphic condition:

$$f(\alpha x u) = f(x) j_{\kappa,w}(u_\infty, z_0)^{-1} \text{ for } \alpha \in GL_2(F) \text{ and } u \in U C_\infty^+,$$

where $j_{\kappa,w}(a b \begin{pmatrix} c \\ & d \end{pmatrix}, z) = (ad - bc)^{-w} (cz + d)^\kappa$ for $a b \begin{pmatrix} c \\ & d \end{pmatrix} \in GL_2(F_\infty)$ and $z \in \mathcal{L}$ and such that for any $g_f \in GL_2(\mathbb{A}_F)$ the associated classical form defined by $f_c(z, g_f) := f(g f_{\kappa,w}(g_\infty, z_0)) g$ such that $g_\infty z_0 = z$ is holomorphic on the symmetric domain and at all cusps. We write $S_{\kappa,w}(U; \mathbb{C})$
for the subspace of $M_{\kappa,w}(U;\C)$ consisting of cusp forms. Here we have used the convention that $e^s = \prod_{\sigma \in I} e^{s_\sigma}$ for $c = (c_\sigma)_{\sigma \in I} \in \C^I$ and $s = \sum s_\sigma \sigma \in \C[I]$. Setting $t = \sum c_\sigma$, we sometimes use another pair (n,v) to denote the weight, for $n = \kappa - 2t$ and $v = t - w$. Each automorphic representation π spanned by forms in $S_{\kappa,w}(U;\C)$ has central character $| \cdot |^{-\kappa m}$ up to a finite order character. The twist $\pi^u = \pi \otimes | \cdot |^{m/2}$ is called the unitarization of π.

Let h be the narrow class number of F and decompose

$$A_F^\times = \bigsqcup_{i=1}^h F^\times a_i(\mathcal{O}_F)^\times F_{\infty+}^\times$$

with $a_i \in A_{F,t}$.

Then by strong approximation

$$G(A_F) = \bigsqcup_{i=1}^h GL_2(F) t_i U_0(N) G_{\infty+}$$

for $t_i = \begin{pmatrix} a_i^{-1} & 0 \\ 0 & 1 \end{pmatrix}$.

For any ideal N of \mathcal{O}_F let $U_0(N)$ be the open compact subgroup of $GL_2(\mathcal{O}_F)$ whose image modulo N is inside $B(\mathcal{O}_F)$. Let ε be a neben character of $T(\mathcal{O}_F^\times)$ whose conductor contains N. Any automorphic form in the space $M_{\kappa,w}(U_0(N),\varepsilon;\C)$ is determined by its restriction to the connected component of t_i in $GL_2(F) \setminus GL_2(A_F)/U_0(N) G_{\infty+}$. So we identify the above space with the space of h-tuples: $\{f_i\}$ where f_i are forms in $M_{\kappa,w}(\Gamma_i,\C)$ for $\Gamma_i := t_i U_0(N) t_i^{-1}$ with $f_i(g_{\infty}) := f(g_{\infty} t_i)$.

Each f_i has a q-expansion:

$$f_i(z) = a(0,f_i) + \sum_{0 << \xi \in F^\times} a(\xi, f_i) e_F(\xi z).$$

Let $A_{F,t}^\times$ be the set of ideles whose Archimedean parts are all positive. We have the following theorem in [11] about the q-expansion for Hilbert modular forms:

Theorem 6.2.1. Each $f \in M_{\kappa,w}(U;\C)$ has a Fourier expansion of the following type:

$$f\left(\begin{pmatrix} y & x \\ 0 & 1 \end{pmatrix}\right) = |y|_{\A} \{a_0(y d, f)|y|_{\A}^{-[\kappa]} + \sum_{0 << \xi \in F^\times} a(\xi y d, f)((\xi y_{\infty})^{-\nu} e_F(i \xi y_{\infty}) e_F(\xi x)\},$$

where $A_{F,t}^\times \ni y \mapsto a_0(y, f)$ is a function invariant under $F_{\infty+}^\times U(F(N)) F_{\infty+}^\times$ (here $+$ and $0 <<$ means totally positive) and vanishes identically unless $w \in \Z \cdot t$, and $A_{F,t}^\times \ni y \mapsto a(y, f)$ is a function vanishing outside $\hat{\mathcal{O}} F_{\infty+}^\times$ and depending only on the coset of $y_j U_F(N)$.

This adelic q-expansion is deduced from the usual q-expansions. We omit the details and refer to
First of all let us define the weight space for Hilbert modular Hida families. For \(A \) some finite extension of \(\mathbb{Q}_p \) let \(\Lambda_W' := A[[\{W_{1,v}, W_{2,v}\}_{v|p}]] \). A point \(\phi \in \mathrm{Spec}(\Lambda_W') \) is called arithmetic if

\[
(1 + W_{1,v}) \mapsto \zeta_{1,v,\phi} \in \mu_p, \quad (1 + W_{2,v}) \mapsto (1 + p)^{\kappa_{2,v,\phi}} \zeta_{2,v,\phi} \in \mu_p \quad \text{and} \quad \kappa_{\phi,v} \geq 2 \text{ is some integer.}
\]

We also require that \(\kappa_{\phi,v} \) to be the same for all \(v \). (This means we only consider Hilbert modular forms of parallel weight, which is already enough for constructing the whole Hida family.)

Define \(\Lambda_W \) such that \(\mathrm{Spec} \Lambda_W \) is the closed subspace of \(\mathrm{Spec} \Lambda_W' \) defined as the Zariski closure of the arithmetic points satisfying: \(\phi((1 + W_{1,v})(1 + W_{2,v})) \) is equal for all \(v|p \). It is naturally a power series ring with \(d + 1 \) variables. We only consider this weight space for simplicity. In fact if the Leopoldt Conjecture is true, then this is the whole weight space for Hida families of Hilbert modular forms.

Now we define the nebentypus associated to \(\phi \): let

\[
\varepsilon'_{1,\phi,v}(1 + p) = \zeta_{1,v,\phi}, \quad \varepsilon'_{2,\phi,v}(1 + p) = \zeta_{2,v,\phi}.
\]

We extend these to be characters on \(O_v^\times \) as follows: for \(a \) such that \(a \equiv 1 \mod p \) it is obvious how to extend and then we require them to be trivial on the torsion part of \(O_v^\times \). Define:

\[
\varepsilon_{\phi,v}(\begin{pmatrix} a \\ b \end{pmatrix}) = \varepsilon'_{1,v,\phi}(a)\varepsilon'_{2,v,\phi}(b)\omega^{\kappa_{\phi,v} - 2}(b)
\]

for \(a, b \in O_v^\times \) (recall that \(\omega \) is the Teichmüller character). It is well known that in the Hilbert modular form case there is a nearly ordinary idempotent \(e \) defined by Hida.

Definition 6.2.1. A Hilbert modular form \(f \) is called nearly ordinary if \(ef = f \). We define \(M^{\mathrm{ord}}_{\kappa,w}(U; \mathbb{C}) \) and \(S^{\mathrm{ord}}_{\kappa,w}(U; \mathbb{C}) \) to be the space of nearly ordinary modular forms and cusp forms with level group \(U \).

Remark 6.2.1. Suppose \(f \) is a nearly ordinary unitary eigenform of weight \((\kappa_{\phi,v}, \frac{\kappa_{\phi,v}}{2}) \) and nebentypus \(\varepsilon_{\phi,v} \). Then we can assume that for each \(v|p \) the \(v \)-component is \(\pi(\mu_{1,v}, \mu_{2,v}) \) where \(\mathrm{val}_{\mu_{1,v}}(p) = p^{\kappa_{\phi,v} - 1}, \quad \mathrm{val}_{\mu_{2,v}}(p) = p^{\kappa_{\phi,v} - 1} \). In this case \(\mu_{1,v}, \mu_{2,v} \) have the same restriction to \(O_{F,v}^\times \) as \(\varepsilon'_{1,v,\phi} \) and \(\varepsilon'_{2,v,\phi} \omega^{\kappa_{\phi,v} - 2} \) respectively.
Let \(\mathcal{I} \) be a finite integral extension of \(\Lambda_W \).

Definition 6.2.2. Let \(M \) be an ideal of \(F \) prime to \(p \). An \(\mathcal{I} \)-adic ordinary cusp form \(f \) of level \(V_1(M) \) is a set of elements of \(\mathcal{I} \):

\[
\{ c_i(\xi, \mathcal{I}) \mid \xi \in F^\times, c_i(0, \mathcal{I}) \in \mathcal{I} \text{ for } i = 1, \ldots, h \}
\]

with the property that for a Zariski dense set of primes \(\phi \) of \(\mathcal{I} \) which map to an arithmetic point in \(\text{Spec}(\Lambda_W) \), the specialization \(f_\phi := \{ \sum_{\xi \in F^\times} \phi(c_i(\xi, \mathcal{I}))e_F(\xi, z) \mid i = 1, \ldots, h \} \) is the \(q \)-expansion of a nearly ordinary cusp form of weight \((\kappa_{\phi}, \frac{\kappa_{\phi}}{2})\), prime to \(p \), level \(M \) and nebentypus \(\varepsilon_{\phi} \) at primes dividing \(p \).

6.2.3 Galois Representations of Hilbert Modular Forms

Let \(A \) be a finite extension of \(\mathbb{Q}_p \). One can also define the space of Hilbert modular forms \(M_{\kappa, w}(U_0(N), \varepsilon, A) \) and the corresponding cuspidal spaces \(S_{\kappa, w}(U_0(N), \varepsilon, A) \). For \(f \in S_{\kappa, w}(U_0(N), \varepsilon, A) \), \(\kappa \geq 2 \), a normalized eigenform, we fix \(L \subset \overline{\mathbb{Q}}_p \) a finite extension of \(\mathbb{Q}_p \) containing all the Fourier coefficients of \(f \). Let \(\mathcal{O}_L \) be the integer ring of \(L \) and \(F \) its residue field. Then we have a continuous semi-simple 2-dimensional Galois representation \((\rho_f, V_f) \): \(\rho_f : G_{\mathbb{Q}} \to GL_2(V_f) \), characterized by being unramified at primes \(v \nmid p \) such that \(\pi_v \) is unramified and satisfying:

\[
\text{tr} \rho_f(\text{frob}_v) = a(v, f)
\]

where \(a(v, f) \) is the Hecke eigenvalue of \(f \) under the Hecke operator \(T_v \) (recall that this is associated to \(\left(\begin{array}{c} \varpi_v \\ 1 \end{array} \right) \) where \(\varpi_v \) is a uniformizer at \(v \)). Furthermore, if \(f \) is nearly ordinary at all primes dividing \(p \), then we have the following description of \(\rho_f \) restricted to the decomposition groups for all primes \(v \) dividing \(p \):

\[
\rho|_{G_{F_v}} \simeq \begin{pmatrix} \sigma_{\mu_{1, v}} & * \\ \sigma_{\mu_{2, v}} \end{pmatrix}.
\]

Here \(\sigma \) is the local reciprocity map (we use the geometric normalization) and \(\pi_v \simeq \pi(\mu_{1, v}, \mu_{2, v}) \) where \(\mu_{1, v}(p) \) has smaller \(p \)-valuation than \(\mu_{2, v}(p) \).

Therefore for each \(v|p \) we have a one-dimensional subspace \(V_{f,v}^+ \subset V_f \) such that the action of \(G_v \) on \(V_{f,v}^+ \) is given by the character \(\sigma_{\mu_{1, v}} \) and \(G_v \) acts on the quotient \(V_{f,v}^- := V_{f,v}/V_{f,v}^+ \) by \(\sigma_{\mu_{2, v}} \).

We choose a Galois stable \(\mathcal{O}_L \) lattice \(T_f \) of \(V_f \).
Similarly, for a Hida family f of eigenforms with coefficient ring I. Suppose the residue Galois representation $\bar{\rho}_f$ for some member f_ϕ of this family is irreducible (irred) defined in the introduction.

Then it is well known that we have a Galois representation

$$\rho_f : G_F \to GL_2(\mathbb{I})$$

and we denote the representation space (a free rank 2 module over \mathbb{I}) by T_f.

6.3 Selmer Groups

We recall the notion of Σ-primitive Selmer groups, emphasizing the case of Hilbert modular case, following [35, 3.1] with some modifications. Let F be a totally real number field as before. Let T be a free module of finite rank over a profinite \mathbb{Z}_p-algebra A and assume that T is equipped with a continuous action of G_F. Denote by A^* as the Pontryagin dual of A. Assume furthermore that for each place $v|p$ of F we are given a G_v-stable free A-direct summand $T_v \subset T$. For any finite set of primes Σ we denote by $Sel_\Sigma F(T, (T_v)_{v|p})$ the kernel of the restriction map:

$$H^1(F, T \otimes_A A^*) \to \prod_{v \notin \Sigma, v|p} H^1(I_v, T \otimes_A A^*) \times \prod_{v|p} H^1(I_v, T/T_v \otimes_A A^*).$$

We always assume that Σ contains all primes at which T is ramified. We put

$$X_\Sigma F(T, (T_v)_{v|p}) := Hom_A(Sel_\Sigma F(T, (T_v)_{v|p}), A^*).$$

If E/F is a finite extension, we put $Sel_{E, w}^\Sigma F(T, (T_v)_{w|p})$ and $X_{E, w}^\Sigma F(T) := X_{E, w}^\Sigma F(T, (T_w)_{w|p})$, where Σ_F is the set of places of E over those in Σ and if $v|w$ then $T_v = g_v T_w$ for $g_v \in G_F$ such that $g_v^{-1} G_{E, w} g_w \subseteq G_{E, v}$. If E/F is infinite we set: $Sel^\Sigma E, E, w (T, (T_e)_{w|p})$ and $X_{E, w}^\Sigma F(T) = \lim_{E \subseteq E', E' \subseteq E} X_{E', w}^\Sigma F(T)$, where E' runs over the finite extensions of F contained in E.

Suppose K/F is a CM number field over its maximal totally real subfield, c being the nontrivial element of G_F/G_K. Then we have an action of c on the Selmer groups of F. We have the following lemma as in [35, 3.1.5]. (Recall that we have assumed $p \neq 2$.)

Lemma 6.3.1. There is a decomposition

$$Sel^\Sigma F(T) = Sel^\Sigma E, E, w (T) + Sel^\Sigma E, E + Sel^\Sigma E, E -.$$
according to the ±1 eigenspaces of the action by c. Also, restriction induces isomorphisms

\[\text{Sel}_F(T) \to \text{Sel}_{K_c}(T)^+ \quad \text{Sel}_F(T \otimes \chi_K) \to \text{Sel}_{K_c}(T)^- \].

6.4 Iwasawa Theory of Selmer Groups

We let \(F_\infty \) be the cyclotomic \(\mathbb{Z}_p \) extension of \(F \). The Galois group, which we denote as \(\Gamma_F \), is isomorphic to \(\mathbb{Z}_p \). Let \(K_\infty := \mathbb{Z}_p^d \). This is isomorphic to \(\mathbb{Z}_p^d \). Write \(K_\infty := \mathbb{Z}_p^d \). This is a galois extension with Galois group \(\mathbb{Z}_p^d \). Conjecturally (Leopoldt) this is the maximal unramified outside \(p \) abelian \(\mathbb{Z}_p \)-extension of \(K \). Recall that in chapter 2 we have defined the Iwasawa algebras \(\Lambda_K \) and \(\Lambda_{K,A} \). We define more Iwasawa algebras \(\Lambda_F \), \(\Lambda_K \), \(\Lambda_{K,A} \), \(\Lambda_{K,A} \) in an analogous way. We let \(\varepsilon_F \) be the canonical character \(G_F \to \Gamma_F \to \Lambda_K \times \mathbb{Z}_p \). We fix topological generators for each group above: \(\gamma := \text{rec}_F(\prod \nu|p(1+p)_\nu) \), \(\gamma^+ := \text{rec}_K(\prod \nu|p(1+p,1+p)^{1/2}) \) and \(\gamma^- := \text{rec}_K((1+p,1+p)^{-1})^{1/2} \). Here \(\text{rec} \) means the reciprocity map of class field theory normalized by the geometric Frobenius.

6.4.1 Control of Selmer Groups

We recall some results in \([35, 3.2]\) with minor modifications for the totally real situation. These will be used in proving the main theorem in the last chapter. In this subsection (only in this subsection) we let \(A \) be any profinite \(\mathbb{Z}_p \) algebra and \(\mathfrak{a} \) an ideal of \(A \). Let \(T \) be a free \(A \)-module equipped with a continuous \(G_F \)-action and let \(T^* := T \otimes_{\mathbb{Z}_p} \mathbb{Z}_p^* \). It is noted in \([35, 3.2.7]\) that there is a canonical map:

\[\text{Sel}_F^+(T/\mathfrak{a}T) \to \text{Sel}_F^+(T)[\mathfrak{a}]. \]

Here \([\mathfrak{a}] \) on the right hand side means the \(\mathfrak{a} \)-torsion part.

Proposition 6.4.1. Suppose there is no nontrivial \(A \)-subquotient of \(T^* \) on which \(G_{K_c} \) acts trivially. Suppose also that for any prime \(\mathfrak{p} \) of \(F \) the action of \(I_{\mathfrak{p}} \) on \(T/T_{\mathfrak{p}} \) factors through the image of \(I_{\mathfrak{p}} \) in \(\Gamma_F \) and that \(\Sigma \cup \{p\} \) contains all primes at which \(T \) is ramified. Let \(\tilde{F} = F_\infty, K_c^+ \). Then the above map induces isomorphisms:

\[\text{Sel}_F^+(T/\mathfrak{a}T) \simeq \text{Sel}_F^+(T)[\mathfrak{a}] \]
and

\[X^\Sigma_F(T) \simeq X^\Sigma_F(T)/aX^\Sigma_F(T). \]

Descent from \(K_{\infty} \) to \(K_{\infty}^+ \).

We have the following corollary of the above proposition:

Corollary 6.4.1. Under the hypotheses of the above proposition. If \(\tilde{F} \) is \(F_{\infty} \) or \(K_{\infty}^+ \), then:

\[\text{Fitt}^\Sigma_{\tilde{F},A/a}(T/aT) = \text{Fitt}^\Sigma_{F,A}(T) \mod a; \]

Corollary 6.4.2. Let \(I^- \) be the kernel of the natural map \(\Lambda_K \to \Lambda_K^+ \). Then under the hypotheses of the above proposition, we have an isomorphism:

\[X^\Sigma_{K_{\infty}}(T)/I^- X^\Sigma_{K_{\infty}}(T) \xrightarrow{\sim} X^\Sigma_{K_{\infty}^+}(T) \]

of \(\Lambda_{K,A}^+ \)-modules.

From \(K_{\infty}^+ \) and \(F_{\infty} \) to \(K \) and \(F \).

Let \((T, T_v^+|v|p) \) be as above. Let \(\phi \) be an algebra homomorphism \(\Lambda_F \to C_p \) and \(I_\phi \) be its kernel.

Proposition 6.4.2. Let \((T', T_v^+|v|p) \) be \((T, T_v^+|v|p) \) twisted by \(\phi \circ \varepsilon_F \). Suppose there is no nontrivial \(A \)-subquotient of \(T'^* \) on which \(GF \) acts trivially. Assume:

(i) \(\Sigma \cup \{\text{primes above } p\} \) contains all primes at which \(T \) is ramified;

(ii) For any \(v|p \), \((H^0(I_v, T/T_v^+ \otimes_A \Lambda_{F,A}(\varepsilon_F^{-1})) \otimes_{A_F} \Lambda_F/I_\phi)^{G_v} = 0. \)

Then restriction yields isomorphisms:

\[\text{Sel}^\Sigma_F(T') \to \text{Sel}^\Sigma_F(T)[I_\phi] \quad \text{and} \quad \text{Sel}^\Sigma_K(T') \to \text{Sel}^\Sigma_K(T)[I_\phi] \]

Here we have identified \(\Lambda_K^+ \) with \(\Lambda_F \).

This is only a slight generalization of [35] Proposition 3.2.13 and the proofs are identical.
Chapter 7

Hida Theory for Unitary Hilbert Modular Forms

In this chapter we recall basic results about ordinary Hida families for Unitary groups over totally real fields. We also recall generalizations of certain results in [35, chapter 6] which are mostly due to Hida. Some results are only stated for cuspidal forms since this is enough for our use. However as a trade off we make the ad hoc construction in chapter 13 in which we explicitly write down a cuspidal family given the Klingen Eisenstein family.

7.1 Iwasawa Algebras

We let $I_K := \mathbb{I}[[\Gamma_K]]$ and $\Lambda_D := I[[\Gamma_K^- \times \Gamma_K]] = \mathbb{I}_K[[\Gamma_K^-]]$. Here we used the notation D which stands for the Eisenstein datum to be defined in the beginning of chapter 11. Let

$$\alpha : A[[\Gamma_K]] \to I_K, \alpha(\gamma^+) = (1 + W_{1,v})^{\frac{1}{2}} (1 + W_{2,v})^{\frac{1}{2}} (1 + p)^{\frac{1}{2}}, \gamma_v^- \to \gamma_v^- (1 + p)^{\frac{1}{2}}$$

$$\beta : \mathbb{Z}_p[[\Gamma_K]] \to \mathbb{Z}_p[[\Gamma_K]], \beta(\gamma^+) = \gamma^+, \beta(\gamma^-) = \gamma_v^-$$

for each v. We also let $\Lambda := \Lambda_D[[\Gamma_K^-, \Gamma_K]]$. Thus Λ_D is finite over Λ.

Definition 7.1.1. A \mathbb{Q}_p point $\phi \in \text{Spec}[[\Gamma_K]]$ is called arithmetic if $\phi|_1$ is arithmetic and $\phi(\gamma^+) = (1 + p)^{\frac{1}{2}} \zeta^+$ for $\zeta^+ \in \mu_{p^\infty}$ and $\phi(\gamma^-) = \zeta^- \in \mu_{p^\infty}$. Here $\kappa = \kappa_{\phi|_1}$.

We write X_{a,I_K} for the set of arithmetic points. Next let $W_2 := \prod_{v | p} (1 + p\mathbb{Z}_p^\times)^{\frac{1}{2}}$ and Λ_2 be the
completed group algebra of it. We give a Λ_2-algebra structure for Λ_D by: for each $v|p$,

$$(t_1, t_2, t_3, t_4) \mapsto (\alpha \otimes \beta)(\text{rec}_K, (t_3 t_4, t_1^{-1} t_2^{-1}) \times \text{rec}_K, (t_4^{-1}, t_2)(1 + W_{1, v})^{\log_{1+p}(t_1 t_3^{-1})}.$$

Here rec means the reciprocity map in class field theory. This way Λ becomes a quotient of Λ_2.

** Remark 7.1.1.** When $F = \mathbb{Q}$ then $\Lambda_2 = \Lambda$. In general Λ is of lower dimension. In other words we are only considering a subfamily of the whole weight space.

7.2 Igusa Tower and p-adic Automorphic Forms

We refer the definition of Shimura varieties $S(K)$ for the unitary similitude group and open compact K and the automorphic sheaves ω_K and the universal differential sheaf ω to [24], [12] and [17] respectively. Recall that a weight $k = \{ k_s \}_{s \in \Sigma}$ where $k_s = (c_{s+1, \sigma}, \ldots, c_{s+\sigma}; c_1, \sigma, \ldots, c_s, \sigma)$. We write $M_{\Sigma}(K, R)$ for the space of automorphic forms with weight k_s, level K and coefficient R. We write $M_{\Sigma}^0(K, R)$ for the cuspidal part.

For any $v|p$, $U(2, 2) \simeq \text{GL}_4(\mathbb{Z}_p)$ under projection to the first factor of $K_v = F_v \times F_v$. (Recall that our convention is the first factor correspond to the Archimedean place inside the CM type under

$$\iota : \mathbb{C} \simeq \mathbb{C}_p,$$

Define B to be the standard Borel

$$\begin{pmatrix}
\times & \times & \times & \times \\
\times & \times & \times & \\
\times & & & \\
\times & & &
\end{pmatrix}$$

and B^u the unipotent radical.

Let $I_{0, s} (I_{1, s})$ consists of elements in $U(n, n)(\mathbb{Z}_p)$ which are in $B(\mathbb{Z}_p/p^s \mathbb{Z}_p) (B^u(\mathbb{Z}_p/p^s))$ modulo p^s. (see [35, 5.3.6].)

Let L be a finite extension of \mathbb{Q}_p. Recall that as in [35, 6.1], if K is neat and maximal at all primes dividing p, we have $S = S_K$ a fixed toroidal compactification of $S_G(K)$ over \mathcal{O}_L. Let \mathcal{I}_S be the ideal of the boundary of S. There is a section H of $det(\omega)$, called the Hasse invariant. Since $det(\omega)$ is ample on the minimal compactification S^\ast, one finds E, a lifting of H^m over \mathcal{O}_L for sufficiently large m. Then $S^\ast[1/E]$ is affine. For any positive integer m, set $S_m := S[1/E] \times \mathcal{O}_L/p^m$. Let $H = \text{GL}_2 \times \text{GL}_2$. For any integers $s \geq m$, we have the Igusa variety $T_{s, m}$ which is an etale Galois covering of S_m with Galois group canonically isomorphic to $\prod_{v|p} \text{GL}_2(\mathcal{O}_F, v/p^s)^+ \times \text{GL}_2(\mathcal{O}_F, v/p^s)^- \simeq H(\prod_{v|p} \mathcal{O}_F, v/p^s)$.

We put $V_{s, m} := \Gamma(T_{s, m}, \mathcal{O}_{T_{s, m}} \otimes \mathcal{I}_S)$. For $j = 0, 1$ let $I_{j, s} := I_{j, s} \cap H(\prod_{v|p} \mathcal{O}_F, v/p^s)$, define

$$W_{s, m} := H^0(I_{j, s}^H, V_{s, m})$$
\[W := \lim_{m \to \infty} (\lim_{s \to \infty} W_{s,m}). \]

We also write \(V^0_{s,m}, W^0_{s,m}, W^0 \) to be the cuspidal part of the corresponding spaces.

For \(q = 0 \) or \(\phi \) we also defines the space of \(p \)-adic automorphic forms on \(G \) of weight \(k \) and level \(K = K_p^0 K_p \) with \(p \) divisible coefficients:

\[V^q_k(K, L/\mathcal{O}_L) := \lim_{m \to \infty} \Gamma(S_m, \omega_k \otimes_{\mathcal{O}_S} \mathcal{I}_S). \]

and similarly, if \(A \) is an \(\mathcal{O}_L \)-algebra the the space of \(p \)-adic automorphic forms with coefficients in \(A \) are defined as the inverse limits:

\[V_k(K, A) := \lim_{m \to \infty} \Gamma(S_m, (\omega_k \otimes_{\mathcal{O}_S} \mathcal{I}_S) \otimes_{\mathcal{O}_L} A). \]

Finally for any \(a = \{ a_v \}_{v \mid p} \) where each \(a_v \in (\mathbb{F}_p^\times)^d \) we define the modules: \(V^q_{a_k}(K, L/\mathcal{O}_L) \), etc, in the same way as \([35, 6.2]\).

7.3 Nearly Ordinary Automorphic Forms

Hida defined an idempotent \(e_{\text{ord}} \) on the space of \(p \)-adic automorphic forms (see \([35]\) chapter 6) and we define \(W_{\text{ord}}, W_{\text{ord}} V_{k,\text{ord}}(K, A) \) to be the image of \(e_{\text{ord}} \) acting on the corresponding spaces. Now we recall the following important theorem of Hida (see \([35, 6.2.10]\)):

Theorem 7.3.1. For any sufficiently regular weight \(k \) there is a constant \(C(k) > 0 \) depending on \(k \) such that for any integer \(l > C(k) \), the canonical map:

\[e_{\text{ord}} M^0_{k+l(p-1)\mathbf{1}}(K, L/\mathcal{O}_L) \hookrightarrow V^0_{k+l(p-1)\mathbf{1},\text{ord}}(K, L/\mathcal{O}_L) \]

with \(\mathbf{1} = (0,0;1,1) \) at all infinite places \(\sigma \).

From this theorem we know that there are enough classical forms in our family and thus can construct families of (pseudo)-Galois representations from the classical ones. This is also used in the proof of theorem 14.2.1 where we used Harris’ result that there are no (CAP) form with sufficiently regular weight.
Lemma 7.3.1. For any weight k, we have canonical isomorphisms:

$$V^q_{\Lambda, \text{ord}}(K, \mathbb{Q}_p/\mathbb{Z}_p) \simeq W^q_{\text{ord}}[k] := \{ w \in W^q : t.w = t^kw \forall t \in T_H(\mathbb{Z}_p) \}$$

and

$$V^q_{\Lambda, \text{ord}}(K^p I_s, \psi, \mathbb{Q}_p/\mathbb{Z}_p) \simeq (W^q \otimes \mathbb{Z} A)[\psi] := \{ w \in W^q \otimes \mathbb{Z} A : t.w = \psi(t)w \forall t \in T_H(\mathbb{Z}_p) \}$$

for any $\mathbb{Z}_p(\psi)$-algebra A.

Proof. the same as [35, 6.2.3].

Proposition 7.3.1. For $q = 0$ we have for any sufficiently regular weight $k \geq 0$, the canonical base-change morphism

$$e_{\text{ord}} \Gamma(S^*[1/E], \pi_*(\omega_{E} \otimes_{\mathcal{O}_E} \pi^*\mathcal{I}^q) \otimes \mathbb{Z}/p^n\mathbb{Z}) \to e_{\text{ord}} \Gamma(S^*[1/E], \pi_*(\omega_{E} \otimes_{\mathcal{O}_E} \pi^*\mathcal{I}^q \otimes \mathbb{Z}/p^n\mathbb{Z}))$$

is an isomorphism.

This proposition fails for $q \neq 0$, thus we can’t get a good control theorem for non-cuspidal Hida families.

The following corollary is immediate from the above proposition.

Corollary 7.3.1. For $q = 0$ and any sufficiently regular weight k the module $V^q_{\Lambda, \text{ord}}(K, \mathbb{Q}_p/\mathbb{Z}_p)$ is divisible.

7.4 Λ-adic Ordinary Automorphic Forms

Recall that we have defined the Iwasawa algebra Λ_2. There is an action of it on the space of p-adic automorphic forms given by nebenn characters and the weights. (see [35, chapter 6]) We define V_{ord} (V^0_{ord}) to be the Pontrjagin dual of W_{ord} (W^0_{ord}). As in [35] we have the following theorem by the above corollary:

Theorem 7.4.1. V_{ord} is finite over Λ_n and V^0_{ord} is free of finite rank over Λ_2.

Proof. This is proved by Hida. See [35, theorem 6.3.3]. Note that the freeness is no longer true if the base field is not \mathbb{Q}.

90
Now we define the space of ordinary cuspidal Λ_n-adic forms to be

$$\mathcal{M}_{\text{ord}}^0(K^p, \Lambda_2) = \text{Hom}_{\Lambda_n}(V_{\text{ord}}^0, \Lambda_2).$$

Recall that in 7.1 we have defined a quotient Λ of Λ_2. Then $V_{\text{ord}}^0 \otimes_{\Lambda_2} \Lambda$ is also free over Λ. So we define the space of Λ-adic forms to be:

$$\mathcal{M}_{\text{ord}}^0(K^p, \Lambda) = \text{Hom}_{\Lambda}(V_{\text{ord}}^0 \otimes_{\Lambda_2} \Lambda, \Lambda).$$

This is a closed subfamily of Λ_2-adic forms. For any finite Λ algebra A we also define the space of A-adic forms to be:

$$\mathcal{M}_{\text{ord}}^0(K^p, A) = \mathcal{M}_{\text{ord}}^0(K^p, \Lambda) \otimes_{\Lambda} A.$$

7.5 q-Expansions

The q-expansion principle will be crucial for our later argument. Similar as in [35], for x running through a (finite) set of representatives of $G(F) \setminus G(\mathbb{A}_F)/K$ with $x_p \in Q(\mathcal{O}_{F,p})$, we have that the Λ_n-adic q-expansion map

$$\mathcal{M}_{\text{ord}}^0(K^p, \Lambda) \hookrightarrow \oplus_x \Lambda[[q^{S^+_x}]]$$

is injective. Here S^+_x is the set of Hermitian matrices h in $M_2(K)$ such that $\text{Tr}_{F/Q}\text{Tr}hh' \in \mathbb{Z}$ for all Hermitian matrices h' such that $\begin{pmatrix} 1 & h' \\ h' & 1 \end{pmatrix} \in N_Q(F) \cap xKx^{-1}$ and K is the open compact of $G(\mathcal{O}_F)$ maximal at primes dividing p which we fix from the very beginning. This follows from the irreducibility of the Igusa Tower. Let A be a finite torsion-free Λ-free algebra finite over Λ and let Σ be a Zariski dense subset of primes of A such that $Q \cap \Lambda = P_{\psi_k}$ for some pair (k, ψ) (we refer the definitions to [35, chapter 6]). Let $\mathcal{N}_{\Sigma,\text{ord}}^0(A)$ be the set of elements $(F_x)_x \in \oplus_x A[[q^{S^+_x}]]$ such that for each $Q \in \Sigma$ above P_{ψ_k} the reduction of $(F_x)_x$ is the q-expansion of some element $f \in V_{\Sigma,\text{ord}}^0(K^pI_s, \psi, A/Q)$. Then we have:

Lemma 7.5.1. the inclusion:

$$\mathcal{M}_{\Sigma,\text{ord}}^0(K^p, A) \hookrightarrow \mathcal{N}_{\Sigma,\text{ord}}^0(A)$$

is an equality.
Proof. See [35, 6.3.7].

We will use this lemma to see that the family constructed in the last chapter by formal q-
expansions comes from some Λ-adic form.
Chapter 8

Klingen Eisenstein Series

Now we recall some notions for Klingen Eisenstein Series in this setting. The situation is slightly different from Chapter 3 since we need to pass from the GL_2 picture to the unitary group $U(1, 1)$ picture (see to [35] chapter 9). The p-adic constructions are just as in part one (this is more general than [35] since we allow nearly ordinary forms instead of only ordinary forms). For the ℓ-adic construction the one used by [35] is much better than the one used in part one so we just follow [35]. We also remark that as in section 3.1, this chapter follows closely [35] chapter 9.

8.1 Induced Representations

8.1.1 Archimedean Picture

Let (π, H) be a unitary Hilbert representation of $GL_2(\mathbb{R})$ and H_∞ be the smooth vectors. Let χ be the central character of π and let ψ and τ be unitary characters of \mathbb{C}^\times such that $\psi|_{\mathbb{R}^\times} = \chi$. It is well known that we can use π and ψ to define a representation of $GU(1, 1)$ which we denote as π_ψ.

Now we define a representation ρ of $P(\mathbb{R})$ in H: for $p = mn, n \in N_P(\mathbb{R}), m = m(bx, a) \in M_P(\mathbb{R})$ with $a, b \in \mathbb{C}^\times, x \in GL_2(\mathbb{R})$, we define

$$\rho(p)v := \tau(a)\psi(b)\pi(x)v, v \in H.$$

Recall that in section 3.1 we have defined $I(H_\infty)$ and $I(\rho), f_z$ for $f \in I(\rho)$ and $\sigma(\rho, z)$ which we omit here.
Denote \(\eta = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \). Let \((\pi^\vee, V)\) be \(H \) but with the action given by \(\pi^\vee(x) = \pi(\eta^{-1}x\eta) \) for \(x \) in \(GL_2(\mathbb{R}) \). Denote \(\rho^\vee, I(\rho^\vee), I^\vee(\mathbb{H}_\infty) \) and \(\sigma(\rho^\vee, z), I(\rho^\vee) \) the representations and spaces defined above but with \(\pi, \psi, \tau \) replaced by \(\pi^\vee \otimes (\tau \circ \text{det}), \psi \tau^c, \tilde{\tau}^c \). Also, recall that for any \(z \in \mathbb{C}, f \in I(\mathbb{H}_\infty) \) and \(k \in K_\infty \) we have defined the intertwining operator

\[
A(\rho, z, f)(k) := \int_{NP(\mathbb{R})} f_z(wnk)dn. \quad (8.1)
\]

Then \(A(\rho, z, -) \in \text{Hom}_\mathbb{C}(I(\mathbb{H}_\infty), I^\vee(\mathbb{H}_\infty)) \) intertwines the actions of \(\sigma(\rho, z) \) and \(\sigma(\rho^\vee, -z) \).

In section 3.1 we defined the Klingen section \(F_\kappa \). This is the same as the section defined in [35, 9.2.1].

8.1.2 Prime to \(p \) Picture

Again we modify section 3.1 a little to pass from \(GL_2 \) to \(U(1, 1) \) picture. Let \(v \) be a prime of \(F \) and \((\pi, V)\) an irreducible, admissible representation of \(GL_2(F_v) \) which is unitary and tempered, with central character \(\chi \). Let \(\psi \) and \(\tau \) be unitary characters of \(K \times v \) such that \(\psi|_{F \times v} = \chi \). We extend \(\pi \) to a representation \(\rho \) of \(\mathbf{P}(F_v) \) on \(V \) as follows. For \(p = mn, n \in NP(F_v), m = m(bx, a) \in MP(F_v), a, b \in K_v, x \in GL_2(F_v) \), put

\[
\rho(g)v := \tau(a)\psi(b)\pi(s)v, v \in V.
\]

We have defined in section 3.1 \(I(\rho), f_z \) for \(f \in I(\rho) \) and \(\sigma(\rho, z) \).

Let \((\pi^\vee, V)\) be \(V \) but the action given by \(\pi^\vee(g) = \pi(\eta^{-1}g\eta) \). This representation is also tempered and unitary. We denote by \(\rho^\vee, I(\rho^\vee), \) and \((\sigma(\rho^\vee, z), I(\rho^\vee)) \) the representations and spaces defined by replacing \(\pi, \psi \) and \(\tau \) by \(\pi^\vee \otimes (\tau \circ \text{det}), \psi \tau^c, \) and \(\tilde{\tau}^c \), respectively.

Also in section 3.1 we have defined for \(f \in I(\rho), k \in K_v \), and \(z \in \mathbb{C} \) the intertwining operator

\[
A(\rho, z, f)(k) := \int_{NP(F_v)} f_z(wnk)dn. \quad (8.2)
\]

As a consequence of our hypotheses on \(\pi \) this integral converges absolutely and uniformly for \(z \) and \(k \) in compact subsets of \(\{ z : \text{Re}(z) > 3/2 \} \times K_v \). As in [35, 9.1.3], this has a meromorphic continuation (in the sense defined there) to \(\mathbb{C} \) and the poles can only occur when \(\text{Re}(z) = 0, \pm \frac{1}{2} \).
8.1.3 \(p \)-adic Picture

Now assume \(v | p \). We need to study the relations between the \(GL_2 \) picture and the computations in part one for \(U(1,1) \). Suppose \(\pi_v \simeq \pi(\mu_1,\mu_2) \) where \(\text{val}_p(\mu_1(p)) = -\frac{\kappa_1}{2} \) and \(\text{val}(\mu_2(p)) = \frac{\kappa_2}{2} \). Later we might write \(\mu_{1,v} \) and \(\mu_{2,v} \) to indicate the dependence on \(v \). From now on we write \(\xi = \psi \tau \).

Generic Case:

The generic case mentioned in part one correspond to: \(\text{cond}(\chi_1) > \text{cond}(\tau_2) > \text{cond}(\tau_1) > \text{cond}(\chi_2) \).

Note that the \(\tau \) in \(\rho^\vee \) is \(\overline{\tau} \). We assume

\[\text{cond}(\psi_2) > \text{cond}(\tau_2) > \text{cond}(\tau_1) > \text{cond}(\psi_1) > \text{cond}(\mu_1). \]

Then the datum is generic in the sense of part one.

8.1.4 Global Picture

Let \((\pi, V)\) be a cuspidal automorphic representation of \(GL_2(\mathbb{A}_F) \) and let \(\tau, \psi : \mathbb{A}_F^\times \to \mathbb{C}^\times \) be Hecke characters such that \(\psi|_{\mathbb{A}_F^\times} = \chi_\pi \). We let \(\tau = \otimes \tau_w \) and \(\psi = \otimes \psi_w \) be their local decompositions, \(w \) over places of \(F \). We define \(I(\rho) \) to be the restricted product \(\otimes I(\rho_w) \) with respect to the \(F_{\rho_w} \)'s at those \(w \) at which \(\tau_w, \psi_w, \pi_w \) are unramified.

As in section 3.1 for each \(z \in \mathbb{C} \) and \(f \in I(\rho) \) we define a function \(f_z \) on \(G(\mathbb{A}_F) \) as

\[f_z(g) := \otimes f_{w,z}(g_w) \]

where \(f_{w,z} \) are defined as before. Also we define an action \(\sigma(\rho, z) \) of \((\mathfrak{g}u, K_\infty) \otimes G(\mathbb{A}_f) \) on \(I(\rho) \) by \(\sigma(\rho, z) := \otimes \sigma(\rho_w, z) \). Similarly we define \(\rho^\vee, I(\rho^\vee), \) and \(\sigma(\rho^\vee, z) \) but with the corresponding things replaced by their \(\vee \)'s.
8.1.5 Klingens-Type Eisenstein Series on G

Let $\pi, \psi,$ and τ be as above. As in section 3.1, for $f \in I(\rho), z \in \mathbb{C},$ and $g \in GU(2,2)(\mathbb{A}_F)$ the series

$$E(f,z,g) := \sum_{\gamma \in P(F) \backslash G(F)} f_{\gamma}(\gamma g)$$

is known to converge absolutely and uniformly for (z,g) in compact subsets of $\{z \in \mathbb{C} : Re(z) > 3/2\} \times GU(2,2)(\mathbb{A}_F)$. We call this series the Klingen Eisenstein series.

8.2 Explicit Local Sections

8.2.1 Archimedean Sections

The Klingen section at each place dividing ∞ is the F_κ defined in chapter 3.

8.2.2 Prime to p Sections

Let v be a prime of F not dividing p. Let $(\varpi_v^{r_v})$ and (ϖ_v^s) be the conductors of ψ and ξ. The sections chosen here are the same as in [35, chapter 9] which we briefly recall. For $K \subseteq K_{r,s}$ with $r \geq \max(r_{\psi}, s)$ we define a character ν of $K_{r,s}$ by

$$\nu\left(\begin{array}{cc} a & b \\ c & d \\ \ast & \ast \end{array}\right) := \psi(ad - bc)\xi(d).$$

Let $\phi \in V$ be any vector having a conductor with respect to π^\vee and let $(\lambda^s) := cond_{\pi^\vee}(\phi)$. For any $K_{r,t}$ with $r \geq \max(r_{\psi}, r_{\phi}, s)$ and $t \geq s$ we define $F_{\phi,r,t} \in I(\rho)$ by

$$F_{\phi,r,t}(g) := \begin{cases} \nu(k)\rho(p)\phi & g = pmk \in P(O_{F,v})wK_{r,t} \\ 0 & \text{otherwise.} \end{cases}$$

8.2.3 p-adic Sections

We define our p-adic section to be the F_0^v defined right after remark 4.4.2. This is nearly ordinary as proved there.
8.3 Good Eisenstein Series

8.3.1 Eisenstein Data

Let \((\pi, V)\) be an irreducible cuspidal unitary automorphic representation of \(GL_2(\mathbb{A}_F)\) with central character \(\chi\) and let \(V = \otimes V_\pi\) and \(\pi = \otimes \pi_v\). By an Eisenstein datum for \(\pi\) we will mean a 4-tuple \(D = \{\Sigma, \varphi, \psi, \tau\}\) consisting of a finite set of primes \(\Sigma\), a cuspform \(\varphi \in V\) that is completely reducible \(\varphi = \otimes \varphi_v\), and unitary Hecke characters \(\psi = \otimes \psi_w\) and \(\tau = \otimes \tau_w\) of \(\mathbb{A}_F^\times / \mathbb{K}^\times\) satisfying:

- \(\Sigma\) contains all primes dividing \(p\), primes ramified in \(K/\mathbb{Q}\), and all primes \(v\) such that \(\pi_v, \psi_v\), or \(\tau_v\) is ramified.
- For all \(k \in K_\infty^+, \pi(\kappa)\phi_\infty = j(\kappa, i)^{-\kappa}\phi_\infty;\)
- If \(v \notin \Sigma\) then \(\varphi_v\) is the newvector.
- If \(v \in \Sigma, v \nmid p\), then \(\varphi_v\) has a conductor with respect to \(\pi_v^\varphi;\)
- If \(v|p\), then \(\varphi_v\) is the nearly ordinary vector.
- \(\psi|_{\mathbb{A}_F^\times} = \chi;\)
- \(\tau_v(x) = (x/|x|)^{-\kappa} = \psi_v(x)\) for any \(x \in F_v\) and \(v|\infty.\)

We remark that all the above are similar to [35, 9.3.1] except that for \(v|p\) we are allowing nearly ordinary (not just ordinary) vectors.

Let \(\xi = \otimes \xi_w = \psi/\tau\) and define \(F := \otimes_{v|\infty} F_{\kappa} \prod_{e \in \Sigma} F_{\kappa}^{\text{sp}} \otimes_{v|p} F_{\kappa, v, t} \otimes_{v|p} F_0^0.\) We define \(E_D(z, g) = E(F, z, g)\) to be the Klingen Eisenstein series associated to the section \(F.\) Then we have the following straightforward generalization of [35, lemma 9.3.2]. The proofs are completely the same.

Lemma 8.3.1. Suppose \(\kappa > 6\) and let \(z_\kappa := (\kappa - 3)/2.\) Let \(F = F_\kappa \otimes F_f \in I(\rho) = I(\rho_\infty) \otimes I(\rho_f).\)

1. \(A(\rho, z_\kappa, F) = 0.\)
2. \(E(F, z_\kappa, g) = F_{z_\kappa}(g).\)

Let \(\kappa > 6.\) Then for any \(F = F_\kappa \otimes F_f \in I(\rho)\) we define a function of \((Z, x) \in X_{2, 2}^+ \otimes G(\mathbb{A}_F^2):\)

\[E(Z, x; F) := J(g, i)^{x} \mu(g)^{x} E(F, z_\kappa, gx), g \in GU(2, 2)^+ (F_\infty), g(i) = Z.\]
Here $J(g, i) = \det(C_g i + D_g)$ for $g = \begin{pmatrix} A_g & B_g \\ C_g & D_g \end{pmatrix}$. The following proposition is essentially [35, 9.3.3].

Proposition 8.3.1. Suppose $\kappa > 6$ and $F = F_\kappa \otimes F_f$. Then $E(Z, x; F)$ is a holomorphic modular form of weight κ.

8.4 Hecke Operators

We will recall the definitions for the Hecke operators at the unramified primes at the beginning of Chapter 14, which are essentially those given in [35, 9.5]. We let \mathcal{H}_Σ be the abstract Hecke algebra generated by Hecke operators introduced there at primes outside Σ. Define $\lambda_D: \mathcal{H}_\Sigma \to \mathbb{C}$ by $h.E_D = \lambda_D(h)E_D$. Also for $v \not\in \Sigma$ we are going to introduce a Hecke polynomial Q_v there. We record the following generalization of proposition ([35, 9.6.1]):

Proposition 8.4.1. Suppose $\kappa > 6$ and $v \not\in \Sigma$. Then $\lambda_D(Q_v)(q_v^{-s})$ is given by the Euler factor at v:

$$L_\Sigma^K(f, \xi^{c} \psi^{c}, s - 2)L_\Sigma^K(\psi^{c}, s - 3)L_\Sigma^K(\chi^{c} \psi^{c}, s - \kappa)$$

where $L_\Sigma^K(f, \xi^{c} \psi^{c}, s - 2)$ is the corresponding L-function for f twisted by the character $\xi^{c} \psi^{c}$ over K, with the Euler factors at primes dividing Σ removed.

The proof is completely the same (there is no difference between the local situations for $F = \mathbb{Q}$ and general F). This explains the reason why the Galois representation associated to the Klingen Eisenstein series is the one given in the last chapter.
Chapter 9

Hermitian Theta Functions

Recall that we have discussed the Weil representations in subsection 3.3.1. Now we specialize the situation there to \(n = 3 \) and \(m = 2 \) and continue to use the notations there.

Theta Functions

Given \(\Phi \in S(V_{A_F}) \) we let

\[
\Theta_h(u, g; \Phi) := \sum_{x \in V} \omega_h(u, g) \Phi(x).
\]

This is an automorphic form on \(U_h(\mathbb{A}_F) \times U_1(\mathbb{A}_F) \).

9.1 Some Useful Schwartz Functions.

Suppose \(v|\infty \). We now record some Schwartz functions that show up in later formulas and their properties. These are straightforward generalizations of [35, chapter 10]. We have been keeping the presentation parallel to *loc.cit* for convenience.

9.1.1 Archimedean Schwartz Functions

Let \(\Phi_{h, v} \in S(V \otimes \mathbb{R}) \) be

\[
\Phi_{h, v}(x) = e^{-2\pi <x, x>_{\mathfrak{h}}},
\]

and that

\[
\lambda_v(z) = (z/|z|)^{-2}.
\]

Recall that \(\mathfrak{h} \) is the Poincaré half plane.
Lemma 9.1.1. Given \(z \in h \), let \(\Phi_{h,z}(x) := e(<x, x > h z) \) (so \(\Phi_{h,i} = \Phi_{h,\infty} \)). For any \(g \in U_1(\mathbb{R}) \),

\[
\omega_h(g)\Phi_{h,z} = J_1(g, z)^{-2}\Phi_{h,g(z)}.
\]

In particular, if \(k \in K_{\infty,1}^+ \), then \(\omega_h(k)\Phi_{h,\infty} = J_1(k, i)^{-2}\Phi_{h,\infty} \).

Proof. This is just [35, 10.2.2]. \(\square \)

9.1.2 Schwartz Functions at Finite Places.

For a finite place \(v \) of \(F \) dividing a rational prime \(\ell \), let \(\Phi_0 \in S(V_v) \) be the characteristic function of the set of column vectors with entries in \(\mathcal{O}_{K,v} \). For \(y \in GL_2(K_v) \) we let \(\Phi_0,y(x) := \Phi_0(y^{-1}x) \).

Lemma 9.1.2. Let \(h \in S_2(F_v) \), \(\det h \neq 0 \). Let \(y \in GL_2(K_v) \). Suppose \(\bar{y}^t hy \in S_2(\mathcal{O}_{F,v})^\times \).

(i) If \(\lambda \) is unramified, \(v \) is unramified in \(K \), and \(h,y \in GL_2(\mathcal{O}_{F,v}) \), then

\[
\omega_h(U_1(\mathcal{O}_{F,v}))\Phi_0,y = \Phi_0,y.
\]

(ii) If \(D_v \det \bar{y}^t hy|\varpi_v^r \), \(r > 0 \), then

\[
\omega_h(k)\Phi_0,y = \lambda(a_k)\Phi_0,y, \quad k \in \{ k \in U_1(\mathcal{O}_{F,v}) : \varpi_v^r|e_k \}.
\]

Proof. See [35, 10.2.4]. \(\square \)

Let \(\theta \) be a character of \(K_v^\times \) and let \(0 \neq x \in \text{cond}(\theta) \). Let

\[
\Phi_{\theta,x}(u) := \sum_{a \in (\mathcal{O}_{K,v}/x)^\times} \theta(a)\Phi_0((u_1 + a/x, u_2)^t), \quad u = (u_1, u_2)^t.
\]

For \(y \in GL_2(K_v) \) we let \(\Phi_{\theta,x,y}(u) := \Phi_{\theta,x}(y^{-1}u) \). We let \(\Phi_{h,\theta,x} := \omega_h(\eta^{-1})\Phi_{\theta,x} \) and \(\Phi_{h,\theta,x,y} := \omega_h(\eta^{-1})\Phi_{\theta,x,y} \).

Lemma 9.1.3. Let \(h \in S_2(F_v), \det h \neq 0 \). Let \(y \in GL_2(K_v) \). Suppose \(\bar{y}^t hy \in S_2(\mathcal{O}_{F,v})^\times \). Let \(\theta \) be a character of \(K_v^\times \) and let \(0 \neq x \in \text{cond}(\theta) \) be such that \(\varpi_v|x \). Let \((e) := \text{cond}(\theta) \cap (\varpi_v) \)

where \(\tilde{\varpi}_v = \varpi_v \) if \(v \) splits in \(K \) (i.e. \(\tilde{\varpi}_v = (\varpi_v, \varpi_v) \) for \(\varpi_v \) the uniformizer of \(F_v \)) and otherwise a uniformizer of \(K_v \) at \(v \).
(i) If $cD_v \det yhy \neq x$ and $y^{-1}hy \in GL_2(O_F,v)$ and $D_v = 1$ or $y^{-1}h^{-1}y^{-t} = \begin{pmatrix} * & * \\ * & d \end{pmatrix}$ with $d \in O_{F,v}$, then

$$\omega_h(k)\Phi_{\theta,x,y} = \lambda^\theta(a_k)\Phi_{\theta,x,y}, \quad k \in U_1(O_{F,v}), \delta^{-1}D_v|c_k, x\bar{x}|b_k$$

(ii) If $h = \text{diag}(\alpha, \beta)$, then $\Phi_{h,\theta,x,y}$ is supported on the lattice $h^{-1}y^{-1}L_{\theta,x}$ where if v is non split in \mathcal{K} then

$$L^*_{\theta,x} = \{(u_1, u_2)^t : u_2 \in \delta^{-1}O_{K_v}, \bar{u}_1 \in \frac{x}{c_0\delta} \begin{cases} O_{K_v}, & \text{cond}(\theta) = O_{K_v} \\ O_{K_v}^\times, & \text{cond}(\theta) \neq O_{K_v}. \end{cases} \}$$

and if v splits in \mathcal{K}, then

$$L^*_{\theta,x} := \{(u_1, u_2)^t : u_2 \in \delta^{-1}O_{K_v}, \bar{u}_1 \in \frac{x}{c_0\delta} \begin{cases} O_{K_v}, & \text{cond}(\theta) = O_{K_v} \\ O_{K_v}^\times, & \text{cond}(\theta) \neq O_{K_v}. \end{cases} \}$$

with $\bar{u}_1 = (\bar{u}_{1,1}, \bar{u}_{1,2}), x = (x_1, x_2), c = (c_1, c_2) \in \mathcal{K}_v = F_v \times F_v$ and $\theta = (\theta_1, \theta_2)$. Furthermore for $v = h^{-1}y^{-1}u$ with $u \in L^*_{\theta,x}$,

$$\Phi_{h,\theta,x,y}(v) = |\det hy|D_v^{-1}(1-1) \sum_{a \in (O_{K_v}/x)^\times} \theta(s)\epsilon_{\ell}(\text{Tr}K/Qa\bar{u}_1/x)$$

Proof. See [35, 10.2.5].

Lemma 9.1.4. Suppose $v|p$ splits completely in \mathcal{K}. Let $(c) := \text{cond}(\theta)$ and suppose $c = (p^r, p^s)$ with $r, s > 0$. Let $\gamma = (\eta, 1) \in SL_2(O_{K,v}) = SL_2(O_{F,v}) \times SL_2(O_{F,v})$. Suppose $h = \text{diag}(\alpha, \beta)$ with $\alpha, \beta \in F_v^\times$. Then

(i) $\Phi_{h,\theta,c,\gamma}$ is supported on

$$L' := \{u = (a, b)^t : a \in O_{F,v}^\times \times O_{F,v}, b \in O_{F,v} \times O_{F,v}^\times \}$$

101
and for \(u \in L' \)

\[
\Phi_{h,\theta,c,\gamma}(u) = \theta_1^{-1}(\alpha a_2)g(\theta_1)\theta_2^{-1}(\beta b_1)g(\theta_2)
\]

where \(a = (a_1, a_2), b = (b_1, b_2) \in \mathcal{O}_{F,v} \times \mathcal{O}_{F,v}, \) and \(\theta = (\theta_1, \theta_2) \).

(ii) \(\omega_h(u, k) \Phi_{h,\theta,c} = \theta_1^{-1}(a_2)\theta_2(d_g)\lambda \theta(d_h) \Phi_{h,\theta,c} \) for \(u = (g, g') \in U_h(Z_p) \) with \(p^{\max(r,s)}|c_g \) and for \(k \in U_1(Z_p) \) such that \(p^{\max(r,s)}|c_k \).

\textbf{Proof.} See [35, 10.2.6].
Chapter 10

Siegel Eisenstein Series and Their Pull-Backs

Now we continue our discussion from section 3.2 for Siegel Eisenstein series and make all the computations explicit in the special case of $GU(2, 2)/F$. For the reader’s convenience we try to present in a parallel way to [35] chapter 11. Also along the way we modify our conventions (for example definition for the matrix S and S') from our section 3.1 a little so as to keep things the same as [35] chapter 11.

10.1 Some Isomorphisms and Embeddings.

We recall the notations of [35, 11.1]. Let $V_n := \mathcal{K}^{2n}$. Then w_n defines a skew-hermitian pairing $< -,- >_n$ on $V_n : x, y >_n := x w_n y^t$. The group G_n/F is the unitary similitude group $GU(V_n)$ of the hermitian space $(V_n, < -,- >_n)$. Let $W_n := V_{n+1} \oplus V_n$ and $W'_n : V_n \oplus V_n$. The matrices $w_{n+1} \oplus -w_n$ and $w_n \oplus w_n$ define hermitian pairings on W_n and W'_n, respectively.

One can define isomorphisms: $\alpha_n : GU(W_n) \simeq G_{2n+1}$, $\alpha'_n : GU(W'_n) \simeq G_{2n}$, $\gamma_n : GU(W_n) \simeq G_{2n+1}$ and $\gamma'_n : GU(W'_n) \simeq G_{2n}$. We omit the details and refer to [35, 11.2.1]. Also as in [35] we use S and
S' to denote the matrices
\[
\begin{pmatrix}
1 & & \\
& 1 & \\
& & 1 \\
& -1 & 1 \\
-1 & & 1
\end{pmatrix}
\]
and
\[
\begin{pmatrix}
1 & & \\
& 1 & \\
& & 1 \\
& -1 & 1 \\
-1 & & 1
\end{pmatrix}
\]
This is different from the convention of part one of this thesis.

10.2 Pull-Backs of Siegel Eisenstein Series.

Now we follow [35, 11.2] closely to recall the pull-back formulas. It has certain overlap with the materials in section 3.1. However we repeat it here since the conventions are slightly different.

10.2.1 The pull-back formulas

Let χ be a unitary idele class character of \mathbb{A}_K^\times. Given a cuspform ϕ on G_n we consider

\[
F_\phi(f; z, g) := \int_{U_n(\mathbb{A}_F)} f(z, \gamma(g, g_1 h)) \bar{\chi}(\det g_1 g) \phi(g_1 h) dg_1,
\]

\[
f \in I_{m+n}(\chi), g \in G_m(\mathbb{A}_F), h \in G_n(\mathbb{A}_F), \mu_m(g) = \mu_n(h), m = n + 1 \text{ or } n,
\]

with $\gamma = \gamma_n$ or γ' depending on whether $m = n + 1$ or $m = n$. This is independent of h. The pull-back formulas are the identities in the following proposition.

Proposition 10.2.1. Let χ be a unitary idele class character of \mathbb{A}_K^\times.

(i) If $f \in I_{2n}(\chi)$, then $F_\phi(f; z, g)$ converges absolutely and uniformly for (z, g) in compact sets of $\{\text{Re}(z) > n\} \times G_n(\mathbb{A}_F)$, and for any $h \in G_n(\mathbb{A}_F)$ such that $\mu_n(h) = \mu(g)$

\[
\int_{U_n(F) \setminus U_n(\mathbb{A}_F)} E(f; z, \gamma_n'(g, g_1 h)) \bar{\chi}(\det g_1 h) \phi(g_1 h) dg_1 = F_\phi(f; z, g).
\]
(ii) If \(f \in I_{2n+1}(\chi) \), then \(F_\phi(f;z,g) \) converges absolutely and uniformly for \((z,g)\) in compact sets of \(\{ \text{Re}(z) > n + 1/2 \} \times G_{n+1}(K_F) \) such that \(\mu_n(h) = \mu_{n+1}(g) \)

\[
\int_{U_n(F) \setminus U_n(K_F)} \frac{E(f; z, g, g') \chi(\det g_1 h) \phi(g_1 h) dg_1}{(g_1 h)} = \sum_{\gamma \in \pi_{n+1}(F) \setminus \Gamma_{n+1}(F)} F_\phi(f; z, \gamma g),
\]

with the series converging absolutely and uniformly for \((z,g)\) in compact subsets of \(\{ \text{Re}(z) > n + 1/2 \} \times G_{n+1}(K_F) \).

Proof. See [35, 11.2.3].

10.3 Fourier-Jacobi Expansions: Generalities.

Let \(0 < r < n \) be an integer. Recall that we have defined the Fourier-Jacobi expansion

\[
E(f; z, g) = \sum_{\beta \in S_{n-r}(F)} E_\beta(f; z, g).
\]

where

\[
E_\beta(f; z, g) := \int_{S_{n-r}(F) \setminus S_{n-r}(K_F)} E(f; z, \begin{pmatrix} S & 0 \\ 0 & 0 \\ 1_n & 0 \end{pmatrix} g) \phi(-\text{Tr} \beta S) dS.
\]

Lemma 10.3.1. Let \(f = \otimes_v f_v \in I_n(\chi) \) be such that for some prime \(v \) the support of \(f_v \) is in \(Q_n(F_v) w_n Q_n(F_v) \). Let \(\beta \in S_n(F) \) and \(q \in Q_n(K_F) \). If \(\text{Re}(z) > n/2 \) then

\[
E_\beta(f; z, g) = \prod_v \int_{S_{n}(F_v)} f_v(z, w_n r(S_v) q_v) \phi(-\text{Tr} \beta S_v) dS_v.
\]

In particular, the integrals on the right-hand side converge absolutely for \(\text{Re}(z) > n/2 \).

Proof. see [35, 11.3.1].

Lemma 10.3.2. Suppose \(f \in I_3(\chi) \) and \(\beta \in S_2(F), \beta > 0 \). Let \(V \) be the two-dimensional \(K \)-vector space of column vectors. If \(\text{Re}(z) > 3/2 \) then
\[E_\beta(f; z, g) = \sum_{\gamma \in Q_2(F) \setminus \left[G_1(F), \gamma \in U_1(F) \right]} \sum_{x \in V} \int_{S_2(A_F)} f(w_3) \begin{pmatrix} S & x \\ \bar{x}^t & 0 \\ 1_n & 1_n \end{pmatrix} \alpha_1(1, \gamma) g) \times e_\beta(-Tr_{\mathbb{Q}/\mathbb{B}}S) dS. \]

Recall that \(e_\beta(x) = e_{\mathbb{Q}}(Tr_{\mathbb{Q}/\mathbb{B}}x) \) for \(x \in A_F \).

Proof. See [35, 11.3.2].

Proof. See [35, 11.3.2].

We also recall a few identities which are special cases or consequences of the formulas right before subsection 3.3.1. These are also straightforward generalizations of [35, 11.3.2(a)-(d)]. Letting:

\[F_{J_\beta}(f; z, x, a, b, g) := \int_{S_2(F_v)} f(z, w_3) \begin{pmatrix} S & x \\ \bar{x}^t & 0 \\ 1_n & 1_n \end{pmatrix} \alpha_1(diag(y, y^{-1}), g) e_{\mathbb{v}}(-Tr_{\mathbb{B}}S) dS, \]

then:

\[F_{J_\beta}(f; z, x, \begin{pmatrix} a & \bar{a}^{-1}b \\ \bar{a}^{-1} \end{pmatrix} g, y) = \chi^c_v(a)^{-1}|a\bar{a}|^{z+3/2} e_{\mathbb{v}}(\bar{x}^t \beta x b) F_{J_\beta}(f; z, x, a, g, y). \]

For \(u \in U_\beta(A_F) \), \(U_\beta \) being the unitary group associated to \(\beta \),

\[F_{J_\beta}(f; z, x, g, u) = \chi(\det u)|\det u\bar{u}|^{z+1/2} F_{J_\beta}(f; z, u^{-1}x, g, y). \]

If as a function of \(x \), \(F_{J_\beta}(f; z, x, g, y) \in S(V \otimes F_v) \), then:

\[F_{J_\beta}(f; z, x, \begin{pmatrix} a & \bar{a}^{-1}b \\ \bar{a}^{-1} \end{pmatrix} g, y) = (\lambda_v/\chi^c_v(a)|a\bar{a}|^{z+1/2} \omega_\beta) \begin{pmatrix} a & \bar{a}^{-1}b \\ \bar{a}^{-1} \end{pmatrix} F_{J_\beta}(f; z, x, g, y). \]
10.4 Some Good Siegel Sections

10.4.1 Archimedean Siegel Sections

We summarize the results of [35, 11.4.1]. Let \(k \geq 0 \) be an integer. Then \(\chi(x) = (x/|x|)^{-k} \) is a character of \(\mathbb{C}^* \).

The sections. We let \(f_{\kappa,n} \in I_n(\chi) \) be defined by \(f_{\kappa,n}(k) := J_n(k,i)^{-\kappa} \). Then

\[
f_{\kappa,n}(z, qk) = J_n(k,i)^{-\kappa}\chi(\det D_q)|\det A_q D_q^{-1}|^{z+1/2}, q \in Q_n(\mathbb{R}), k \in K_{n,\infty}.
\]

If \(g \in U_n(\mathbb{R}) \) then

\[
f_{\kappa,n}(z, g) = J_n(g,i)^{-\kappa}|J_n(g,i)|^{\kappa-z-n}.
\]

Fourier-jacobi coefficients. Given a matrix \(\beta \in S_n(\mathbb{R}) \) we consider the local fourier coefficient:

\[
f_{\kappa,n,\beta}(z, g) := \int_{S_n(\mathbb{R})} f_{\kappa}(z, w_n \begin{pmatrix} 1_n & S \\ \end{pmatrix} g e^{-i Tr(\beta S)} dS.
\]

This converges absolutely and uniformly for \(z \) in compact sets of \(\{ Re(z) > n/2 \} \).

Lemma 10.4.1. Suppose \(\beta \in S_n(\mathbb{R}) \). The function \(z \mapsto f_{\kappa,\beta}(z, g) \) has a meromorphic continuation to all of \(\mathbb{C} \). Furthermore, if \(\kappa \geq n \), then \(f_{\kappa,n,\beta}(z, g) \) is holomorphic at \(z_\kappa := (\kappa-n)/2 \) and for \(y \in GL_n(\mathbb{C}) \), \(f_{\kappa,n,\beta}(z_\kappa, \text{diag}(y, y^{-1})) = 0 \) if \(\det \beta \leq 0 \), and if \(\det \beta > 0 \) then

\[
f_{\kappa,n,\beta}(z_\kappa, \text{diag}(y, y^{-1})) = \frac{(-2)^{-\kappa}(2\pi)^{\kappa(n-1)/2}}{\Pi_{j=0}^{n-1}(\kappa - j - 1)!}e(i Tr(\beta y y^t))|\det \beta|^{\kappa-n}|\det y^*|.
\]

Proof. See [35, 11.4.2].

Suppose now that \(n = 3 \). For \(\beta \in S_3(\mathbb{R}) \) let \(FJ_{\beta,\kappa}(z, x, g, y) := FJ_{\beta}(f; z, x, g, y) \).

Lemma 10.4.2. Let \(z_\kappa := (\kappa - 3)/2 \). Let \(\beta \in S_3(\mathbb{R}) \), \(\det \beta > 0 \).

(i) \(FJ_{\beta,\kappa}(z_\kappa, x, \eta, 1) = f_{\kappa,2,\beta}(z_\kappa + 1/2, 1)e(i < x, x >_{\beta}) \).

(ii) For \(g \in U_1(\mathbb{R}) \)

\[
FJ_{\beta,\kappa}(z_\kappa, x, g, y) = e(i Tr(\beta y y^t))|\det y^*|e(\beta, \kappa)f_{\kappa-2,1}(z_\kappa, g')\omega_{\beta}(g')\Phi_{\beta,\infty}(x),
\]

107
where $g' = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} g \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and
\[
c(\beta, \kappa) = \frac{(2\pi i)^{2\kappa}(2/\pi)}{4(\kappa - 1)! (\kappa - 2)!} \det \beta^{\kappa - 2}
\]
and the Weil representation ω_β is defined using the character $\lambda_\infty(z) = (z/|z|)^{-2}$.

This is just [35, lemma 11.4.3].

Pull-back integrals. The Archimedean situation is completely the same as the situation in [35]. Let $f_\kappa \in I_3(\tau)$ be as before and let
\[
F_\kappa(z, g) := \int_{U_1(\mathbb{R})} f_\kappa(z, S^{-1}a_1(g, g_1 h)) \pi(\det g_1 h) \pi_1(g_1 h) \phi dg_1,
\]
\[g \in G_2(\mathbb{R}), h \in G_1(\mathbb{R}), \mu_1(h) = \mu_2(g).
\]
Similarly, for $f_\kappa \in I_2(\tau)$ and $g \in G_1(\mathbb{R})$ we let
\[
F_\kappa(z, g) := \int_{U_1(\mathbb{R})} f_\kappa(z, S^{-1}a'_1(g, g_1 h)) \pi(\det g_1 h) \pi_1(g_1 h) \phi dg_1,
\]
\[g, h \in G_1(\mathbb{R}), \mu_1(h) = \mu_1(g).
\]

Lemma 10.4.3. ([35, 11.4.4].) The integrals converge if $\Re(z) \geq (\kappa - m - 1)/2$ and $\Re(z) > (m - 1 - \kappa)/2$, $m = 2$ and 1, respectively (according to the convention of subsection 10.2.1 and for such z we have:

(i) $F_\kappa(z, g) = \pi 2^{-2z-1} \Gamma(z+1+\kappa)/2 \int F_\kappa(z, g)$;
(ii) $F'_\kappa(z, g) = \pi 2^{-2z} \Gamma(z+\kappa/2) \pi_1(\phi)$.

10.4.2 Prime to p Siegel Sections: the Unramified Case

Lemma 10.4.4. Let $\beta \in S_\nu(F_v)$ and let $r := \text{rank}(\beta)$. Then for $y \in GL_n(K_v)$.
\[
f_{\kappa, \nu}^{sp}(z, \text{diag}(y, y'^{-1})) = \chi(\text{det } y) |\text{det } y y'|^{-z+n/2} |\text{Vol}(S_n(O_{F_v})) |
\]
\[\times \prod_{i=0}^{n-1} L(2z + i - n + 1, \chi') \chi' \chi_h v^{-2z-n} h_{v, y' \beta y}(\chi' (\varpi_v) q^{-2z-n})
\]
where $h_{v, y' \beta y}$ is a monic polynomial depending on v and $\bar{y}' \beta y$ but not on χ.

108
Proof. This is proven in [31]. See [35, 11.4.6].

Lemma 10.4.5. Suppose \(v \) is unramified in \(K \), let \(\beta \in S_2(F_v) \) such that \(\det \beta \neq 0 \). Let \(y \in GL_2(O_{F_v}) \). Let \(\lambda \) be an unramified character of \(K^\times \) such that \(\lambda|_{F_v^\times} = 1 \).

(i) If \(\beta, y \in GL_2(O_{K,v}) \) then for \(u \in U_\beta(F_v) \).

\[
FJ_\beta(f_{3}^{\text{ph}}; z, x, g, uy) = \chi(\det u|_v)^{z+1/2} f_{1}^{\text{ph}}(z, g) \omega_\beta(u, g) \Phi_{0,y}(x) \prod_{i=0}^{1} L(2z + 3 - i, \chi' \chi^+_K)
\]

(ii) If \(\bar{y} \beta y \in GL_2(O_{K,v}) \), then for \(u \in U_\beta(F_v) \).

\[
FJ_\beta(f_{3}^{\text{ph}}; z, x, g, uy) = \chi(\det uy|_K)^{-z+1/2} FJ_{y\beta y}(f_{3}^{\text{ph}}; z, y^{-1}u^{-1}x, g, 1)
\]

Proof. (i) is the same as [35, 11.4.7]. Note that in (ii) we have removed the assumption in loc.cit that \(g \) is of the form

\[
\begin{pmatrix}
1 & \ast \\
\ast & 1
\end{pmatrix}
\]

In fact since

\[
FJ_\beta(f_{3}^{\text{ph}}; z, x, g, uy) = \chi(\det uy|_K)^{-z+1/2} FJ_{y\beta y}(f_{3}^{\text{ph}}; z, y^{-1}u^{-1}x, g, 1)
\]

by (i) we have only to prove that

\[
\omega_{y\beta y}(1, g) \Phi_{0,y}(y^{-1}u^{-1}x) = \omega_{\beta}(u, g) \Phi_{0,y}(x) = (\omega_{\beta}(1, g) \Phi_{0,y})(u^{-1}x),
\]

i.e.

\[
(\omega_{y\beta y}(1, g) \Phi_{0,y})(x) = (\omega_{\beta}(1, g) \Phi_{0,y})(x).
\]

Here for any Schwartz function \(\Phi \) we write \(\Phi_{y} \) to be the function defined by: \(\Phi_{y}(x) = \Phi(y^{-1}x) \).

By definition one checks that for any \(\Phi \)

\[
\omega_{\beta}(g) \Phi_{y} = (\omega_{y\beta y}(1, g) \Phi)_{y}(x)
\]

for \(g \) of the forms

\[
\begin{pmatrix}
a & \ast \\
\ast & a^{-1}
\end{pmatrix}, \begin{pmatrix}
s & \ast \\
1 & \ast
\end{pmatrix}, \eta,
\]

thus for all \(g \in U_1(F_v) \). In particular, for \(\Phi = \Phi_0 \)

Pull-back integrals

Recall that we have \((\pi, \psi, \tau)\) as in chapter 8. Let \(\phi \in V \). Let \(m = 1 \) or 2 according to the convention
of subsection 10.2.1. Given $f \in I_{m+1}(\tau)$ we consider the integral:

$$F_\phi(f; z, g) := \int_{U_1(F_v)} f(z, \gamma(g, g_1)) \pi_\phi(g, h) \omega_{\tau} \det g_{1} \chi_{\lambda_k} \pi_\psi(g_1) \phi dg_1,$$

(10.4)

where $\gamma = \gamma_1$ or γ_1' depending on whether $m = 2$ or $m = 1$. (similar to [35, 11.4].)

Lemma 10.4.6. Suppose π, ψ and τ are unramified and ϕ is a newvector. If $\text{Re}(z) > (m + 1)/2$ then the above integral converges and

$$F_\phi(f^{\text{ sph}}; z, g) = \begin{cases} L\left(\frac{\epsilon}{2}, \frac{\epsilon+1}{2}\right) \prod_{i=0}^{L-1} L\left(\frac{2i+2-\epsilon}{2}, \chi_{\lambda_k}
ight) \pi_\psi(g) \phi & m = 1 \\
L\left(\frac{\epsilon}{2}, \frac{\epsilon+1}{2}\right) \prod_{i=0}^{L-1} L\left(\frac{2i+4-\epsilon}{2}, \chi_{\lambda_k}
ight) F_\rho(z, g) & m = 2.
\end{cases}$$

Here, F_ρ is the spherical section.

Proof. This is proved in [25, proposition 3.3]. See [35, 11.4.8].

10.4.3 Siegel Sections at Ramified Primes

The sections.

Let v be a finite prime of F. We are going to define two important Siegel sections.

1. Let $f^\dagger_n \in I_n(\chi)$ be the function supported on $Q_n(\mathcal{O}_{F, v}) w_n N_{Q_n}(\mathcal{O}_{F, v})$ such that $f^\dagger_n(w_n r) = 1$, $r \in N_{Q_n}(\mathcal{O}_{F, v})$.

2. Given $(\lambda^u) \subseteq \mathcal{O}_{K, v}$ contained in the conductor of χ, we let $f_{u,n} \in I_n(\chi)$ be the function such that $f_{u,n}(k) = \chi(\det D_k)$ if $k \in K_{Q_n}(\lambda^u)$ and $f_{u,n}(k) = 0$ otherwise.

Lemma 10.4.7. Suppose v is not ramified in K and suppose χ is such that $\mathcal{O}_{K, v} \neq \text{cond}(\chi) \supseteq \text{cond}(\chi^c)$. Let $(\lambda^u) := \text{cond}(\chi)$. Then

$$M(z, f^\dagger_n) = f_{u,n} \cdot \text{Vol}(S_n(\mathcal{O}_{F, v})) \in I_n(\chi^c)$$

for all $z \in \mathbb{C}$.

Proof. See [35, 11.4.10].

Lemma 10.4.8. Let $A \in GL_n(K_v)$. If $\det \beta \neq 0$, then

$$f^\dagger_{n, \beta}(z, \text{diag}(A, \beta^{-1})) = \begin{cases} \chi(\det A) \det A^\dagger w^{z+n/2} \text{Vol}(S_n(\mathcal{O}_{F, v})) & ^t \beta A \in S_n(\mathcal{O}_{F, v}) \ast \\
0, & \text{otherwise}.
\end{cases}$$

(10.5)
Proof. See [35, 11.4.11].

Lemma 10.4.9. Suppose \(\beta \in S_n(F_v) \), \(\det \beta \neq 0 \), \(\operatorname{char}(v) = \ell \) and \(\ell \) splits completely in \(K \).

(i) If \(\beta \not\in S_n(O_{F,v}) \), then \(M(z, f_n^*) \beta (-z,1) = 0 \).

(ii) Suppose \(\beta \in S_n(O_{F,v}) \). Let \(c := \text{ord}_v(\text{cond}(\chi')) \). If \(c > 0 \), then

\[
M(z, f_n^* \beta (-z,1) = \chi'(\det \beta) |\det \beta|^{-2z} g(\chi') \cdot c_{n}(\chi', z).
\]

where

\[
c_{n}(\chi', z) = \begin{cases}
\chi'(\pi c) \ell^{2nzc - cn(n+1)/2} & c > 0 \\
\ell^{2nz - n(n+1)/2} & c = 0
\end{cases}
\]

(10.6)

Proof. See [35, 11.4.12].

Now we use the convention for \(m = 1 \) or \(2 \) in subsection 10.2.1.

Proposition 10.4.1. Let \(m = 1 \) or \(2 \). There exists a meromorphic function \(\gamma^{(m)}(\rho, z) \) on \(\mathbb{C} \) such that:

(i) If \(m = 1 \), then \(F_{\phi^*}(M(z, f); -z, g) = \gamma^{(1)}(\rho, z) \tau(\mu_1(g)) F_{\phi}(f; z, \eta g) \)

Moreover, if \(\pi \simeq \pi(\chi_1, \chi_2) \) and \(v \) splits in \(K \), then

\[
\gamma^{(1)}(\rho, z) = \Psi(-1) g(\pi^c, \varpi_v) \tau'(\varpi_v) |\varpi_v|^{-2nz + n(n+1)/2} \cdot \epsilon(\tilde{\pi} \otimes \xi_v^c, z + 1/2) \frac{L(\pi \otimes \xi_v^c, 1/2 - z)}{L(\tilde{\pi} \otimes \xi_v^c, z + 1/2)}.
\]

(ii) If \(m = 2 \) and \(\pi, \Psi, \tau \) are the \(v \) constituents of a global triple, then

\[
F_{\phi^*}(M(z, f); -z, g) = \gamma^{(2)}(\rho, z) A(\rho, z, F_{\phi}(f; z, -)) - z(g).
\]

Each of these equalities is an identity of meromorphic functions of \(z \).

(iii) Suppose moreover that \(O_v \not\subseteq \text{cond}(\tau) \supset \text{cond}(\tau \tau^c) \). Then:

\[
\gamma^{(2)}(\rho, z) = \gamma^{(1)}(\rho, z - \frac{1}{2}).
\]

Proof. See [35, 11.4.13].
10.4.4 Sections at Ramified Primes Again

The sections.

Again let v be a finite prime of F. As in [35, 11.4.14], we define modified version of the sections f^t.

Let $m = 1$ or 2. For $x \in \mathcal{O}_{K, v} \cap K_v^\times$, let

$$f_x^t(m)(z, g) = f_{m+1}^t(z, g) \left(\begin{array}{ccc} 1 & 1/x \\ 1 & 0 \\ 1 & 1 \\ 1 & 1 \end{array} \right).$$

Lemma 10.4.10. Let $\beta = (b_{i,j}) \in S_{m+1}(F_v)$. Then for all $z \in \mathbb{C}$, $f_{x, \beta}^t(z, 1) = 0$ if $\beta \not\in S_{m+1}(\mathcal{O}_{F_v})^\times$. If $\beta \in S_{m+1}(\mathcal{O}_{F_v})^\times$, then

$$f_{x, \beta}^t(z, 1) = \operatorname{Vol}(S_{m+1}(\mathcal{O}_{F_v})) e^t(\text{Tr}_{K_v/Q_v}(b_{m+1,1}/x)).$$

Proof. See [35, 11.4.15].

Lemma 10.4.11. Let $\beta \in S_2(F_v)$, $\det \beta \neq 0$. Let $g \in \operatorname{GL}_2(K_v)$ and suppose $\bar{y}^t \beta y \in S_2(\mathcal{O}_{F_v})^\times$. Let λ, θ be characters of K_v^\times and suppose $\lambda|_{F_v^\times} = 1$. Let $(c) := \text{cond}(\lambda) \bigcap \text{cond}(\theta) \bigcap (\pi_v)$. Let $x \in K_v^\times$ be such that $D_v | x$, $\text{cond}(\chi^e)|x$, and $cD_v \det \bar{y}^t \beta y | x$, where $D_v := \text{Nm}_{K/F}(\delta_{K/F})$. Suppose

$y^{-1} \beta^{-1} \bar{y}^{-1} = \left(\begin{array}{cc} * & * \\ * & d \end{array} \right)$ with $d \in F_v$. For $\bar{D}_v := \text{Nm}_{K/F}(\delta_{K/F})$ then for $h \in U_{\beta}(F_v)$,

$$\sum_{a \in (\mathcal{O}_v/x)^\times} \theta^e(\bar{a}) F_j(\tilde{f}_x^{(2)}; z, u, g \left(\begin{array}{c} a^{-1} \\ \bar{a} \end{array} \right), hy) = \chi(\det hy)|\det hy|_{K_v}^{-1/2} \operatorname{Vol}(\mathcal{O}_{F_v}) \sum_{b \in (\mathcal{O}_v/D_v, \mathcal{O}_v)} f_{-b}(z, g') \omega_{\beta}(h, g' \left(\begin{array}{c} 1 \\ -b \\ 1 \end{array} \right)) \Phi_{\theta, x, y}(u).$$
where \(g' = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix} \) and

\[
f_b(g) = \begin{cases}
\chi \lambda^{-1}(d_p), & g = p\eta \begin{pmatrix} 1 & m \\ 1 & 1 \end{pmatrix}, p \in B_1(\mathcal{O}_{F,v}), m - b \in \hat{D}_\pi \mathcal{O}_{F,v} \\
0 & \text{otherwise}.
\end{cases}
\]

Proof. See [35, 11.4.16].

Pull-back integrals

Let \(T \) denote a triple \((\phi, \psi, \tau)\) with \(\phi \in V \) having a conductor with respect to \(\hat{\pi} \). Let \(\phi_x := \pi_\psi(\eta \text{diag}(\bar{x}^{-1}, x)) \psi \) and let

\[
F_{T,x}^{(m)}(z, g) := \int_{U_1(\mathcal{O}_v)} f_x^{(m)}(z, S^{-1}\alpha(g, g'h)) \overline{\tau}(\det g'h) \pi_\psi(g'h) \phi_x dg',
\]

where \(\alpha = \alpha_1 \) or \(\alpha'_1 \) depending on whether \(m = 2 \) or \(1 \). If \(f(z, g) = f_x^{(m)}(z, gS^{-1}) \) then \(F_{T,x}(z, g) = F_{\phi_x}(f; z, g) \).

Proposition 10.4.2. Suppose \(x = \lambda^t, t > 0 \) is contained in the conductors of \(\tau \) and \(\psi \) and \(x\bar{x} \in (\lambda^{r_\phi}) = \text{cond}_\pi(\phi) \). Then \(F_{T,x}^{(m)}(z, g) \) converges for all \(z \) and \(g \) and

\[
F_{T,x}^{(1)}(z, \eta) = [U_1(\mathcal{O}_{F,v}) : K_x]^{-1} \tau(x)|x\bar{x}|^{-z-1} \phi
\]

and

\[
F_{T,x}^{(2)} = [U_1(\mathcal{O}_{F,v}) : K_x]^{-1} \tau(x)|x\bar{x}|^{-z-3/2} F_{\phi, r, t}.
\]

for any \(r \geq \max\{r_\phi, t\} \). Here \(K_x \) is the subgroup defined as:

\[
K_x := \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in U_1(\mathcal{O}_{F,v}) : a - 1 \in (\bar{x}), b \in (x\bar{x}), c \in \mathcal{O}_v, d - 1 \in (x) \}.
\]

Proof. See [35, 11.4.17].

Proposition 10.4.3. For \(m = 1 \) or \(2 \), Let \(\gamma^{(m)}(\rho, z) \) be as in proposition 10.4.1. Assuming \(\text{char}(v) = \ell \) which is unramified in \(\mathcal{K} \). If \(\mathcal{O}_v \neq \text{cond}(\tau) \supsetneq \text{cond}(\tau^{r_\phi}) \) then \(\gamma^{(2)}(\rho, z) = \gamma^{(1)}(\rho, z - 1/2) \).

Proof. See [35, 11.4.18].
10.4.5 p-adic Sections

Now let $v | p$ be a prime of F. Since we have done a large part of this in part one we only record the formulas for Fourier-Jacobi coefficients and pull-back sections below. These are only slightly different from [35, 11.4] (the ξ’s appeared there are replaced by $\xi^{-1} \mu_{1,v}^1$ in our cases).

Lemma 10.4.12. Suppose our data (subsection 8.1.3) is in the Generic case and let $(p^m) := \text{cond}(\tau')$. Let $\beta \in \mathcal{S}_2(F_v)$, det $\beta \neq 0$, and suppose $\beta \in GL_2(O_v)$. Let $y \in GL_2(O_v)$. Let λ be an unramified character of K_v^\times such that $\lambda|_{F_v^\times} = 1$. Then for $h \in U_{\beta}(O_v)$

$$
\sum_{a \in (O_v/x_{\bar{a}})} \mu_{1,v}^{-1} \xi^c(a) FJ(\varphi_0^{(2)}; -z, u, g\text{diag}(a, \bar{a}), hy)
$$

$$
\xi(-1) c(\beta, \tau, z) \tau(d\text{eth}y)|d\text{eth}h|^{2z+1/2} f_{m,1}(z, g\eta) \omega_\beta(h, g) \Phi_{\mu_{1,v}^{-1} \xi^c, x, y}(u),
$$

(10.7)

where ω is defined using λ, and

$$
c(\beta, \tau, z) := \varphi(-\text{det} \beta)|\text{det} \beta|^{2z+1/2} \varphi(\tau')^2 \varphi(p^2 m) p^{-4 mz - 5m}.
$$

Proof. See [35, 11.4.22].

Now we use the convention for $m = 1$ or 2 as in subsection 10.4.2.

Proposition 10.4.4. Let $\phi \in V$ be an eigenvector for π such that $v | \text{cond}(\phi)$. Let $(x) := \text{cond}(\xi_1) = (x_v^1, x_v^2)$. Suppose again that we are in the Generic case. Let $\phi^\vee := \psi(-1) \pi(\text{diag}(x, \bar{x}^{-1})) \phi$. Then

$$
F_{\phi^\vee}(\varphi_0^{(m)}; z, g) = \gamma^{(m)}(\rho^\vee, -z)[U_1(O_{F,v}) : K_v]^{-1} \varphi^c(x)|x\bar{x}_{v}^{-m+1} \begin{cases}
F_{\phi, x}(g), & m = 2 \\
\pi_{\psi}(g) \phi, & m = 1.
\end{cases}
$$

(10.8)

where $\varphi_0^{(m)}(z, g) = \varphi_0^{(m)}(z, g S^{-1})$.

Proof. The same as [35, proposition 11.4.23].
10.5 Good Siegel Eisenstein Series

From now on we assume that the characters ψ and τ are unramified outside p. Let $(\pi, V) = (\otimes_p \pi_v, \otimes_p V_v)$ be as before and let $\mathcal{D} = (\Sigma, \varphi, \psi, \tau)$ be an Eisenstein datum as defined in section 8.3. We augment this datum with a choice of an idele $M_\mathcal{D}$ satisfying

- $M_\mathcal{D}$ is divisible only by primes in $\Sigma \setminus \{v|p\}$;
- for $v \in \Sigma \setminus \{v|p\}$, $M_\mathcal{D}$ is contained in $\delta_K, \text{cond}(\xi_v), \text{cond}(\psi_v), \text{cond}(\tau_v)$, and $\text{cond}_\mathcal{D}(\phi_v)$.

We remark that we have freedom to choose such $M_\mathcal{D}$. This is crucial for proving the p-adic properties of the Eisenstein series.

For $m = 1$ or 2 we define a meromorphic section $f^{(m)}_D : \mathbb{C} \to I_{m+1}(\tau)$ as follows: $f^{(m)}_D(z) = \otimes f^{(m)}_{D,v}(z)$ where

- $f^{(m)}_\infty(z) := f_\infty \in I_{m+1}(\tau_\infty)$ for any infinite place;
- $v \nmid \Sigma$ then $f^{(m)}_{D,v}(z) := f_{D,v}^{ph} \in I_{m+1}(\tau_v)$.
- if $v|\Sigma, v \nmid p$, then $f^{(m)}_{D,v}(z) := f^{(m)}_{M_\mathcal{D},v} \in I_{m+1}(\tau_v)$;
- for $v|p$, $f^{(m)}_{D,v}(z) := f^{(0,m)}_{x,v} \in I_{m+1}(\tau_v)$, where x_v is used to define $f^{(0,m)}_{x,v}$.

Definition 10.5.1. $H^{(m)}_D(z, g) := E(f^{(m)}_D; z, g)$.

Now we define a level group for $U(1, 1)$

$$U_\mathcal{D} := \prod_{v|p} K_{x,v} \prod_{v \notin \Sigma \setminus \{v|p\}} K_{M_\mathcal{D},v} \prod_{v \in \Sigma} U_1(\mathcal{O}_{F,v}),$$

with $K_{x,v}$ defined in proposition 10.4.2.

Remark 10.5.1. Later we will use $U_\mathcal{D}$ to denote the corresponding level groups in GL_2 as well.

We also let

$$K^{(m)}_\mathcal{D} := \{k \in G_{m+1}(\hat{\mathcal{O}}_F) : 1 - k \in M_\mathcal{D}^2 \prod_{v|p} (x_v, x_v) M_2(m+1)(\hat{\mathcal{O}}_F)\}.$$
Then it easily follows from the definition of the \(f_{D,v}^{(m)}(z) \)'s that

\[
H_{D}^{(m)}(z, gk) = H_{D}^{(m)}(z, g), \ k \in K_{D}^{(m)},
\]

and that

\[
H_{D}^{(m)}(z, g\alpha(1, k)) = \tau(a_{\kappa}) H_{D}^{(m)}(z, g), \ k \in U_{D}.
\]

For \(u \in GL_{m+1}(\mathbb{A}_{K,f}) \) let

\[
L_{u}^{(m)} := \{ \beta \in S_{m+1}(F) : \beta \geq 0, Tr\beta \gamma \in \hat{O}_F, \gamma \in uS_{m+1}(\hat{O}_F)^{u} \}.
\]

We record the following formulas which are slight generalizations of the results in [35, 11.5]. These will be used to construct the \(p \)-adic families of \(L \)-functions and Eisenstein series.

Lemma 10.5.1. (i) If \(\kappa \geq m + 1 \), then \(H_{D}^{(m)}(z, g) \) is holomorphic at \(z_{\kappa} := (\kappa - m - 1)/2 \);

(ii) If \(\kappa \geq m + 1 \) and if \(g \in Q_{m+1}(\mathbb{A}_F) \) then

\[
H_{D}^{(m)}(z_{\kappa}, g) = \sum_{\beta \in S_{m+1}(F), \beta > 0} H_{D,\beta}^{(m)}(z_{\kappa}, g)
\]

Furthermore, if \(\beta > 0 \), \(g_{\infty, i} = r(X_{i}) \text{diag}(Y_{i}, Y_{i}^{-1}) \) and \(g_{f} = r(u) \text{diag}(u, t^{-1}) \in G_{m+1}(\mathbb{A}_F) \), then

\[
H_{D,\beta}^{(m)}(z_{\kappa}, g) = 0 \text{ if } \beta \notin L_{u}^{(m)} \text{ and otherwise}
\]

\[
H_{D,\beta}^{(m)}(z_{\kappa}, g) = e(Tr\beta a) \frac{(-2)^{-m+1}d(2\pi i)^{(m+1)d}2^{m+1}}{(\prod_{j=0}^{m} (\kappa-j-1)!d} \prod_{j=0}^{m} L^{S}(\kappa-j, \chi^{(m+1)}_{F})
\]

\[
\times \prod_{j \in I} e(Tr\beta_{j}(X_{j} + iY_{j}Y_{j}^{-1})) \prod_{v \in S} f_{D,\beta_{u,v}}(z_{\kappa}, 1)
\]

\[
\times \tau(\det u)|\det u^{-1}_{F}m+1-\kappa/2 \prod_{v \in S} H_{\nu,\beta}^{(m)}(z_{v}, q_{v}^{-2z-n})
\]

where \(\beta_{u} = t_{u}\beta u, \beta_{j} = j(\beta), \ t_{j} \) is the embedding \(F \hookrightarrow \mathbb{R} \) and \(S \supseteq \Sigma \) is a finite set of primes such that \(g_{v} \in K_{m+1,v} \) if \(v \notin S \).

Proof. Same as [35, 11.5.1].
If \(\kappa \geq m + 1 \), define a function \(H_D^{(m)}(Z, x) \) on \(X^+_{m+1,m+1} \times G_{m+1}(\mathbb{A}_F, f) \) by

\[
H_D^{(m)}(Z, x) := \prod_{j=1}^d \mu_{m+1}(g_{\infty,j})^{(m+1)\kappa/2} \prod_{j=1}^d J_{m+1}(g_{\infty,j}, i)^{-\kappa} H_D^{(m)}((\kappa - m - 1)/2, g_{\infty,x})
\]

where \(g_{\infty} \in G^+_{m+1}(\mathbb{R}), g_{\infty}(i) = Z \) and define \(A_D^{(m)}(x) \) as the \(\beta \)-th Fourier coefficient of \(H_D^{(m)}(Z, x) \).

Lemma 10.5.2. Suppose \(\kappa \geq m + 1 \). Then \(H_D^{(m)}(Z, x) \in M_\kappa(K_D^{(m)}) \) (notation as in section 2.3, where \(\kappa \) stands for the scalar weight \(\kappa := (0, \ldots, 0; \kappa, \ldots, \kappa) \)).

Proof. Same as [35, 11.5.1]. \(\square \)

Lemma 10.5.3. Suppose \(\kappa \geq m + 1 \) and that \(x = \text{diag}(u, \bar{u}^{-1}) \), \(u \in GL_{m+1}(\mathbb{A}_F, f) \) with \(u_v = \text{diag}(1_m, a_v) \), \(a_v \in O_v^\times \), if \(v \in \Sigma \). If \(\beta \notin L_u^{(m)} \) or if \(\det \beta = 0 \) then \(A_D,\beta(x) = 0 \), and for \(\beta = (\beta_i, j) \in L_u^{(m)} \) with \(\det \beta > 0 \)

\[
A_D^{(m)}(x) = |\delta_K^{m+1/4}| [\delta_F^{(m+1)/2} (-2)^{-(m+1)d} (2\pi i)^{m+1} (2/\pi)^{d} 2^{m+1} \prod_{v|p} |(\det \beta_v)|^{\kappa - m - 1} \prod_{j=0}^{m+1} (\kappa - j - 1)! \prod_{j=0}^{m+1} L^\Sigma(\kappa - j, \bar{\tau}_v^j) | \\
\times \prod_{v|p} \tau_v(a_v, \det(\beta)) g(\tau_v)^{m+1} c(\tau_v, -(\kappa - m - 1)/2)e_v(Tr_{K_v/Q_v}(a_v b_{m+1,1}/x_v)) \\
\times \prod_{v \in \Sigma, v|p} \tau_v(a_v) e_v(Tr_{K_v/Q_v}(a_v b_{m+1,1}/M_D)) \\
\times \prod_{v \notin \Sigma} \tau_v(\det u_v)|u_v \bar{u}_v|^{m+1 - \kappa/2} h_v u_v \beta u_v(\bar{\tau}_v(\varpi_v) q_v^{-\kappa}).
\]

(10.10)

Proof. See [35, 11.5.3]. \(\square \)

10.6 \(E_D \) via Pull-Back

As in [35, 11.6] we let \(\varphi_0 \) be defined by: \(\varphi_0(g) = \varphi_0(gy) \) for

\[
y_v = \begin{cases}
1, & v = \infty, v \notin \Sigma \\
\eta^{-1} \text{diag}(M_D^{-1}, 1) \eta, & v \in \Sigma, v \notin p \\
\text{diag}(x_v, \bar{x}_v^{-1}), & v \in p
\end{cases}
\]

Here \(\varphi \in V \) and \(\varphi_0 \) is the form on \(GU(1,1)(\mathbb{A}_F) \) given by \(\varphi \) and \(\psi \).

Proposition 10.6.1. Let \(m = 1 \) or 2. Suppose that for any \(v|p \) \((x_v) = (p^{1/2}) \) with \(t_v > 0 \) and that \(x_v \in \text{cond}(\psi) \) and \(x_v \bar{x}_v \in \text{cond}_{\tau_v}(\phi_v) \) where \(\phi_v \) is defined by \(\phi = \otimes \phi_v \). Let \(g \in G_m(\mathbb{A}_F) \) and
Let \(x \in U \) be such that \(\mu_1(h) = \mu_m(g) \). If \(k \geq m + 1 \) then

\[
\int_{U_1(F)/U_1(\kappa_F)} H_D^{(m)}(z, \alpha(g, g'h)) \tilde{\tau}(\det g'h) \varphi_0(g'h) dg'
\]

\[
= [U_1(\hat{O}_F) : U_D]^{-1} \begin{cases}
 c_D^{(1)}(z) \varphi(g) & m = 1 \\
 c_D^{(2)}(z) \mu_D(\beta, z, g) & m = 2
\end{cases}
\]

(10.11)

where

\[
c_D(x) := \pi^{d(2z-m+1)/2} \prod_{v \mid p} (x_v \bar{x}_v)^{z-(m+1)/2} \prod_{v \mid p} \tau_v(M_D)
\]

\[
\times \frac{\Gamma(z + (m - 1 + \kappa)/2)^d L(\tilde{\tau}, \xi, z + m/2)}{\Gamma(z + (m + 1 + \kappa)/2)^d \prod_{v \mid p} L(\tilde{\tau}, \xi, 2z + m + 1 - i)} \prod_{v \mid p} \gamma(m)(\mu_1, -z)
\]

(10.12)

This is just a summary of the previous computations, similar to [35, proposition 11.6.1]. We also have the following results for the Fourier coefficients which is an immediate consequence of the above proposition.

Proposition 10.6.2. Let \(m = 1 \) or \(2 \). Suppose that for each \(v \mid p \), \((x_v) = (p^r) \) with \(t_p > 0 \) and that \(x_v \in \text{cond}(\psi) \) and \(x_v \bar{x}_v \in \text{cond}_n(\phi_v) \). Let \(g \in G_m(\kappa_F) \) and \(h \in G_1(\kappa_F) \) be such that \(\mu_1(h) = \mu_m(g) \). Let \(\beta \in S_m(F) \). If \(\kappa \geq m + 1 \) then

\[
\int_{U_1(F)/U_1(\kappa_F)} H_D^{(m)}(z, \alpha(g, g'h)) \tilde{\tau}(\det g'h) \varphi_0(g'h) dg'
\]

\[
= [U_1(\hat{O}_F) : U_D]^{-1} \begin{cases}
 c_D^{(1)}(z) \varphi_\beta(g) & m = 1 \\
 c_D^{(2)}(z) \mu_D(\beta, z, g) & m = 2
\end{cases}
\]

(10.13)

where \(c_D^{(m)}(z) \) is as defined above.

Recall that \(a_1, \ldots, a_h \in \hat{O}_K \) are representatives for the class group of \(K \). We assume that each \(a_i = (\pi_v, 1) \in O_{K,v} \) for some prime \(v \not\in \Sigma \) that splits in \(K \). Let

\[
\Gamma_D := U_1(F) \cap U_D, \Gamma_{D,1} := U_1(F) \cap \left(a_i^{-1} \atop a_i \right) U_D \left(a_i \atop a_i^{-1} \right).
\]

We often write \(\Gamma_D \) for the \(GL_2(\kappa_F) \) open compact group with the same congruence requirement as \(U_D \). Also, we write \(\Gamma_{D,0} \supseteq \Gamma_D \) by removing the congruence conditions required for diagonal entries.
Similar to $\Gamma_0(N) \supset \Gamma_1(N)$ in the classical case. For any $v \mid p$ let

$$(p_{uv}) := (x_v) \cap \mathcal{O}_{F,v}, (p^v) := (x_v \bar{x}_v).$$

It follows easily from the strong approximation that if we let $\mathcal{Y} \subset \hat{\mathcal{O}}$ be any set of representatives for $(\hat{\mathcal{O}}_K / \prod_{v \mid p} \bar{x}_v M_D)^\times / (\hat{\mathcal{O}}_F / p^{p_v} M_D)^\times$, then

$$U_1(\hat{\mathcal{O}}_F) = \sqcup_{i=1}^h \sqcup_{a \in \mathcal{Y}} U_1(F) U_1(F_\infty) \left(\begin{array}{c} a^{-1} \alpha^{-1} \\ \bar{a} \bar{\alpha} \end{array} \right) U_D,$$

with each element appearing $2^{v_K} h_F$ times where v_K is a number depending only on K. Define:

$$\tilde{H}^{(m)}_{D,\beta}(z, g) := \sum_{a \in (\hat{\mathcal{O}}_K / \prod_{v \mid p} x_v M_D)^\times \ \forall v \mid p} (\prod_{v \mid p} a_{v}^{-1}) H^{(m)}_{D,\beta}(z, g(a, 1, \text{diag}(a^{-1}, \bar{a}))).$$

10.7 Neben-Typus

In this section we discuss the relations between $U(1, 1)$ automorphic forms and GL_2 automorphic forms. This will be useful later. In the [35] case the situation is easier since they assumed the forms are newforms, i.e. invariant under the action of matrices: $\begin{pmatrix} * & * \\ 1 & 1 \end{pmatrix}$. Since we are going to work with the full dimensional Hida family so we do not assume this anymore. A principle for this issue is: we assume the nebeen characters at places not dividing p and the torsion part at p-adic places to be similar to the new form and let the free part of the p-adic nebeen characters to vary arbitrarily. Let $\varepsilon' = \otimes_v \varepsilon'_{v}$ be a character of $T_{U(1, 1)}(\hat{\mathcal{O}}_F)$. First look at the p-adic places. Note that $\mathbb{Z}_p = \Delta \times \Gamma$ for $\Delta \simeq \mathbb{F}_p^\times$ and $\Gamma = 1 + p\mathbb{Z}_p$. Then $T_{U(1, 1)}(\mathbb{Z}_p) = \{ \begin{pmatrix} a^{-1} \\ a \end{pmatrix} | a \in \mathcal{O}_{\mathcal{K},v}\}$. Let $\psi_{v, fr}$ be a Hecke character we can define $\psi_{v, tor}$ and $\psi_{v, fr}$ be characters of $\mathcal{O}_{\mathcal{K},v}$ in the same way. Since $\varepsilon'_{v, fr}$ and $\psi_{v, fr}$ have order powers of p so there are unique square roots $\varepsilon'_{v, fr}^{1/2}$ and $\psi_{v, fr}^{1/2}$ of them. Now suppose for each $v \mid p$ we have:

$$\varepsilon'_{v, tor}(\begin{pmatrix} a^{-1} \\ a \end{pmatrix}) = \psi_{v, tor}(a)$$

119
for all \(a \in \mathcal{O}_{K,v} \) and that for all \(v \nmid p \),
\[
\varepsilon'_v \left(\begin{pmatrix} a^{-1} & 0 \\ 0 & a \end{pmatrix} \right) = \psi_v(a)
\]
for all \(a \in \mathcal{O}_{K,v} \). Then we define a nebentypus of \(T_{GL_2}(\hat{O}_F) \) by: for \(v \nmid p \),
\[
\varepsilon_v \left(\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \right) = \psi_v(b),
\]
for \(v|p \)
\[
\varepsilon_{v,tor} \left(\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \right) = \psi_{v,tor}(b)
\]
and
\[
\varepsilon_{v,fr} \left(\begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \right) = \varepsilon'_{v,fr} \left(\begin{pmatrix} a \\ b \end{pmatrix} \right) \psi_{1,2}^{1/2} \left(\begin{pmatrix} a \\ b \end{pmatrix} \right)
\]
and
\[
\varepsilon = \otimes_v \varepsilon_v
\]. Now let \(\psi \) and \(\varepsilon' \) be as above and \(I \) be an ideal contained in the conductor of \(\varepsilon' \). Let \(\varphi \) be an automorphic form on \(U(1,1)(\mathbb{A}_F) \) such that the action of \(k \in U_0(I) \) (recall that \(U_0(I) \) consists of matrices \(\begin{pmatrix} a_k & b_k \\ c_k & d_k \end{pmatrix} \) such that \(c_k \in I \)) is given by \(\varepsilon'(\begin{pmatrix} a_k \\ b_k \end{pmatrix}) \). Suppose moreover that it satisfies the condition that:
(*) for any totally positive global unit \(b \in \mathcal{O}_F^\times \) we have:
\[
\varphi \left(\begin{pmatrix} b \\ 1 \\ g(b^{-1}) \\
 b^{-1} \\ 1 \end{pmatrix} \right) = \varphi(g) \varepsilon'(\begin{pmatrix} b^{-1} \\ 1 \end{pmatrix}).
\]
This condition is necessary for a \(SL_2 \) Hilbert modular form to be able to extend to \(GL_2 \) with given nebentypus).

We define a map \(\alpha_\psi \) from \(\varphi \)'s on \(U(1,1)(\mathbb{A}_F) \) as above to automorphic forms on \(GL_2(\mathbb{A}_F) \).
Definition 10.7.1.

\[\alpha_{\psi} = \alpha_{\psi,\varepsilon,\varepsilon'}(\varphi)(g) = \sum_{j:a_j \sim g} \varphi(h_{\infty} \begin{pmatrix} \bar{a}_j & a_j \\ \bar{a}_j^{-1} & 1 \end{pmatrix}) \varepsilon(k) \psi(z_{\infty}a_j) \]

for \(g = \gamma z_{\infty} h_{\infty} \begin{pmatrix} \bar{a}_j & a_j \\ \bar{a}_j^{-1} & 1 \end{pmatrix} \) \(k \in GL_2(A_F) \) where \(\gamma \in GL_2(F), h_{\infty} \in SL_2(F_{\infty}), z_{\infty} \in Z(F_{\infty}), k \in \Gamma_0(I)_{GL_2}. \)

Lemma 10.7.1. Assumptions are as above. Suppose \(\varphi_1, \varphi_3 \) are automorphic forms on \(GU(1,1)(A_F) \), \(\varphi_2 \) is an automorphic form on \(U(1,1) \). Let \(\psi_1, \psi_2, \psi_3 \) be Hecke characters for \(K \). Suppose \(\psi_1 \psi_2 \bar{\psi}_3 = 1 \) and the central characters of \(\varphi_1, \varphi_3 \) are \(\psi_1, \psi_3 \). Suppose also that \(\varepsilon_1', \varepsilon_2', \varepsilon_3' \) are neben typus of \(\alpha_1|_{U(1,1)}, \alpha_2, \alpha_3|_{U(1,1)} \). Assume that \(\varepsilon_1' \varepsilon_2' \varepsilon_3' = 1 \) and the \(\varepsilon_i' \)'s and \(\psi_i \)'s satisfy the assumptions above. Then

\[2^{v_K} [O_K^*: O_F^*] < \varphi_1 \varphi_2, \varphi_3 >_{U(1,1)} = < \varphi_1 \alpha_{\psi_2}(\varphi_2), \varphi_3 >_{GL_2} \]

where \(u_K \) is some number depending only on \(K \). This factor comes out when considering \(GL_2/F \) modulo the center and involves also \(v_K \).

Here we implicitly identified \(GL_2 \) as a subgroup of \(GU(1,1) \) in the obvious way. The proof is straightforward.

10.8 Formulas

Definition 10.8.1.

\[f^c(g) := f \left(\begin{pmatrix} 1 \\ & -1 \end{pmatrix} g \begin{pmatrix} 1 \\ & -1 \end{pmatrix} \right), \]

\[\tilde{f}^c := f^c \otimes \psi(det-) \]

Definition 10.8.2.

\[\tilde{g}_{D,\beta}(m, x) := (\bar{H}_{D,\beta}^{(m)}(\alpha(x, -)) \otimes \xi(det-)) \]

and

\[g_{D,\beta}^{(m)} := tr_{\Gamma_0(M)/\Gamma_0(M_{\beta}^2)} \pi \left(\begin{pmatrix} 1 \\ & M_{\beta}^2 M \end{pmatrix} \right)(\tilde{g}_{D,\beta}^{(m)}) \]

121
Proposition 10.8.1. Notations as above. Let $\beta \in S_m(F)$.

(i) There exists a constant $C^{(m)}_\mathcal{D}$ depending only on \mathcal{D} and m such that

$$< \tilde{g}^{(m)}_{\mathcal{D}, \beta}(-x, \rho), \rho \left(\begin{array}{c} -1 \\ 1 \end{array} \right) f \left(\begin{array}{c} M^\mathcal{D}_{p} \prod_{v|p} x_v \bar{x}_v \\ 1 \end{array} \right) \left(\begin{array}{c} \bar{f}^c \\ \bar{f} \end{array} \right) \Gamma_{\mathcal{D}, a} - C^{(m)}_\mathcal{D} \begin{cases} a_{\mathcal{D}}(\beta, x) & m = 1 \\ c_{\mathcal{D}}(\beta, x) & m = 2 \end{cases}$$

(the ξ showing up here is the difference of the ψ which we twisted f^c and the τ in the pull back formula.)

(ii) If $\mu_{\nu, 1}(p) \neq 0$ for any $v|p$ and if $p|f_\chi$ and $p|f_{\chi^{-1} v}$ then

$$C^{(1)}_\mathcal{D} = \left(-\pi 2^{2-\kappa} i^{-\kappa} \right)^d \prod_{v|p, e \in \Sigma} \psi_v^c \tau_v (M^\mathcal{D}) |M^\mathcal{D}|_{F}^{-\frac{1}{2}} \gamma^{(1)}(\rho_p, -z_n) \times \prod_{v|p} \psi_v^c (x_v) p^{r_v + n_v(\kappa - 2) - \frac{1}{2} r_v} \Gamma(\kappa - 1)^d \prod_{v|p} L_v^\kappa (f, \chi^{-1} \xi, v - 1) \prod_{v|p} L_v^\kappa (\chi^{-1} \xi', v - 1)$$

where

$$\gamma^{(1)}(\rho_p, z_n) = \tilde{\psi}_p(-1) \prod_{v|p} c_2 (\tau_0^0, 1 - \kappa/2) \tilde{\xi}_v^c (x_v) \rho(\tau_0^0) \times \prod_{v|p} \mu_{1, v}(p) r_v - n_v \rho(\mu_1, \tilde{\chi}_v, \xi_v) \rho(\mu_1, \tilde{\chi}_v, \xi_v, y_v)$$

and $(y_v) := \text{cond} (\tilde{\chi}_v, \xi_v)$ and $(p^{\nu_v}) := (y_v)$. ($y_v)$.

(iii) If $\mathcal{O}_v \neq \text{cond}(\chi v^{-1} \psi v^g) \supset \text{cond}(\tilde{\chi}_v, \xi_v, \xi_v)$ for any $v|p$ then $C^{(2)}_\mathcal{D} = C^{(1)}_\mathcal{D} \prod_{v|p} p^{r_v}$.

Proof. One argues similarly to [35, 11.7.1] and the end of [35, 11.6].

Now we define a normalization constant:

$$B^{(m)}_\mathcal{D} := \left[M^\mathcal{D} \right]^2 \prod_{j=0}^m (\kappa - j - 1)! \prod_{j=0}^m \frac{L^\Sigma (\kappa - j, \chi \xi') \prod_{v|p, e \in \Sigma} \psi_v^c (y_v, \delta_v) \rho(\tilde{\chi}_v, \xi_v, y_v, \delta_v)}{\prod_{v|p, e \in \Sigma} \psi_v^c \tau_v (M^\mathcal{D}) \rho(-1) \prod_{v|p} e_{m+1} (\gamma_0^0, - (\kappa - m - 1)/2) \rho(\gamma_0^0) m+1 \rho(\gamma_0^0)}$$

$$\times \left(-1 \right)^m d^2 (m+2) \left(2 \pi i \right)^{-m+1} d \left(\kappa / 2 \right)^m (m+2) d / 2$$

$$\times \begin{cases} \prod_{v|\Sigma, e \in \chi_\xi} \tilde{\xi}_v^c (\xi_v) q_v^{e_v(\kappa-2)} \rho(\chi_\xi, \xi_v)^{-1} & m = 2 \\ 1 & m = 1 \end{cases}$$

(10.14)
Now for $m = 1$ or 2 we define:

\[
L_D^{(m)} = \frac{2^{-3d(2i)} d^{(\kappa+1)}}{\prod_{v|p} p^{r_v(1-\kappa/2)}} B_D^{(m)} C_D^{(m)}.
\]

and

\[
S(f) := \prod_{v|p} \mu_1(p) - r_v p^{r_v(\kappa/2-1)} W'(f)
\]

where $W'(f)$ is the prime to p part of the root number of f with $|W'(f)|_p = 1$ (see [35, 11.7.3].)

Recall that in the section for notations we defined r_v such that $p^{r_v} \parallel N_v$ for $v|p$.

Proposition 10.8.2. Assumptions are as before. Suppose $\kappa \geq 2$ if $m = 1$ and $\kappa > 6$ if $m = 2$. Suppose $x = \text{diag}(u, u^{-1})$ with $GL_m(\mathbb{A}_K, f)$. Suppose $p|\chi_\xi$ and $p^r|Nm(\xi)$. Suppose also $\text{cond}(\psi_p)|f_\xi O_{K,p}$.

(i)

\[
< (f_D^{(m)} \otimes \xi), \rho(M \prod_{v|p} \left(p^{r_v} \right)^{-1}) \tilde{f}_c >_{\Gamma_D, a} = \begin{cases}
\frac{L_D^{(m)}}{L \Sigma K (f, \bar{\chi}_\xi, \kappa - 2)} & m = 1 \\
\bar{c}_D(T, x) & m = 2.
\end{cases}
\]

(ii)

\[
L_D^{(1)} = \prod_{v|p} a(v, f) - ord_v(Nm(\chi_\xi)) \left(\frac{(\kappa - 2)!}{(2\pi i)^{\kappa-1}} \right)^2 \Re(\chi_\xi Nm(\xi)\delta_K) \kappa - 2 L_{\Sigma K}^{(f, \bar{\chi}_\xi, \kappa - 1)}.
\]

where $L_{\Sigma K}^{(f, \bar{\chi}_\xi, \kappa - 1)}$ is the Σ-primitive L-function for f twisted by $\bar{\chi}_\xi$ over K. (iii) Under the hypotheses of Proposition 10.4.1 (iii)

\[
L_D^{(2)} = \prod_{v} p^{r_v} \times L(3 - \kappa, \bar{\chi}_\xi^2) \prod_{v \in \Sigma} (1 - \bar{\chi}_v(\varpi_v) q_v^{2 - \kappa}) L_D^{(1)}.
\]

See [35, proposition 11.7.4].

123
Corollary 10.8.1. Under the hypotheses above

\[
< (f^{(1)}_{D,1,x_M} \otimes \xi), \rho \left(\begin{pmatrix} -1 \\ p^r M \end{pmatrix} f \right) > \Gamma_{\mathcal{D},0} = \frac{L^{(1)}_{\mathcal{D}}}{L_{\mathcal{D}}}.
\]

\[
< f, \rho \left(\begin{pmatrix} -1 \\ p^r M \end{pmatrix} f \right) > \Gamma_{\mathcal{D},0} = (2^{-3}(2i)^{\kappa+1}) dS(f) < f, \rho \left(\begin{pmatrix} -1 \\ N \end{pmatrix} f \right) > GL_2, \Gamma_{\mathcal{D},0}. \]

See [35, corollary 11.7.5]. For any \(x \in G(\mathbb{A}_{F,f}) \) let

\[
G_{\mathcal{D}}(Z, x) := W'(f)^{-1} L_{\mathcal{D}}^{(2)} |\mu(x)|_F^{-\kappa} E_{\mathcal{D}}(Z, x).
\]

and let \(C_{\mathcal{D}}(\beta, x) \) be its \(\beta \)th Fourier coefficient.

Corollary 10.8.2. Under the hypotheses as above,

\[
< (f^{(2)}_{D,\beta,x} \otimes \xi), \rho \left(\begin{pmatrix} -1 \\ p^r M \end{pmatrix} f \right) > \Gamma_{\mathcal{D},0} = C_{\mathcal{D}}(\beta, x).
\]

\[
< f, \rho \left(\begin{pmatrix} -1 \\ p^r M \end{pmatrix} f \right) > GL_2, \Gamma_{\mathcal{D},0} = (2^{-3}(2i)^{\kappa+1}) dS(f) < f, \rho \left(\begin{pmatrix} -1 \\ N \end{pmatrix} f \right) > GL_2, \Gamma_{\mathcal{D},0}.
\]

See [35, corollary 11.7.6].

10.9 a Formula for Fourier Coefficients

Now we express certain Fourier coefficients of \(G_{\mathcal{D}}(Z, x) \) as essentially Rankin-Selberg convolutions of \(f \) and sums of theta functions. This is used later to prove various \(p \)-adic properties of these coefficients.

10.9.1 the Formula

Let \(\mathcal{D} = (f, \psi, \xi, \Sigma) \) be an Eisenstein datum. We assume:

\[
\text{for any } v|p, \pi_v, \phi_v, \psi_v, \tau_v \text{ are in the Generic Case .}
\]

124
Let λ be an idele class character of \mathbb{A}_K^∞ such that

- $\lambda|_{\mathbb{A}_F} = 1$;
- $\lambda_v(x) = (x_v/|x_v|)^{-2}$ for all $v|\infty$;
- λ_v is unramified if $v \nmid \Sigma \setminus \{v|p\}$.

Let $a_1, \ldots, a_h \in \mathbb{A}_K^\infty$ be representatives of the class group of \mathbb{K} as in the previous sections; so $a_i = (\varpi_{v_i}, 1)$ for some place v_i of F splitting in \mathbb{K}. Also for $i \in I_1$, $a_1 \tilde{a}_i$ is trivial in the narrow class group. For such i we assume $\varpi_{v_i} = q_i$ for some totally positive $q_i \in F$. Let $Q = \{v_i\}_{i \in I_1}$.

Let $\beta \in S_2(F), \beta > 0, \text{ and } u \in GL_2(\mathbb{A}_K, f)$ be such that

- $u_v \in GL_2(\mathcal{O}_F, v)$ for $v \not\in Q$;
- $^t u \beta u \in S_2(\mathcal{O}_F, v)^*$ for all primes v;
- $^t u \beta u$ is v-primitive for all $v \not\in \Sigma \setminus \{v|p\}$;
- if $u^{-1} \beta^{-1} u^{-1} = \begin{pmatrix} * & * \\ * & d \end{pmatrix}$ then $d_v \in \mathcal{O}_F$ for all $v \in \Sigma \setminus \{v|p\}$.

Let M_D be as before and also satisfying:

$$cond(\lambda)|M_D \text{ and } D_\mathbb{K} \det ^t u \beta u |M_D.$$ \hfill (10.17)

All Weil representations that show up in the following are defined using the splitting determined by the character λ. By our choice of \mathbb{K}, there is an idele \mathfrak{d}_1 of \mathbb{A}_K so that $\mathfrak{d}_1 \tilde{\mathfrak{d}}_1 = \mathfrak{d}$. Later we are going to choose u and β such that they do not belong to $GL_2(\mathcal{O}_v)$ only when $v = v_i$ for some v_i above. Recall that we have proved:

for $v = v_i$

$$FJ_{\beta, v}(f; z_v, x, g_v, y) = \frac{\tau(\det r_v g_v) |\det r_v g_v|^\frac{v}{2}}{\prod_{j=0}^{\frac{v}{2}-1} L(2s + 3 - j, \tau_{\mathfrak{q}_v} \chi_{\mathbb{K}_v} \lambda_{\mathbb{K}_v})} f_{\mathfrak{q}_v}^\text{sph}(g_v) \omega_\beta(r_v, g_v) \Phi_{\mathfrak{q}_v}(x),$$

for $v \in \Sigma \setminus \{v|p\}$, (notice that we have restricted ourselves to the case when the local characters ψ_v, τ_v are trivial):
\[
\sum_{a \in (OK,v/x_v)} F_{\beta,v}(z; x, g_v \left(\frac{a^{-1}}{\bar{a}} \right), r_v u_v) = \sum_{b \in (O_{\nu}/\partial_\nu)} f_{-b}(z; g_v' \eta) \omega_\beta(r_v, g_v' \left(\begin{array}{c} 1 \\ -b \\ 1 \end{array} \right)) \Phi_{1,MD,u_v}(x),
\]

for \(v \mid p \), then

\[
\sum_{a \in (O_{K,v}/x_v)} \xi_v^\epsilon \tau(a) \mu_{1_v}^{-1} F_{\beta,v}(z; x, g_v \left(\frac{a^{-1}}{\bar{a}} \right), r_v u_v) = \psi_v (-1)^2 \left(\det(h) \right) \left(\det(r_v g_v) \right) \Phi_{1,MD,u_v}(x),
\]

(Sorry for the bad notation \(u_v \), the last one is of different meaning as at the beginning of this section while the others are the conductors of \(\xi_v \).)

Now for \(v \in \Sigma \setminus \{v \mid p\} \), we have

\[
f_{-b,v} \left(\begin{array}{c} 1 \\ 1 \\ n \\ 1 \end{array} \right) g_v' \eta = (\tau_v \xi_v^\epsilon)(-1)f_{-b,v} \left(\begin{array}{c} 1 \\ 1 \\ -n \\ 1 \end{array} \right) g_v' \eta
\]

\[
= (\tau_v \xi_v^\epsilon)(\delta_k \delta_1) f_{\nu} \left(\begin{array}{c} 1 \\ 1 \\ -n \\ 1 \end{array} \right) g_v' \eta \left(\begin{array}{c} 1 \\ b \\ 1 \\ \bar{\delta}_k \bar{\delta}_1 \end{array} \right) \Phi_{1,MD,u_v}(x).
\]

For \(h \in U_\beta(\mathbb{A}_F) \), \(u \in GL_2(\mathbb{A}_K) \), we define

\[
\hat{\Phi} := \phi_{D,\beta,u} \otimes_{v \mid p} \phi_{\beta,v} \otimes_{v \mid p} \phi_{1,MD,u_v} \otimes_{v \mid p} \phi_{0,u_v}
\]

and \(\Phi := \Phi_{D,\beta,u} = \lambda(\delta_1 \delta_k^{-1})^{-1} |\delta_1 \delta_k^{-1}|^{-1} \omega((\delta_1 \delta_k^{-1}) \eta^{-1}) \hat{\Phi}_{D,\beta,u} \), and define \(\Theta_{D,\beta}(h, g; u) := \Theta_{\beta}(h, g; \Phi_{D,\beta,u}) \).

The following formula will be useful
\[\omega_{\beta^{-1},\nu}(-\eta \begin{pmatrix} 1 & n \\ 1 & 1 \end{pmatrix} \, g^\nu \begin{pmatrix} 1 & b \\ 1 & 1 \end{pmatrix} \, \eta) \hat{\Phi}(v \, \phi_1) \]

\[= \omega_{\beta,\nu}(- \begin{pmatrix} \delta_1 \\ \tilde{\delta}_1^{-1} \end{pmatrix} \, \eta \begin{pmatrix} 1 & n \\ 1 & 1 \end{pmatrix} \, g^\nu \begin{pmatrix} 1 & b \\ 1 & 1 \end{pmatrix} \, \eta^{-1} \begin{pmatrix} \phi \\ 1 \end{pmatrix}) \Phi(v) \]

\[= \lambda(\mathfrak{d}_1 \delta^{-1}_K) |\mathfrak{d}_1 \delta^{-1}_K| \omega_{\beta,\nu}(- \begin{pmatrix} \delta^{-1}_1 \\ \tilde{\delta}_1^{-1} \end{pmatrix} \, \eta \begin{pmatrix} 1 & n \\ 1 & 1 \end{pmatrix} \, g^\nu \begin{pmatrix} 1 & b \\ 1 & 1 \end{pmatrix} \, \eta^{-1} \begin{pmatrix} \phi \tilde{\phi}^{-1} \delta^{-1}_K \tilde{\delta}_1^{-1} \end{pmatrix}) \Phi(v) \]

To see this, observe that

\[\hat{\Phi} = \omega_\beta(\eta \begin{pmatrix} \delta_K \delta^{-1}_1 \\ \tilde{\delta}_1^{-1} \tilde{\delta}_K \end{pmatrix}) \Phi \]

and

\[\omega_{\beta^{-1}}(g) = \omega_\beta \left(\begin{pmatrix} \phi^{-1} \\ 1 \end{pmatrix} g \begin{pmatrix} \phi \\ 1 \end{pmatrix} \right) \]

Definition 10.9.1. Let

\[\otimes f_v = f_D := \otimes_{v \in \Sigma} f_{\kappa} \otimes_{v \in \Sigma} f_{u_v} \otimes_{v \in \Sigma} f_{\nu} \otimes_{v \in \Sigma} f_{\nu}^s \, f_{v}^{\text{sph}} \]

and define \(\mathcal{E}_D \) to be the corresponding Eisenstein series on \(U(1,1)({\mathcal{A}}_F) \).

Let \(g^\eta = \eta^{-1} g \eta \) and \(g' = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \). If \(x = \begin{pmatrix} h u \\ \eta(h u)^{-1} \end{pmatrix} \) for \(u \in GL_2(\mathcal{A}_K), h \in \mathcal{U}_\beta(\mathcal{A}_F) \) satisfying the assumptions at the beginning of this section then using the useful formula
before definition 10.9.1

\[\tilde{H}_{D,\beta}(z_k, \alpha(x, g')) \text{diag}(\bar{d}_1^{-1}, 1, \bar{d}_1, 1)) \]

\[= \sum_{a \in (\mathcal{O}^{\ast})} \xi_{r(\alpha)} H_{D,\beta}(\alpha(x, g') \left(\begin{array}{c} a^{-1} \\ \bar{a} \end{array} \right)) \text{diag}(\bar{d}_1^{-1}, 1, \bar{d}_1, 1)) \]

\[= C_D(\beta, r, u) \sum_n \sum_v \sum_{b} \prod_v f_v \left(\begin{array}{c} 1 \\ -n \end{array} \right) g_v \eta \left(\begin{array}{c} 1 \\ b \end{array} \right) \tilde{\Phi}_{D,\beta, u}(v \bar{a}) \]

\[= |\bar{d}_K\bar{d}_1|^{-1} \tau(\delta_K) C_D(\beta, r, u) \sum_n \sum_v \sum_{b} \prod_v f_v \left(\begin{array}{c} 1 \\ -n \end{array} \right) g_v \eta \left(\begin{array}{c} 1 \\ b \end{array} \right) \tilde{\Phi}_{D,\beta, u}(v) \]

\[\times \omega_{\beta, u}(\eta \left(\begin{array}{c} 1 \\ n \end{array} \right) g_v \left(\begin{array}{c} 1 \\ b \end{array} \right) \delta_K \delta_K^{-1}) \Theta_{D,\beta}(h, g; u) \]

\[\times \rho(\eta \left(\begin{array}{c} 1 \\ b \end{array} \right) \delta_K \delta_K^{-1}) \Theta_{D,\beta}(h, g; u) \]

The last step is because \(\Theta_{\beta} \) is an automorphic form.

Now let \(x = \left(\begin{array}{c} hu\bar{d}_1^{-1} \\ \eta^{-1} \bar{a} \end{array} \right) \). Then:
representatives generated by a totally positive global element. Let us take such a generator where
\[\begin{align*}
\rho(1) & \left(\frac{\bar{\delta}_K \bar{d}_1}{\delta_K^{-1} \bar{d}_1} \right) \mathcal{E}_D, \rho(1) \left(M_{\emptyset}^2 \Pi_{\ell p}(p^r \circ) \right) \left(1 \right) \left(\begin{smallmatrix} -1 \\ 1 \end{smallmatrix} \right) \tilde{f} > \Gamma_o
\end{align*} \]

\[\begin{align*}
\rho(1) & \left(\frac{\bar{\delta}_K \bar{d}_1}{\delta_K^{-1} \bar{d}_1} \right) \mathcal{E}_D, \rho(1) \left(M_{\emptyset}^2 \Pi_{\ell p}(p^r \circ) \right) \left(1 \right) \left(\begin{smallmatrix} -1 \\ 1 \end{smallmatrix} \right) \tilde{f} > \Gamma_o
\end{align*} \]

where \(A_{\emptyset} = (\Theta_{D,\emptyset} \otimes \xi)(h, -; u) \). Now for \(v_i \) with \(i \in I_1 \), by definition we have \(v_i \bar{v}_i \) is an ideal of \(F \) generated by a totally positive global element. Let us take such a generator \(q_i \). Also we take representatives \(\{b_j\}_j \) of the coset:

\[\{ b : \text{totally positive units in } \mathcal{O}_K^\times \}/\{ c \bar{c} \} \text{ for } c \text{ a unit in } \mathcal{O}_K^\times \]
Then we define

\[A' := \sum_{i,j,k} \Theta_{D, \beta, hjk} \otimes \xi(h, -, u). \]

where \(\beta_{ijk} = \begin{pmatrix} b_j \\ q_i b_k \end{pmatrix} \).

Remark 10.9.1. The reason for introducing such \(b_j \) is to make sure that the \(A' \) satisfy (*) in the section for nebentypus (see also [Hida91] on top of page 324 for the \(q \)-expansion) and can be identified later with some theta functions on \(GL_2 \).

Definition 10.9.2. Let \(\alpha_{\xi, h} \) be the operator defined in the section for nebentypus. We define

\[A := \alpha_{\xi, h} A'. \]

We are in a position to state our formula for the Fourier coefficients for Klingen Eisenstein series. Before this let us do some normalizations:

\[
C_D(\beta, r, u) = \frac{(2\pi i)^{2d}(2\pi)^d|\delta_k|_{\mathcal{K}}^{-1/2}|\delta_F|_{\mathcal{F}}^{-1} \xi(\det ru_t) |\det ru|_{\mathcal{K}}^{2d+2} \prod_{v|\infty} (\det \beta_{v, r}^{2d})^d}{(\prod_{j=0}^{(\kappa - 1 - j)!})^d L^\Sigma(\kappa - j, \xi, \chi_k)} \times \Psi_p(-1) \chi_p \prod_{v|p} \theta^2(\chi, \xi, p) \chi_p \xi^t(p \gamma_{up})p^{d(1-2\kappa)} \]

\[B_{\mathcal{D}, 1} := \frac{(\kappa - 3)!^d L^\Sigma(\kappa - 2, \xi)}{(-2)^d (2\pi i)^{(\kappa - 2)!} \prod_{v|p} (\theta(\chi, \xi, p) \chi^t(p \gamma_{up})p^{d(2-\kappa)})u_p} \]

\[B_{\mathcal{D}, 2} := \frac{|M_{\mathcal{D}}|^{2d} i^{2d-2d} \delta_k|_{\mathcal{K}}^{-1/2}|\delta_F|_{\mathcal{F}}^{-1} \prod_{v|\Sigma/\{v|p\}} \chi_v \xi_v(y, \delta| \chi_v \xi_v y, \delta \chi_v \xi_v) g(\chi_v \xi_v y, \delta \chi_v \xi_v) y, \delta \chi_v \xi_v |^{2-\kappa}}{\chi_p \xi^t(M_{\mathcal{D}}) g(\xi, \chi_p)} \]

\[B_D(\beta, r, u) := \frac{\psi(\det ru)|\det ru|_{\mathcal{K}}^{2d+2} \chi_p \xi^t(p \gamma_{up})p^{d(2-\kappa)} \theta(\chi, \xi)}{\prod_{v|\Sigma/\{v|p\}} \chi_v \xi_v(y, \delta| \chi_v \xi_v y, \delta \chi_v \xi_v) g(\chi_v \xi_v y, \delta \chi_v \xi_v) y, \delta \chi_v \xi_v} \]

Then

\[B_{\mathcal{D}}^{(2)} C_D(\beta, r, u) = B_D(\beta, r, u) B_{\mathcal{D}, 1} B_{\mathcal{D}, 2}. \]

The following proposition follows immediately from proposition 10.8.1 and the previous calculation.
Proposition 10.9.1. With the assumptions at the beginning of this section. Let $\beta \in S_2(F), \beta > 0, u, h, x$ as before, Then:

$$C_D(\beta, x) = 2^{-3d(2i)(\kappa - 1)} \mathcal{L}(f, \rho(\begin{pmatrix} -1 \\ N \end{pmatrix})) \tilde{f}^c \gg_{GL_2, \Gamma_0(N)}$$

$$= [\tilde{\delta}_K \tilde{\delta}_1]^{-1} \xi(\tilde{\delta}_K \tilde{\delta}_1) B_D(\beta, h, u) \times$$

$$< B_{D,1} \mathcal{E}_D(-) B_{D,2} \left(\begin{pmatrix} \delta_1^{-1} \\ \delta_1 \end{pmatrix} \right) A'_2(h, -; u), \rho(\begin{pmatrix} M_2 D \delta \delta_1 \nu \rho \\ \Pi_{v \mid p, p^{r_v}} M \nu \delta \delta_1 \nu \rho \end{pmatrix}) \right) \tilde{f}^c \gg_{GL_2, \Gamma_0(N)}$$

Now let us make some choices for the u and β and record some formulas for the Theta kernel functions. We remark that our convention for Φ is slightly different from [35] in the $F = \mathbb{Q}$ case (ours is given by applying $\omega(\begin{pmatrix} \delta_1^{-1} \delta_1^{-1} \end{pmatrix})$ to the one chosen by [35]).

Let $\gamma_0 \in GL_2(A_{K,f})$ be such that $\gamma_0,v = (\eta, 1)$ for $v \mid p$ and $\gamma_0,v = 1$ otherwise. We let $u_i = \gamma_0 \begin{pmatrix} 1 \\ a_i^{-1} \end{pmatrix}$. Then β_{ijk}, u_i satisfy the assumptions at the beginning of this section.

For $v \mid p$, then

$$\Phi_{\beta_{ijk}, \xi_{v,1}^{-1}, x, v, \gamma_0, p}(x) = \begin{cases} \tilde{\xi}_{v,2} \mu_{1,v}^{-1}(b_k q_i x_2') g(\xi_{v,2}) \tilde{\xi}_{v,1} \mu_{1,v}^{-1}(x_1', b_j) g(\xi_{v,1}) & x_1 = (x_1', x_2') \in \mathbb{Z}_p^* \times \mathbb{Z}_p \\ x_2 = (x_2', x_2') \in \mathbb{Z}_p^* \times \mathbb{Z}_p \\ 0 & \text{otherwise} \end{cases}$$

(10.19)

For $j \in I$, then

$$\omega_{\beta_{ijk}}(g_{\infty,j}) \Phi_{\beta_{ijk}, \infty,j}(x) = e(Nm(x_1) b_j w) e(Nm(x_2) b_k q_i w) j(g_{\infty,j}, i)^{-2}$$

also if $v \nmid p$.

131
\[\Phi_{\beta,1,M_D,1}(x) = |D_v|^{-1}\lambda_v(-1)|M_D^2|^{-1} \begin{cases}
1 - \frac{1}{q_v}, & x_1 \in M_D, x_2 \in \mathcal{O}_v \\
-\frac{1}{q_v}, & x_2 \in \mathcal{O}_v, x_1 \in \frac{M_D}{p^{\nu}O_v} \\
0, & \text{otherwise.} \end{cases} \tag{10.20} \]

for \(v \) non split, then

\[\Phi_{\beta,1,M_D,1}(x) = |D_v|^{-1}\lambda_v(-1)|M_D^2|^{-1} \begin{cases}
(1 - \frac{1}{q_v})^2, & x_1 \in \frac{M_D\mathcal{O}_v}{\mathcal{O}_v^1}, x_2 \in \mathcal{O}_v^1. \\
-\frac{1}{q_v}(1 - \frac{1}{q_v}), & x_2 \in \frac{\mathcal{O}_v}{\mathcal{O}_v^1}, x_1 \in \left(\frac{M_D}{p^{\nu}\mathcal{O}_v^1} \cdot \mathcal{O}_v^\infty \times \mathcal{O}_{F_v}^\infty \right) \\
\frac{1}{q_v}, & x_2 \in \frac{\mathcal{O}_v}{\mathcal{O}_v^1}, x_1 \in \left(\frac{M_D}{p^{\nu}\mathcal{O}_v^1} \cdot \mathcal{O}_v^\infty \times \frac{M_D}{p^{\nu}\mathcal{O}_v^1} \cdot \mathcal{O}_v^\infty \right) \\
0 & \text{otherwise.} \end{cases} \tag{10.21} \]

for \(v \) split.

If \(v = v_i \):

\[\Phi_{0,u_i,v}(x) = \begin{cases} 1 & x_1 \in \mathcal{O}_{K,v}, x_2 \in a_i^{-1}\mathcal{O}_{K,v} \\
0 & \text{otherwise.} \end{cases} \tag{10.22} \]

10.10 Identify with Rankin-Selberg Convolutions

From now on we assume that all characters are unramified outside \(p \).

Let \(\alpha = (a_v)_v \in GL_2(\mathbb{A}_F) \) be defined by \(a_v = \left(\begin{smallmatrix} 1 & -1 \\ M_D^2 & \tilde{D}_K \end{smallmatrix} \right) \) of \(v \in \sum_1 \setminus \{p\} \) and \(a_v = 1 \) otherwise. For \(m \geq 0 \) let \(b_m \in GL_2(\mathbb{A}_F) \) be defined by \(b_{m,v} = \left(\begin{smallmatrix} 1 & -1 \\ p^m & 1 \end{smallmatrix} \right) \) and \(b_{m,v} = 1 \) if \(v \nmid p \).

Then

\[\rho(\alpha)\mathcal{E}_D = E(f_D', z, \gamma; \gamma) \]

where \(f_D'(z, g) := f_D(z, g\alpha_f^{-1}) \in I_1(\tau/\lambda) \). It follows that \(f_D'(z, g) \) is supported on

\[B_1(\mathbb{A}_F)\eta \mathcal{K}_1 \cdot \eta \mathcal{N}_B_1(\tilde{\mathcal{O}_F})\alpha = B_1(\mathbb{A}_F)\mathcal{K}_1 \cdot \eta \mathcal{N}_B_1(\tilde{\mathcal{O}_F}) \]
and that for $g = bk_{\infty} k_f$ in the support we have:

$$f_D(z, g) = (M_{D}^{2} D_\mathcal{K})^{d(k/2-1)} \tau \lambda(d_b d_{k_f}) |a_b/d_b|^{2k/2} J_1(k_\infty, i)^{2-k}.$$

Now we recall the notion of Rankin-Selberg convolution for Hilbert modular forms, following [11]. Let f and g be two Hilbert automorphic forms (as functions on $GL_2(\mathbb{A}_F)$) with level m. For simplicity, we assume that both f and g have unitary central characters χ and ξ and have parallel weight k and κ such that $k > \kappa$. Let $\tau = \chi/\xi$ and define

$$E(x; s) = \sum_\gamma \tau(\gamma x) \eta(\gamma x)^s |j(\gamma, x_\infty(z_0))|^{k-\kappa} |j(\gamma, x_\infty(z_0))|^{\kappa-k}$$

as in [11, p341 (4.5)] where η is defined at the bottom of [11, P341]. Suppose that the nebentypus of g and f differ by the nebentypus of E. (this satisfies [11, 4.5]). Consider the following integral:

$$Z(s, f_c, g) = \int_{F_{\mathcal{K}}/F} \Phi(f_c, g)(\begin{pmatrix} y & x \\ 0 & 1 \end{pmatrix}) |y|^s dxdy$$

where $\Phi(f_c, g)(x) = f^u(x)g^u(x)|j(x_\infty(z_0))|^{k-k}$ and $g^u(x) = D^{-1}g(x)|j(x_\infty(z_0))|$ with D the discriminant of F/\mathbb{Q}. Note that there are minor differences between the notations here and [11], and the m and μ there are 0 in our case. Then:

$$Z(s, f_c, g) = D^{(1+2s)/2} \tau(\mathfrak{d})^{-1}(4\pi)^{-d(s+(k+\kappa)/2)} \Gamma(s + k/2 + \kappa/2)^d D(s, f^c, g)$$

where

$$D(x, f^c, g) = \sum_{\mathfrak{a} \subseteq \mathfrak{a} \neq 0} a(\mathfrak{a}, f^c) a(\mathfrak{a}, g) \text{Nm}_{F/\mathbb{Q}}(\mathfrak{a})^{-s}.$$

By (4.7) in loc.cit, up to a non-zero constant

$$Z(s, f, g, \tau) = D^{-2} \int_{X_0} f g(x)$$

$$\times \mathcal{E}(x; s + 1) j(x_\infty(z_0))^{s-k} |j(x_\infty(z_0))|^{k-k} dx,$$

where $X_0 := GL_2(F) \backslash GL_2(\mathbb{A}_F)/U_0(m) \mathbb{A}^\times_{\infty} F_{\mathcal{K}}$. Note that our formula is a special case of loc.cit (4.7) and is easier due to our assumptions on the nebentypus.

Suppose $h \in S_2(p^r M_{D}^{2} D_\mathcal{K})$ such that the nebentypus of $E_{\mathfrak{p}, h}$ is the same as f. Then:
Assumptions are as above. Suppose

Lemma 10.10.1.

\[B_{D,1} < \mathcal{E}_D \cdot \rho(\begin{pmatrix} 1 \\ -1 \end{pmatrix}) \left(\frac{1}{1} \right) \left(\frac{1}{1} \right) \left(\frac{1}{1} \right) \left(\frac{1}{1} \right) h, \rho(\begin{pmatrix} 1 \\ -1 \end{pmatrix}) \left(\frac{1}{1} \right) \left(\frac{1}{1} \right) \left(\frac{1}{1} \right) \left(\frac{1}{1} \right) \frac{1}{f} f \]

\[= B_{D,1} < \rho(\begin{pmatrix} 1 \\ -1 \end{pmatrix}) \left(\frac{1}{1} \right) \left(\frac{1}{1} \right) \left(\frac{1}{1} \right) \left(\frac{1}{1} \right) \mathcal{E}_D \cdot h, \rho(\begin{pmatrix} 1 \end{pmatrix}) \left(\frac{1}{1} \right) \left(\frac{1}{1} \right) \left(\frac{1}{1} \right) \left(\frac{1}{1} \right) \frac{1}{f} f \]

\[\times \left(\begin{pmatrix} 1 \\ -1 \end{pmatrix} \right) \left(\frac{1}{1} \right) \left(\frac{1}{1} \right) \left(\frac{1}{1} \right) \left(\frac{1}{1} \right) \frac{1}{f} f \]

\[= B_{D,1} < \rho(\begin{pmatrix} 1 \\ -1 \end{pmatrix}) \left(\frac{1}{1} \right) \left(\frac{1}{1} \right) \left(\frac{1}{1} \right) \left(\frac{1}{1} \right) \mathcal{E}_D \cdot h, \rho(\begin{pmatrix} 1 \end{pmatrix}) \left(\frac{1}{1} \right) \left(\frac{1}{1} \right) \left(\frac{1}{1} \right) \left(\frac{1}{1} \right) \frac{1}{f} f \]

\[= B_{D,1} < \rho(\begin{pmatrix} 1 \\ -1 \end{pmatrix}) \left(\frac{1}{1} \right) \left(\frac{1}{1} \right) \left(\frac{1}{1} \right) \left(\frac{1}{1} \right) \mathcal{E}_D \cdot h, (\chi_p(p) a_p(f_p))^{r_u - r_p} \rho(\begin{pmatrix} 1 \end{pmatrix}) \left(\frac{1}{1} \right) \left(\frac{1}{1} \right) \left(\frac{1}{1} \right) \left(\frac{1}{1} \right) \frac{1}{f} f \]

\[= |M_B^2 \tilde{D}_K|_F \tilde{r}^{-1} (\tilde{\chi}_p(p) a_p(f_p))^{r_u - r_p} B_{D,1} (4\pi)^{(1-k)\Gamma(k-1)\Gamma(k-1)} \rho(\begin{pmatrix} 1 \end{pmatrix}) \left(\frac{1}{1} \right) \left(\frac{1}{1} \right) \left(\frac{1}{1} \right) \left(\frac{1}{1} \right) \frac{1}{f} f \]

\[= |M_B^2 \tilde{D}_K|_F \tilde{r}^{-1} (\tilde{\chi}_p(p) a_p(f_p))^{r_u - r_p} B_{D,1} c(f)(\chi_p(p) a_p(h_p))^{u_u - r} (4\pi)^{(1-k)\Gamma(k-1)\Gamma(k-1)} \rho(\begin{pmatrix} 1 \end{pmatrix}) \left(\frac{1}{1} \right) \left(\frac{1}{1} \right) \left(\frac{1}{1} \right) \left(\frac{1}{1} \right) \frac{1}{f} f \]

\[\times L^{\Sigma(k-2, \tilde{\chi}_p)} L(f_1 \times h, \kappa - 1). \]

Lemma 10.10.1. Assumptions are as above. Suppose \(h \in S_2(p^r M_B^2 \tilde{D}_K) \) is a normalized eigen form on \(GL_2(K, F) \) then

\[< B_{D,1} \mathcal{E}_D \cdot \rho(\begin{pmatrix} 1 \\ -1 \end{pmatrix}) \left(\frac{1}{1} \right) \left(\frac{1}{1} \right) \left(\frac{1}{1} \right) \left(\frac{1}{1} \right) \mathcal{E}_D \cdot h, \rho(\begin{pmatrix} 1 \\ -1 \end{pmatrix}) \left(\frac{1}{1} \right) \left(\frac{1}{1} \right) \left(\frac{1}{1} \right) \left(\frac{1}{1} \right) \frac{1}{f} f \]

\[= B_{D,3} L(f_1 \times h, \kappa - 1) \]

where:

\[B_{D,3} := |M_B^2 \tilde{D}_K|_F \tilde{r}^{-1} (\tilde{\chi}_p(p) a_p(f_p))^{r_u - r_p} B_{D,1} c(f)(\chi_p(p) a_p(h_p))^{u_u - r} (4\pi)^{(1-k)\Gamma(k-1)\Gamma(k-1)} L^{\Sigma(k-2, \tilde{\chi}_p)} - 1. \]
Chapter 11

\textit{p}-adic Interpolations

11.1 \textit{p}-adic Eisenstein Datum

As in [35, chapter 12] we define the \textit{p}-adic Eisenstein datum to be $\mathcal{D} = (A, I, f, \psi, \Sigma)$ consists of:

- The integer ring A of a finite extension of \mathbb{Q}_p;
- I a finite integral domain over $\Lambda_{W,A}$;
- a nearly ordinary I-adic form f which is new at all $v \nmid p$ and has the tame part of the character equal to 1;
- a finite order Hecke character ψ of $A^\times \times K/K^\times$ and $\cond \psi|p$ and $\psi|_{K^\times_p} \equiv 1$;
- a finite set Σ of primes containing all primes dividing $N\delta_K$.

\textbf{Remark 11.1.1.} For simplicity we have assumed ψ is unramified outside p and that the X_f and ξ in [35, 12.1] are trivial.

Recall also that we have defined in section 7.1 the maps α and β. Let $\psi := \alpha \circ \omega \psi \Psi_{K,\psi}^{-1}$ and $\xi := \beta \circ \Psi_{K,\psi}$.

\textbf{Definition 11.1.1.} We define the set of arithmetic weights ϕ such that $\kappa_{\phi} > 6$ to be \mathcal{X}^α and $\mathcal{X}^{\text{gen}}_D \subset \mathcal{X}^\alpha$ to be the subset such that the local Eisenstein datum is Generic as defined in subsection 8.1.3.

For $\phi \in \mathcal{X}^\alpha$ we define:

$$\psi_\phi(x) := (\prod_{\sigma \in \Sigma} x_\sigma^{-\kappa_{\sigma,\phi}} x_{e_\sigma}^{\kappa_{\sigma,\phi}})(\phi \circ \psi(x)) |x|_{K^\times_p}^{\kappa_{\phi}}.$$
Here v_σ is the p-adic place corresponding to σ under $\iota : \mathbb{C} \simeq \mathbb{C}_p$. We also define:

$$\xi_\phi := \phi \circ \xi.$$

We always assume (irred) and (dist) defined in the introduction hold for our Hilbert modular form f or Hida family f.

11.2 Interpolation

11.2.1 Congruence Module and the Canonical Period

Suppose R is a finite extension of \mathbb{Z}_p we let $T_{\text{ord}} \kappa (N, \varepsilon; R)$ (respectively, $T_0 \kappa (M, \varepsilon; R)$) generated by the Hecke operators T_v (these are Hecke operators defined using the double coset $U_1(N)^v$ for the v's).

For any $f \in S_{\text{ord}}(N, \varepsilon; R)$ a nearly ordinary eigenform. Then we have $1_f \in T_{\kappa, \text{ord}}(N, \varepsilon; R) \otimes_R F_R = T_{\kappa} \times F_R$ the projection onto the second factor.

Suppose that the localization of the Hecke algebra at m_f satisfies the Gorenstein property. Then $T_{\text{ord,}0}(M, \varepsilon; R)_{m_f}$ is a Gorenstein R-algebra, so $T_{\text{ord,}0}(M, \varepsilon; R) \cap (0 \otimes F_R)$ is a rank one R-module.

We let ℓ_f be a generator; so $\ell_f = \eta_f 1_f$ for some $\eta_f \in R$.

Suppose $f \in M_{\kappa}(M, \Lambda)$ is a nearly ordinary Λ-adic cuspidal newform. Then as above $T_{\kappa, \text{ord,}0}(M, \varepsilon; R) \otimes F_1 \simeq T' \times F_1$, F_1 being the fraction field of Λ where projection onto the second factor gives the eigenvalues for the actions on f. Again let 1_f be the idempotent corresponding to projection onto the second factor. Then for an $g \in S_{\text{ord}}(M, \varepsilon; R) \otimes F_1$, $1_f g = c f$ for some $c \in F_1$. As above, under the Gorenstein property for f, we can define ℓ_f and η_f.

Definition 11.2.1. For a classical point f_ϕ of f the canonical period of f_ϕ is defined by

$$\Omega_{\text{can}} := \frac{<f_\phi, \tilde{\Psi}(N)>}{\eta_f \phi}.$$

Remark 11.2.1. This “canonical” period is not quite canonical since it depends on the generator ℓ_f.

Now we define $M_{\text{K}}(M, \Lambda)$ to be the space of (finite set of) formal q-expansions which when
specializing to $\phi \in \mathcal{A}^a$ is a classical modular form with the nebentypus ε_ϕ. Lemma 12.2.4 in [35] is true as well for the Hilbert modular forms: (the character θ there is assumed to be trivial in our situation.)

Lemma 11.2.1. There exists an idempotent $e \in \text{End}_{\Lambda}(M_{\mathcal{A}}(M; \Lambda_D))$ such that for any $g \in M_{\mathcal{A}}(M; \Lambda_D)$, $(eg)_\phi = eg_\phi \in M_{\mathcal{A}}^{\text{ord}}(M_{\mathcal{A}}^\phi, \varepsilon_\phi; \phi(\Lambda_D))$ for all $\phi \in \mathcal{A}^a$.

We also have an analogue of [35, lemma 12.2.7] (the key interpolation lemma) in the Hilbert modular case and the proofs are completely the same. This is used in constructing the p-adic L-functions and p-adic Eisenstein series in the next two sections.

11.3 p-adic L-Functions

Now we state the main theorems for the existence of the non-integral and integral p-adic L-functions following [35, 12.3].

Theorem 11.3.1. Let A, \mathbb{H}, f, ξ, and Σ as above. Suppose that there exists a finite A-valued idele class character ψ of A^\times such that $\psi|_{A^\times} = \chi_f$ and ψ is unramified outside Σ.

(i) There exists $\mathcal{E}_{f, K, \xi} \in \mathcal{F}_f \otimes \mathcal{I}_K$ such that for any $\phi \in \mathcal{X}^{\text{gen}}_D$, $\mathcal{E}_{f, K, \xi} \otimes \mathcal{I}_K$ is finite at ϕ and

$$\phi(\mathcal{E}_{f, K, \xi}) = \prod_{p | \mathfrak{m}_f} \mu_{1, v}(\phi)(p)^{-\text{ord}_v(Nm(f\xi_\ell, \xi_\ell))^2 (\kappa_\ell - 2)\phi(\xi_\ell, \xi_\ell)Nm(f\xi_\ell, \xi_\ell, \delta_\ell)\phi(\xi_\ell, \xi_\ell, \kappa_\ell, \kappa_\ell - 1)}$$

(ii) Suppose that the localization of the Hecke algebra at \mathfrak{m}_f is Gorenstein. Then there exists $\mathcal{E}_{f, K, \xi} \in \mathcal{I}_K$ such that for any $\phi \in \mathcal{X}^{\text{gen}}_D$, $\mathcal{E}_{f, K, \xi}$ is finite at ϕ and

$$\phi(\mathcal{E}_{f, K, \xi}) = \prod_{p | \mathfrak{m}_f} \mu_{1, v}(\phi)(p)^{-\text{ord}_v(Nm(f\xi_\ell, \xi_\ell))^2 (\kappa_\ell - 2)\phi(\xi_\ell, \xi_\ell)Nm(f\xi_\ell, \xi_\ell, \delta_\ell)\phi(\xi_\ell, \xi_\ell, \kappa_\ell, \kappa_\ell - 1)}$$

Recall that the $\mu_{1, v}$ are defined by $\pi_v \simeq \pi(\mu_{1, v}, \mu_{2, v})$ and $\mu_{1, v}(p)$ has lower p-adic valuation than $\mu_{2, v}(p)$.

Proof. See [35, 12.3.1]. The point is the Fourier coefficients of the normalized Siegel Eisenstein series constructed in the last chapter are elements in Λ_D (using the formulas in section 10.5) and thus the fourier jacobi coefficients (the $B^{(2)}_D g^{(2)}_{D, \phi}(-, x)$'s there) are Λ_D-adic forms. A difference is that: the Fourier Jacobi coefficients are only forms on $U(1, 1)$, which we do not know how to compare the
unitary group inner product with the GL_2 unless it satisfies (*) as defined in the section for neben typus. So we use

$$\sum_j B^{(2)}_D g^{(2)}_D,\beta \left(\begin{pmatrix} b_j^{-1} \\ 1 \end{pmatrix} \right) \left(\begin{pmatrix} b_j \\ 1 \end{pmatrix} \right) \varepsilon'(\begin{pmatrix} b_j \\ 1 \end{pmatrix})$$

instead, where b_j’s are defined before remark 10.9.1 and ε' is some neben character. This satisfies (*) and one can apply the constructions in the last section to the image of the above expression under α_ψ.

We will often write \tilde{L}_D^Σ and L_D^Σ for $\tilde{L}_{f,K,\xi}^\Sigma$ and $L_{f,K,\xi}^\Sigma$. Here D stands for the Eisenstein datum.

Remark 11.3.1. [11] also constructed a full dimensional p-adic L-functions for Hilbert modular Hida families. In fact his p-adic L-function corresponds to our \tilde{L} except for local Euler factors at Σ. Our interpolation points are not quite the same as his. In fact he used the differential operators to get the whole family while we instead allowed more general neben typus at p. (Recall that he used the Rankin-Selberg method and required the difference of the p-parts of the neben typus of f and g comes from a global character.) Hida is able to interpolate more general critical values. In particular, the points ϕ_0 corresponding to the special value $L(f_2,1)$ where f_2 is the element in f with parallel weight 2 and trivial neben typus is an interpolation point. Our $\tilde{L}_{f,K,1}^\Sigma$ coincides with his along a subfamily containing the cyclotomic 1-dimensional family containing ϕ_0. This is very useful in proving some characteristic 0 results for Selmer groups.

We also have the Σ primitive p-adic L-functions $\tilde{L}_{f,K,\xi}^\Sigma$ and $L_{f,K,\xi}^\Sigma$ for a single f by specializing the one for f to f. (See [35, 12.3.2])

11.3.1 Connections with Anticyclotomic p-adic L-Functions

Let $\beta : \Lambda_{K,A} \to \Lambda_{K,A}^-$ be the homomorphism induced by the canonical projection $\Gamma_K \to \Gamma_K^-$. For A reduced, β extends to $F_A \otimes_A \Lambda_{K,A} \to F_A \otimes_A \Lambda_{K,A}^-$, F_A the ring of fractions of A.

Now we define the anticyclotomic p-adic L-function:

$$\tilde{L}_{f,K,\xi}^{\Sigma,-} := \beta(L_{f,K,\xi}^{\Sigma}) \in \Lambda_{K,A}^-$$

and

$$\tilde{L}_{f,K,\xi}^{\Sigma,-} := \beta(\tilde{L}_{f,K,\xi}^{\Sigma}) \in \Lambda_{K,A}^- \otimes_A F_A$$

For $v|p$ we can further specialize $\gamma_v = 1$ for all $v' \neq v$ to get $\tilde{L}_{f,K,\xi,v}^{\Sigma,-}$ and $\tilde{L}_{f,K,\xi,v}^{\Sigma,-}$.
We define two notions concerning the anticyclotomic p-adic L-function which would be useful.

Definition 11.3.1. For some $v | p$, writing $\tilde{L}_{f, \xi, \Sigma}^{-, -f, K, \xi, v} = \tilde{a}_0 + \tilde{a}_1 (\gamma_{-v} - 1) + \cdots + \tilde{a}_i \in F_A$ (the fraction field), and $L_{f, \xi, \Sigma}^{-, -f, K, \xi} = a_0 + a_1 (\gamma_{-v} - 1) + \cdots + a_i \in A$, when we have the Gorenstein property required to construct it, then we say f satisfies

(NV1) if at least one of the \tilde{a}_i is non-zero.

(NV2) if at least one of the a_i is a p-adic unit.

We denote f_2 to be an ordinary form in the family f of parallel weight 2 and trivial nebentypus and characters. Also let ϕ_0 be the 1-dimensional prime which is the map given by f_2 when restricting to I and maps all the $W_{i,v}$’s and Γ_K to 1. The corresponding special L-value interpolated at ϕ_0 is $L(f_2, 1)$.

Now we state two theorems giving sufficient condition for that (NV1) and (NV2) to be satisfied.

Theorem 11.3.2. ([4]) f is a Hilbert modular form of parallel weight 2 and trivial Neben typus and character. If the conductor of $\chi_{K/F}$ and f are disjoint and the $S(1)$ defined in [4, p123] has even number of primes, then picking any $v | p$ we have (NV1) is satisfied for f.

Also Jeanine Van-Order constructed an anti-cyclotomic p-adic L-function $L_{f, \xi, 1}$. We state the following theorem of [45]:

Theorem 11.3.3. (Jeanine Van-Order) Suppose the level of f_2 is $M = M^+ M^-$ where M^+ and M^- are products of split and inert primes respectively. Suppose:

(1) M^- is square free with the number of prime factors $\equiv d \pmod{2}$;

(2) $\bar{\rho}_f$ is ramified at all $v | M^-$.

then for any $v | p$ the anti-cyclotomic μ invariant at v defined by her is 0.

In fact in her paper [45] the result is not stated this way. First of all her formula is stated in an implicit say since she is using [46]. However she informed the author that in our situation it is not hard to get the above theorem using the special value formula in [49] instead. Note also that her period is not our canonical period. However the difference of the periods is a p-adic unit under the second hypothesis above. So we can relate our Σ-primitive anticyclotomic L-function to hers similar to [35, 12.3.5]. Thus by the argument in loc.cit the μ invariant of our p-adic L-function is also 0. Thus (NV2) is OK for f_2.

11.4 p-adic Eisenstein Series

We state some theorems which are straight generalizations of the section 12.4 of [35].
Theorem 11.4.1. Assumptions as in theorem 11.3.1 (ii). Let $D = (A, \mathbb{I}, f, \psi, \xi, \Sigma)$ be a p-adic Eisenstein datum. Suppose that (irred) and (dist) hold. Then for each $x = \text{diag}(u, \bar{u}^{-1}) \in G(A_{F \mid f})$ there exists a formal q-expansion

$$E_D(x) := \sum_{\beta \in S(F), \beta \geq 0} c_D(\beta, x)q^\beta$$

c $\in \Lambda$, with the property that for each $\phi \in \mathcal{X}_{D}^{\text{gen}}$:

$$E_D, \phi(x) := \sum_{\beta \in S(F), \beta \geq 0} \phi(c_D(\beta, x))e(\text{Tr}\beta Z)$$

is the q expansion at x for G_D, ϕ.

Remark 11.4.1. There is also a \tilde{E}_D version of the above theorem under the hypothesis of theorem 11.3.1 (i) using ℓ_f instead of ξ. We omit it here. Also from the definition of ℓ_f and the fact that the congruence number of f_2 is finite, we can find an element $b \in \Lambda_D$ such that $b \ell_f$ in a Hecke operator with integra (Λ_D) coefficients and that $b(\phi_0) \neq 0$. This remark will be useful later.
Chapter 12

p-adic Properties of Fourier coefficients of E_D

In this chapter, following [SU]chapter 13, using the theta correspondence between different unitary groups, we prove that certain Fourier coefficient of E_D is not divisible by certain height one prime P.

12.1 Automorphic Forms on Some Definite Unitary Groups

12.1.1 generalities

Let $\beta \in S_2(F), \beta > 0$. Let H_β be the unitary group of the pairing determined by β. We write H for H_β sometimes for simplicity.

For any open compact subgroup $U \subseteq H(\mathbb{A}_F)$ and any \mathbb{Z}-algebra R we let:

$$A(U, R) := \{ f : H(\mathbb{A}_F) \to R : f(\gamma h k u) = f(h), \gamma \in H(F), k \in H(\mathbb{A}_\infty), u \in U \}.$$

and for any subgroup $K \subseteq (\mathbb{A}_F)$ let

$$A_H(K; R) := \lim_{U \ni k} A_H(U; R),$$
12.1.2 Hecke operators.

For a prime \(v \) let \(U, U' \subset H(F_v) \) be open compact subgroups and let \(h \in H(F_v) \). We can define Hecke operators \([UhU'] : \mathcal{A}(U, R) \to \mathcal{A}_H(U'; R) \) in the usual way.

We will be mainly interested in two cases:

unramified split case.

Suppose \(v \) splits in \(K \). The identification \(GL_2(K_v) = GL_2(F_v) \times GL_2(F_v) \) yields an identification of \(H(F_v) \) with \(GL_2(F_v) \) via projection onto the first factor:

\[
H(F_v) = \left\{ \begin{pmatrix} A & \beta \\ \bar{\beta} A^{-1} \end{pmatrix} \in GL_2(F_v) \right\}.
\]

We let \(H_v \subset H(F_v) \) be the subgroup identified with \(GL_2(\hat{O}_{F,v}) \). For \(U = H_v \) we Define \(T_{U}^{H,v} \) for the Hecke operator \([UhU], h_v := \begin{pmatrix} \varpi_v \\ 1 \end{pmatrix} \in GL_2(F_v) = H(F_v) \), where \(\varpi_v \) is a uniformizer at \(v \).

primes dividing \(p \).

If \(v \mid p \), for a positive integer \(n \) we let \(I_{n,v} \subset H_v \) be the subgroup identified with the set of \(g \in GL_2(\mathbb{Z}_p) \) such that \(g \mod p^n \) belongs to \(N_B(\mathbb{Z}/p^n\mathbb{Z}_p) \). For \(U = I_{n,v} \), we write \(U_{H}^{I,n,v} \) for the Hecke operator \([Uh,U] \) where \(h_v := \begin{pmatrix} p \\ 1 \end{pmatrix} \). This operator respects variation in \(n \) and \(U' \) and commutes with the \(T_{U}^{H,v} \)s for \(v \nmid p \). Let \(U_p := \prod_{v \mid p} U_v \).

Now we define the nearly ordinary projector. First recall that we have fixed an \(\iota : \mathbb{C}_p \simeq \mathbb{C} \). Let \(R \) be either a \(p \)-adic ring or of the form \(R = R_0 \otimes_{\mathbb{Z}_p} \mathbb{Q}_p \) with \(R_0 \) a \(p \)-adic ring. Then we define

\[
e_{H} := \lim_{\to} U_{H,m!}^{H,m} \in End_R(\mathcal{A}_H(U; R)).
\]

It is well known that this exists and is an idempotent.

12.2 Applications to Fourier Coefficients

12.2.1 Forms on \(H \times U_1 \)

If \(v \) splits in \(K \) then we view representations of \(H(F_v) \) via the respective identifications of these groups with \(GL_2(F_v) \) (projection onto the first factor of \(GL_2(K_v) = GL_2(F_v) \times GL_2(F_v) \)). Let \(\lambda \) be a character of \(\mathbb{A}_K^\times / \mathbb{K}^\times \) such that \(\lambda_\infty(z) = (z/|z|)^{-2} \) and \(\lambda|_{\mathbb{A}_p^\times} = 1 \). Let \((\pi, V), V \subseteq \mathcal{A}_H \), be an irreducible representation of \(H(\mathbb{A}_F, f) \) and let \((\sigma, W), W \subseteq \mathcal{A}(U_1) \), be an irreducible representation.
of $U_1(K,F)$. Let χ_π and χ_σ be their respective central characters. We assume that:

• $\chi_\sigma = \lambda \chi_\pi^{-1}$;

• if v splits in K then $\sigma_v \simeq \pi_v \otimes \lambda_{v,1}$ as representations of $GL_2(F_v)$.

• we fix a finite set S of primes outside of which λ is unramified.

Let $\varphi \in V \otimes W$. We assume that

• if $v \not\in S$ then $\varphi(hu,g) = \varphi(h,g)$ for $u \in H_v$.

• there is a character ε of $T_{U(1,1)}(\hat{O}_F)$ and an ideal N divisible only by primes in S such that $\varphi(h, gk) = \varepsilon(a_k d_k) \varphi(h, g)$ for all $k \in U_1(\hat{O}_F)$ satisfying $N | c_k, (k = \left(\begin{array}{cc} a_k & b_k \\ c_k & d_k \end{array} \right))$.

Now for the group U_1 we can similarly define Hecke operators $T_{U_v}^H$ for unramified split v’s using the double coset action for $\left(\begin{array}{c} \varphi_v \\ 1 \end{array} \right)$ and U_v operators for $v | p$ and the nearly ordinary projector e_U.

The following lemma follows immediately from our assumptions for π and σ.

Lemma 12.2.1. Suppose above assumptions are valid, then for any $v \not\in S$ that splits in K.

$$(\chi_{\pi,v}^{-1}(\varphi_v)T_{U_v}^H \varphi)(h, u) = T_{U_v}^U(\varphi)(h, u),$$

where we have wrote $\chi_{\pi,v}$ as $(\chi_{\pi,v,1}, \chi_{\pi,v,2})$ and $\lambda_v = (\lambda_{v,1}, \lambda_{v,2})$ with respect to $K_v = F_v \times F_v$.

Now we consider the p-adic ordinary idempotents e_H and e. For any $v | p$ suppose $\varepsilon_v(k) = \varepsilon_{1,v}(a_k) \varepsilon_{2,v}(d_k)$. Suppose additionally that for such v

• λ_v is unramified at v.

• $\text{cond}(\varepsilon_{2,v}) = (p^r)$, $\text{cond}(\varepsilon_{1,v}) = (p^s)$, $r > s$ for any $v | p$.

• $p^r | N$.

• $\phi(hk, g) = \varepsilon_{2,v}^{-1}(a_k) \varepsilon_{1,v}^{-1}(d_k) \varphi(h, g)$ for $k = (k_1, k_2) \in H_p, p^r | c_{k_1}$. (12.1)

Lemma 12.2.2. Assuming all the above assumptions. Then

$$(e_H \varphi)(h, -) = e_U(\varphi)(h, -).$$

Proof. Completely the same as [35, 13.2.3].
12.2.2 Consequences for Fourier Coefficients

We return to the notation and setup of chapter 10. In particular \(\mathcal{D} = (\varphi, \psi, \tau, \Sigma) \) is a Eisenstein datum. Letting \(\Theta_{ijk}(h, g) := \Theta_{\beta_{ijk}}(h, \{ \Phi_{\mathcal{D}, \beta_{ijk}} \}, \sigma) \). Now we decompose each \(\Theta_{ijk}(h, g) \) with respect to irreducible automorphic representations \(\pi_H \) of \(H_{ijk}(\mathbb{A}_F) \):

\[
\Theta_{ijk}(h, g) = \sum_{\pi_H} \varphi_H^{(ijk)}(h, g).
\]

Then, as in [35, p 202], using general consequences of theta correspondences in the split case we may decompose:

\[
\Theta_{ijk}(h, g) = \sum_{(\pi_H, \sigma)} \varphi_{(\pi_H, \sigma)}^{(ijk)}(h, g), \varphi_{(\pi_H, \sigma)}^{(ijk)} \in \pi_H \otimes \sigma,
\]

\(\sigma_v \simeq \tilde{\pi}_{H,v} \otimes \lambda_{v,1} \) as representations of \(GL_2(F_v) \) for all \(v \) splits in \(K \), and such \(\varphi_{(\pi_H, \sigma)}^{(ijk)}(h, g) \) satisfies the assumptions about the nebentypus in the last subsection.

For \(i \in I_1 \), let

\[
C_{\mathcal{D}, ijk}(h) := \tilde{\tau}(\det h)C_{\mathcal{D}}(\beta_{ijk}, \text{diag}(u_i, u_i^{-1}); h) \in A_{H_{ijk}}.
\]

Recall that we have defined \(A' := \sum_{ijk} A'_{\beta_{ijk}} \).

Proposition 12.2.1. Let \(\mathcal{L} = \{v_1, v_2, \ldots, v_m\} \) be a set of primes that split in \(K \) and do not belong to \(\Sigma \cup \mathcal{Q} \). Let \(P \in \mathbb{C}[X_1, \ldots, X_m] \). Let \(P_{H_{ijk}} := P(\xi_{v_1,1}(\varpi_{v_1}) T_{v_1}^{H_{ijk}}, \cdots, \xi_{v_m,1}(\varpi_{v_m}) T_{v_m}^{H_{ijk}}) \) and \(P_{U_1} := P(\xi_{v_1,2} \lambda_1^{-1}(\varpi_{v_1}) T_{v_1}^{U_1}, \cdots, \xi_{v_m,2} \lambda_1^{-1}(\varpi_{v_m}) T_{v_m}^{U_1}) \) Then

\[
\sum_{ij} e_{H_{ijk}} P_{H_{ijk}} C_{\mathcal{D}, ijk}(h) B_{\mathcal{D}}(\beta_{ijk}, h, u_i)^{-1} 2^{-3d(2t)^{d(k+1)}} S(f) < f, \rho(L) \begin{pmatrix} N \\ -1 \end{pmatrix} \tilde{f}_c >
\]

\[
= \tilde{\tau}(\det h)|\hat{\varphi}_{\mathcal{D}}| \tilde{f}_c^{-1} \xi \hat{\varphi}_{\mathcal{D}}
\]

\[
< B_{\mathcal{D}, \mathcal{E}} \cdot B_{\mathcal{D}, 2}, \rho(L) \begin{pmatrix} \hat{\varphi}_{\mathcal{D}}^{-1} \delta_1 \end{pmatrix} e_{U_1} P_{U_1} A', \rho(L) \begin{pmatrix} M \delta_1 \end{pmatrix} \tilde{f}_c >
\]

\[
\times \left< f, \rho(L) \begin{pmatrix} -1 \end{pmatrix} \Pi_{v_1, p^{-1}} \begin{pmatrix} p^{r_v} \end{pmatrix} \tilde{f}_c >
\]

Proof. It follows from lemma 12.2.1 and lemma 12.2.2 in the same way as [35, 13.2.4] and [35, 13.2.5].

144
Observe that \(\rho \left(\begin{vmatrix} d^{-1} & 1 \\ \bar{d}_1 & 1 \end{vmatrix} \right) \) commutes with \(eP_1 \).

Now \(A' \) satisfies the condition \((\ast)\) defined in the section of Nebentypus. So we can apply the operator \(\alpha_{\lambda\xi} \) on it to get \(A := \alpha_{\lambda\xi}(A') \). The following corollary follows easily from the above proposition by comparing the \(GL_2 \) and \(U(1,1) \) Hecke eigenvalues for unramified split primes on automorphic forms with central character \(\lambda\xi \), and apply lemma 10.7.1.

Corollary 12.2.1. Let \(P_1 = P(T_{v_1}, \ldots, T_{v_m}) \) be a \(GL_2 \) Hecke operator for the polynomial \(P \) in the above proposition and let \(e \) be the \(GL_2 \) nearly ordinary projector. Then the last expression of the above proposition equals:

\[
\hat{f}(\det h)\delta_k \bar{d}_1 |\tilde{\tau}^{-1} \xi (\delta_k \bar{d}_1)| 2^{-u_x} [\mathcal{O}_F^* : \mathcal{O}_F^*]^{-1}
\times < B_{D,1}E_D : B_{D,2}\rho \left(\begin{vmatrix} d^{-1} & 1 \\ \bar{d}_1 & 1 \end{vmatrix} \right)eP_1 A, \rho \left(M^{\mathcal{D}}_2 \bar{D}_k \bar{d} \right)^{-1} \prod_{v|p} \left(\begin{vmatrix} -1 & 1 \\ p & -1 \end{vmatrix} \right)^{\bar{f}c} >_{GL_2}
\times < f, \rho \left(M^{-1} \right) \prod_{v|p} \left(\begin{vmatrix} -1 & 1 \\ p & -1 \end{vmatrix} \right)^{f} >_{GL_2}
\]

12.3 \(p \)-adic Properties of Fourier Coefficients

In this section we put the operations above in \(p \)-adic families. Let \(\mathcal{D} = (A, \mathbb{I}, f, \psi, \xi, \sum) \) be a \(p \)-adic Eisenstein datum as in the last chapter, and \(E_D \in \mathcal{M}_{\mathcal{D}, \text{ord}}(K_D', \Lambda_D) \) or \(\tilde{E}_D \) be as there. For \(x \in G(\mathbb{A}_F, f) \) with \(x \in Q(\mathcal{O}_{F,v}) \) for all primes \(v|p \) we let \(c_D(\beta, x) \in \Lambda_D \) or \(\tilde{c}_D(\beta, x) \in \Lambda_D \) be the \(\beta \)-fourier coefficient of \(E_D \) or \(b\tilde{E}_D \) at \(x \) (here \(b \) is defined in remark 11.4.1). So for \(\phi \in \mathcal{X}_D^0 \), \(c_D,\phi(\beta, x) := \phi(c_D(\beta, x)) \) is the \(\beta \)-fourier expansion at \(x \) of a holomorphic hermitian modular form \(E_D(\phi, z, x) \) and define the \(\tilde{c}_D,\phi(\beta, x) \) correspondingly. Define

\[
\varphi_{D,\beta,x,\phi}(h) := \chi_{\mathcal{D}} h^{-1} c_D,\phi(\beta, \begin{vmatrix} h & 0 \\ \bar{q}_h^{-1} & 1 \end{vmatrix} x)
\]

and

\[
\tilde{\varphi}_{D,\beta,x,\phi}(h) := \chi_{\tilde{\mathcal{D}}} h^{-1} \tilde{c}_D,\phi(\beta, \begin{vmatrix} h & 0 \\ \bar{q}_h^{-1} & 1 \end{vmatrix} x).
\]
As in [35, 13.3.1], recall that
\[\beta_{ijk} = \begin{pmatrix} b_j & b_k \\ q_i & q_i \end{pmatrix} \] and \(u_i = \gamma_0 \begin{pmatrix} 1 \\ a_i^{-1} \end{pmatrix} \). For \(h \in GL_2(\mathbb{A}_K) \) with \(h_v \in GL_2(\mathcal{O}_{K_v}) \) for all \(v|p \) let
\[\varphi_{D,ijk} := \chi_f \psi^{-1} \xi^{-1} (\det h) c_D(\beta_{ijk}, \begin{pmatrix} h_v \delta_i^{-1} \\ \delta_j^{-1} \delta_i^{-1} \end{pmatrix} B_D(\beta_{ijk}, h, u_i)^{-1} \in \Lambda_D. \]
(Note that by our choices \(B_D(\beta_{ijk}, h, u_i)^{-1} \) moves as a unit in \(\Lambda_D \).)

and for \(\phi \in \mathcal{X}_D^a \) and \(h \in GL_2(\mathbb{A}_K) \) let
\[\varphi_{D,ijk,\phi}(h) := \varphi_{D,\beta_{ijk},\text{diag}(u, a_i^{-1}, u_i^{-1} \delta_j)^{-1}}(h). \]

We define the \(\tilde{\varphi} \) versions of the above objects correspondingly when the local Hecke algebra for \(\mathfrak{f} \) is not Gorenstein. Now we have the following lemma interpolating the Hecke operators, completely as in [35, 13.3.2].

Lemma 12.3.1. Let \(\mathcal{L} := \{v_1, \ldots, v_m\} \) be a finite set of primes that split in \(K \) and do not belong to \(\Sigma \cup \mathcal{Q} \). Let \(P \in \Lambda_D[X_1, \ldots, X_m] \). For \(h \in H_i(A_{f,v}) \) with \(h_p \in H_{i,p} \), there exists \(\varphi_{D,i}(\mathcal{L}, P; h) \in \Lambda_D \) such that:

(a) For all \(\phi \in \mathcal{X}_D^a \),
\[\phi(\varphi_{D,i}(\mathcal{L}, P; h)) = P \phi(\xi_{v_1,1}(\varphi_{v_1}) T_{v_1}^{H_{ij,k}}, \ldots, \xi_{v_m,1}(\varphi_{v_m}) T_{v_m}^{H_{ij,k}}) e_{H_{ij,k}} \varphi_{D,i,k,\phi}(h), \]
where \(P \phi \) is the polynomial obtained by applying \(\phi \) to the coefficients of \(P \).

(b) If \(M \subseteq \Lambda_D \) is a closed \(\Lambda_D \)-submodule and \(\varphi_{D,i,k}(h) \in M \) for all \(h \) with \(h_p \in H_{i,p} \), then \(\varphi_{D,i,k}(\mathcal{L}, P; h) \in M \).

Observe that the nebeotypus of \(\alpha_{\xi,\lambda}(A) \) at \(v|p \) are given by:

\[e'(\begin{pmatrix} a_v \\ d_v \end{pmatrix}) \rightarrow \mu_1, v(a_v) \mu_2, v(d_v) r_{1,v}^{-1} r_{2,v}^{-1}(d_v). \]

for any \(a_v, d_v \in \mathcal{O}_F^\times \). From the definition of the theta functions (\(q \)-expansion) we know that \(\alpha_{\xi,\lambda}(A) \) is a \(\Lambda_D \) adic form. Also for each arithmetic weight \(\phi \) we consider the resulting form at \(\phi \) is a form of parallel weight 2 and nebeotypus at \(v|p \) only depend on the restriction of \(\phi \) to \(R^+ := \mathbb{I}[\Gamma_{K}^+] \).
Now let \(g \in M^{ord}(M_2^2 \tilde{D}_K, 1; \Lambda_{W,A}) \) be a Hida family of forms which are new at primes not dividing \(p \) and such that \(g \otimes \chi_K = g \). Suppose also that the localization of the Hecke algebra at the maximal ideal corresponding the \(g \) is Gorenstein so that \(\ell_g \) makes sense. Now following the remark of [35] before 13.3.4, one can change the weight homomorphism and view \(g \) as an element of \(M^{ord}(M_2^2 \tilde{D}_K, 1; R^+) \) such that at any \(\phi \) we consider it is a normalized nearly ordinary form of parallel weight 2 and nebentypus at \(v|p \) the same as \(\alpha_{\xi}(A) \). Also as in loc.cit one can find a polynomial of the Hecke actions \(P_g := P(T_{v_1}, \ldots, T_{v_n}) \in T^{ord}(M_2^2 \tilde{D}_K, 1; R^+) \) such that \(P_g = a_g \ell_g \) with \(0 \neq a_g \in R^+ \).

With these preparations we can prove the following proposition in the same way as [35, 13.3.4].

Proposition 12.3.1. Under the above hypotheses, (1) If the local Hecke algebra for \(f \) is Gorenstein, then we have:

\[
\sum_{i,j,k} \varphi_{D,i,j,k}(L, P_g; 1) = A_{D,g}B_{D,g}.
\]

with \(A_{D,g} \in \mathbb{I}[[\Gamma_K^2]] \) and \(B_{D,g} \in \mathbb{I}[[\Gamma_K]] \) such that for all \(\phi \in \mathcal{X}_K' \):

\[
\phi(A_{D,g}) = \begin{pmatrix} 1 \\ \varphi_{D,i,j,k}(L, P_g; 1) \end{pmatrix} g_{\phi} \left(\frac{1}{\phi} \right) p^r \left(\frac{M_2^2 \tilde{D}_K}{D} \right) \Pi_{v|p} \left(\frac{-1}{\phi} \right) f_{\phi} > GL_2
\]

and for \(\phi \in \mathcal{X}^o \),

\[
\phi(B_{D,g}) = \eta_{g_{\phi}} \begin{pmatrix} -1 \\ \varphi_{D,i,j,k}(L, P_g; 1) \end{pmatrix} g_{\phi} \left(\frac{1}{\phi} \right) p^r \left(\frac{M_2^2 \tilde{D}_K}{D} \right) \Pi_{v|p} \left(\frac{-1}{\phi} \right) f_{\phi} > GL_2
\]

Furthermore, \(A_{D,g} \neq 0 \).

(2) In general we have

\[
\sum_{i,j,k} \varphi_{D,i,j,k}(L, P_g; 1) = \tilde{A}_{D,g}B_{D,g}
\]

where \(\phi(\tilde{A}_{D,g}) \) is the expression in (1) with \(\eta_{g_{\phi}} \) replaced by \(b_{\phi} \) and \(B_{D,g} \) the same as in (1).

Definition 12.3.1. Suppose we have a Hida family \(f \) of ordinary Hilbert modular forms and \(K \) is
a CM extension of F as before. Let f_2 be an element in \mathfrak{f} of parallel weight 2 and trivial character. We also denote ϕ_0 to be the point on the weight space corresponding to the special L-value $L(f_2, 1)$.

Now we prove the following key proposition:

Proposition 12.3.2. Let A be the integer ring of a finite extension of \mathbb{Q}_p, I a domain and a finite $\Lambda_{W,A}$-algebra, and $f \in \mathcal{M}^{ord}(M, 1; \mathfrak{f})$ an \mathfrak{f}-adic newform such that (irred) and (dist) hold.

(1) Suppose \mathcal{T}_{mf} is Gorenstein. Then by possibly enlarging the Σ in our Eisenstein datum, there exists an integer $M_\mathfrak{D}$ as before and divisible by all primes dividing Σ such that the following hold for the associated $\Lambda_\mathfrak{D}$-adic Eisenstein series $E_\mathfrak{D}$ and the set $C_\mathfrak{D} = \{c_\mathfrak{D}(\beta_{ijk}, x) \in G(A_F, F_p) \cap Q(F_p)\}$ of fourier coefficients of $E_\mathfrak{D}$. If $R \subseteq \Lambda_\mathfrak{D}$ is any height-one prime containing $C_\mathfrak{D}$, then $R = P \Lambda_\mathfrak{D}$ for some height-one prime $P \subset [\Gamma, \mathfrak{f}]$.

(ii) In general the conclusion in (1) is still true with the $C_\mathfrak{D}$ and $c_\mathfrak{D}(\beta_{ijk}, x)$ by $\tilde{C}_\mathfrak{D}$ and $\tilde{c}_\mathfrak{D}(\beta_{ijk}, x)$.

Proof. We follow [35, 13.4.1] closely.

As in loc.cit, we only need to find an $M_\mathfrak{D}$ so that there is an g with $B_\mathfrak{D}, g$ is a p-adic unit.

First we find an idele class character θ of $A_K \times K$ such that:

- $\theta_{\infty}(z) = \prod_{v \in \Sigma} \Phi_v z^{-1}$;
- $\theta|_{A_K} = |\cdot|_F \chi_K/F$;
- $Nm(f_0) = M_\mathfrak{D}$ for some $M_0 \in F^\times$ prime to p and such that $D_K M|_M \theta$ and $v|M_\mathfrak{D}$ for all $v \in \Sigma \setminus \{p\}$;
- for some $v|D_K$, the anticyclotomic part of $\theta|_{D_K, v}$ has order divisible by q_v.
- $\Omega_{\infty}^{-\Sigma} L(1, \theta)$ is a p-adic unit, where Ω_{∞} is the CM period defined in [12];
- $\theta_{v,2}(p) - 1$ is a p-adic unit for any $v|p$.
- ψ has order prime to p.
- the local character ψ is nontrivial over $K_{\mathfrak{P}}^\times$ for all $\mathfrak{P} \in \Sigma_p$
- the restriction of ψ to $Gal(\bar{F}/K[\sqrt{\mathfrak{P}}])$ is nontrivial.

Here ψ is the "torsion part" (as defined in [13]) of the anticyclotomic part of $\theta^* := \theta^{\sigma}/\theta$, p^* is $(-1)^{(p-1)/2}p$.

The existence is proven in a similar way as in [35, 13.4.1], using the main theorem of [18] instead of [7]. (The result in [Hsieh11] is not stated in the generality we need since he put a condition (C)
there requiring that the non split part of the CM character is square free. But M-L Hsieh informed
the author that, as mentioned in that paper, this condition is removed later.) Now using the main
result of [13] and [15], (we thank Hida for informing us his results in loc.cit), under the last three
conditions above (which are put to apply Hida’s result), we have

\[
\eta_{g_\theta} \left(\frac{(g_\theta, g_\theta)}{\Omega_{\infty}^2} \right)
\]

Thus

\[
L(1, \theta)^2/\Omega_{\text{can}} L(1, \theta)^2/\Omega_{\infty}^2 = (12.2)
\]

where \(\Omega_{\text{can}} \) is the canonical period associated to \(g_\theta \).

If \(g_\theta \) is the CM newform associated with \(\theta \). It has parallel weight 2, level \(M_2^D \), and trivial
neben character. Similarly as in [35] p210, we see that it satisfies (irred) and (dist). Let \(g \in \mathcal{M}^{\text{ord}}(M_2^D, 1; R) \) be the ordinary CM newform associated with \(\theta \). (this is constructed in [20, p133-134]. one need to first construct the automorphic representation generated by some theta
series and then pick up the nearly ordinary vector inside that representation space.) The Gorenstein
properties are also true as remarked by [13]. Recall that we have defined \(A := \alpha \xi \sum \Theta \beta \xi \). Now we evaluate \(B_{D,g} \) at the \(\phi \) which restricts trivially to \(W_{i,v}'s \) and \(\Gamma_K \). In this case the argument
in [35, 11.9.3] gives that:

\[
A_\phi = (B_{D,A})_\phi E'(\chi_K) \rho\left(\begin{pmatrix} -1 \\ M_D \end{pmatrix} \right) E'(\chi_K)
\]

where \((B_{D,A})_\phi = |M_D^2|_F^{-1} |\delta_K|_K 2^{3d_i-2d} |\delta_K|_K^{1/2} \) which is a \(p \)-adic unit. Here

\[
E' = \prod_{v \mid p} (1 - p^{1/2}(\rho\left(\begin{pmatrix} 1 \\ p \end{pmatrix} \right)_v)) E(\chi_K)
\]

for \(E(\chi_K) \) being the weight 1 Eisenstein series whose \(L \)-function is \(L(F, s).L(F, \chi_K, s) \). We write

\[
h = E'(\chi_K) \rho\left(\begin{pmatrix} -1 \\ M_D \end{pmatrix} \right) E'(\chi_K)
\]
Then the argument in [35, 13.4.1] tells us that:

$$< h, \rho(\prod_{v|p} (p)^{-1})_v (M_D \tilde{D}_K)(-1)> = \pm |\tilde{D}_K|_F \prod_{v|p} \theta_{v,2}(p)^{-2} \frac{L(1, \theta)^2 \prod_{v|p} (1 - \theta_{v,2}(p))^3}{i^d(-2\pi i)^{2d} \Theta(\chi K) \Omega_{\text{can}}^2 \prod_{v|p} (1 - \theta_{v,2}(p))^3}. $$

Thus

$$\phi(B_{D,g}) = \frac{\pm |\tilde{D}_K|_F \prod_{v|p} \theta_{v,2}(p)^{-2} \frac{i^d}{L(1, \theta)^2 \prod_{v|p} (1 - \theta_{v,2}(p))^3}}{i^d(-2\pi i)^{2d} \Theta(\chi K) \Omega_{\text{can}}^2 \prod_{v|p} (1 - \theta_{v,2}(p))^3}. $$

By definition $\phi(B_{D,g})$ is p-integral. But as noted before, $\frac{L(1, \theta)^2}{\Omega_{\text{can}}}$ divides a p-adic unit, thus itself must also be a p-adic unit. Therefore, $B_{D,g}$ is a unit. This proves (i). (ii) is just an easy consequence of (i).
Chapter 13

Construction of the Cuspidal
Family

In this chapter we construct a Λ_D-adic cusp form which is prime to the p-adic L-function by explicitly writing down some Λ_D-adic forms with the same boundary restriction as the Klingen Eisenstein family constructed before.

13.1 Certain Eisenstein series on GU(2,2)

13.1.1 Siegel Eisenstein Series

In this chapter we use P instead of P to denote the Klingen parabolic and save the letter P for the height one prime. Consider the p-adic family of CM characters of $K^\times \backslash \mathbb{A}^\times K$ which are unramified outside p. In the component containing the trivial character, there is one element τ_{κ_0} which is unramified everywhere and has infinite types $(\frac{\kappa_0}{2}, -\frac{\kappa_0}{2})$ at all infinite places for some $\kappa_0 > 6$ divisible by $(p - 1)$. Define a Siegel Eisenstein series E_{κ_0} on $GU(2,2)$ by choosing the local sections as follows: Let f_v^\dagger be the section supported on $Qw_2K_Q(\varpi_v)$ and equals 1 on $K_Q(\varpi_v)$. (Here $K_Q(\varpi_v)$ means matrices with v-integral entries that belong to $Q(\mathcal{O}_{F,v})$ modulo ϖ_v.) If $v | p$ let

$$f'_v(g) = \begin{cases}
\tau_0(\det D_1)|A_qD_q^{-1}|^s & \text{if } g = qw_{13}k \in Qw_{13}K_Q(\varpi_v) \\
0 & \text{otherwise}
\end{cases}$$

151
where \(w_{13} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \). We define \(f_v = f_{\kappa_0} \) for \(v|\infty \), \(f_v = f_v^\dagger \) for \(v \in \Sigma, v \nmid p \), and \(f_v = f_v' \) for \(v|p \). Now we want to compute the constant terms of \(E_{\kappa_0} \) along \(P \) at \(g \) as an automorphic form on \(M_P = \{ m(a,x) \} \), i.e. compute \(E_{\kappa_0}(m(a,x)g) \) as an automorphic form on \(m(a,x) \in M_P(\mathbb{A}_F) \) where \(a \in GU(1,1)(\mathbb{A}_F) \) and \(x \in \mathbb{A}_F^\times \).

First note that

\[
G(F) = Q(F)P(F) \sqcup Q(F)w_2P(F).
\]

Thus

\[
E_{\kappa_0}(g) = \sum_{\gamma \in Q(F) \setminus G(F)} f(\gamma g) = \sum_{\gamma \in Q(F) \setminus Q(F)P(F)} f(\gamma g) + \sum_{\gamma \in Q(F) \setminus Q(F)w_2P(F)} f(\gamma g)
\]

Suppose the above summation is in the absolute convergent region, then

\[
E_{\kappa_0, P}(z, g) = \int_{N_F(\mathbb{A}_F) \setminus N_F(\mathbb{A}_F)} E_{\kappa_0}(ng)dn
\]

\[
= \int_{N_F(\mathbb{A}_F) \setminus N_F(\mathbb{A}_F)} \sum_{\gamma \in Q(F) \setminus Q(F)P(F)} f_z(\gamma ng)dn + \int_{N_F(\mathbb{A}_F) \setminus N_F(\mathbb{A}_F)} \sum_{\gamma \in Q(F) \setminus Q(F)w_2P(F)} f_z(\gamma ng)dn
\]

\[
= \mathbb{I}_1 + \mathbb{I}_2.
\]

We claim that \(\mathbb{I}_2(g) = 0 \). By [27] we have

\[
\mathbb{I}_2(g) = \sum_{m' \in M_P(\mathbb{F}) \cap w^\perp Q/F \cap w^{-1}\setminus M_P(\mathbb{F})} \int_{N_F(\mathbb{A}_F) \setminus N_F(\mathbb{A}_F)} \sum_{m' \in M_P(\mathbb{F}) \cap w^\perp Q/F \cap w^{-1}\setminus Q/F} f_z(wm'n'ng)dn
\]

\[
= \sum_{m'} \int_{N_F(\mathbb{A}_F) \setminus w^{-1}Q/F \setminus N_F(\mathbb{A}_F)} f_z(wm'g)dn
\]

\[
= \sum_{m'} \int_{N_F(\mathbb{A}_F) \setminus w^{-1}Q/F \setminus N_F(\mathbb{A}_F)} f_z(wm'g)dn
\]

\[
= \sum_{m'} \int_{N_F(\mathbb{A}_F) \setminus w^{-1}Q/F \setminus N_F(\mathbb{A}_F)} f_z(wm'g)dn.
\]

152
For any g_0 such that $g_{0,\infty}$ is of the form $\begin{pmatrix} y \\ y' \end{pmatrix}$, $I_2(gg_0)$ as a function of g is an automorphic form on $M_\mathfrak{p}$. In order to prove this is zero, we show that all the Fourier coefficients of I_2 along the unipotent group $\begin{pmatrix} 1 & \times \\ 1 & 1 \\ 1 & 1 \end{pmatrix}$ are zero. But this is nothing but
\[
\int_{N_{\mathfrak{q}}(\mathbb{A}_F)} f_z(w \begin{pmatrix} 1 & S \\ 1 & 1 \end{pmatrix} g_0) e(-tr\beta S) dS
\]
for $\beta = \begin{pmatrix} n & 0 \\ 0 & 0 \end{pmatrix}$, which we have proven to be 0 (See lemma 4.1.1) at $z = z_{\kappa_0} = \frac{z_{\kappa_0} - 2}{2}$ for all g_0 with the required ∞ part.

Next we consider I_1. We define a Siegel Eisenstein series $E_{\kappa_0}^1$ on $GU(1, 1)$ by choosing the local sections by $f_v = f_{_v}^1$ for v finite (recall that this is the Siegel section supported in $Q(F_v)\mathfrak{w}N(\mathfrak{O}_{F,v})$ and is 1 on $\mathfrak{w}N(\mathfrak{O}_{F,v})$) and $f_v = f_{\kappa_0}$ for $v|\infty$. For each finite prime v of F let K_v to be $K_{r,t}$ defined in chapter 8 if $v \nmid p$ and $K_v := K$ defined in chapter 4 for $v|p$. Then it is easy to see that if g is such that:

$$g_v \in \begin{cases} K_v & \text{if } v|p \\ w_2K_v & \text{if } v \nmid p, \infty \\ 1 & \text{if } v|\infty \end{cases}$$

Then $I_1(m(g_1, 1)g)$ is given by
\[
E_{\kappa_0}^1(g_1 \prod_{v|p, \infty} \begin{pmatrix} -1 & 0 \\ 1 & 1 \end{pmatrix}_v)
\]
for $g_1 \in U(1, 1)(\mathbb{A}_F)$.

13.2 Hecke Operators

In this section we study the relations between the $GU(2,2)$ and $GU(1,1)$ Hecke operators via the restriction to the boundary. For an arithmetic point ϕ we write E_{ϕ} for the specialization of the $\mathcal{E}_\mathcal{D}$ to ϕ. For any automorphic form F on $G(\mathbb{A}_F)$ and some $g_0 \in G(\mathbb{A}_F)$ we consider $F_\mathcal{P}$ as an automorphic form on $GU(1, 1)$: the value at $g' \in GU(1, 1)(\mathbb{A}_F)$ is given by $F_\mathcal{P}(m(g', 1)g_0)$. 153
13.2.1 Unramified Cases

Suppose v is a place unramified in K/F.

split case

If v splits in K/F, then $U(\mathcal{O}_{F_v}) \simeq GL_4(\mathcal{O}_{F_v})$. We write $\tau_v = (\tau_1, \tau_2)$ and $\tau_{0,v} = (\tau_1^*, \tau_2^*)$ with respect to $K_v = F_v \times F_v$. Recall in this case we have defined

$$d_v := \text{diag}((\varpi_v, 1), 1, (1, \varpi_v^{-1}), 1).$$

Via projection onto the first component, $t^{(1)} = \begin{pmatrix} \varpi_v & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}$ and $B(F_v)$ (B is the Borel) is identified with the matrices $\begin{pmatrix} \times & \times & \times & \times \\ \times & \times & \times & \times \\ \times & \times & \times & \times \end{pmatrix}$. Let K be identified with $GU(2, 2)(\mathcal{O}_{F_v})$. Then

$$Kt^{(1)}_2 K \supseteq n_{d_1} d_1 K \sqcup n_{d_2} d_2 K \sqcup n_{d_3} d_3 K \sqcup n_{d_4} d_4 K$$

where n_{d_1} goes through $\begin{pmatrix} 1 & \times & \times & 1 \\ 1 & 1 & \times & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}$, n_{d_2} goes through $\begin{pmatrix} 1 & \times & \times & \times & 1 \\ 1 & 1 & \times & \times & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}$, n_{d_3} goes through $\begin{pmatrix} 1 & \times & \times & \times & \times & 1 \\ 1 & 1 & \times & \times & \times & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}$, and d_1, d_2, d_3, d_4 are $\begin{pmatrix} 1 & \times & \times \end{pmatrix}$, $\begin{pmatrix} \varpi_v & 1 \\ 1 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & \times \end{pmatrix}$, $\begin{pmatrix} \varpi_v & 1 \\ 1 & 1 \end{pmatrix}$.
respectively. If \(g = m(g',1) \) for some \(g' \in U(1,1) \), then

\[
E_{\phi, \mathbf{P}}(gn_2d_2) = E_{\phi, \mathbf{P}}(gd_2) = E_{\phi, \mathbf{P}}(g) \tau_2^{-1}(\varpi_v),
E_{\phi, \mathbf{P}}(gd_4) = E_{\phi, \mathbf{P}}(g) \tau_1(\varpi_v),
E_{\kappa_0, \mathbf{P}}(gn_2d_2) = E_{\kappa_0, \mathbf{P}}(g, d_2) = (\tau_2^\circ)^{-1}(\varpi_v),
E_{\kappa_0, \mathbf{P}}(gd_4) = \tau_1^\circ(\varpi_v)E_{\kappa_0, \mathbf{P}}(g).
\]

Thus one sees:

Lemma 13.2.1. Let \(g_0v = 1 \). For \(g \) such that \(g_v = m(g_{1,v},1) \) for some \(g_{1,v} \in U(1,1)(F_v) \) we have:

\[
(T_v(t_2^{(1)})(E_{\phi} \cdot E_{\kappa_0}))\mathbf{P}(g)
= (q_v^\circ(\tau_2^{-1}(\varpi_v) \cdot (\tau_2^\circ)^{-1}(\varpi_v)) + \tau_1\tau_1^\circ(\varpi_v))(E_{\phi} \cdot E_{\kappa_0})\mathbf{P}(g)
+ q_vT_v(\begin{pmatrix} \varpi_v \\ 1 \end{pmatrix}((E_{\phi} \cdot E_{\kappa_0})\mathbf{P})(g)
\]

where \(T_v(\begin{pmatrix} \varpi_v \\ 1 \end{pmatrix}) \) is as a Hecke action on \(GU(1,1) \) and we consider \((E_{\phi} \cdot E_{\kappa_0})\mathbf{P}\) as an automorphic form on \(U(1,1) \) using \(g_0 \) by the remark at the beginning of this section.

unramified inert case

Suppose \(v \) is inert in \(K/F \) and take \(K \) to be \(G(\mathcal{O}_{F_v}) \). Define:

\[
d_v = \begin{pmatrix} \varpi_v \\ \varpi_v \\ 1 \\ 1 \end{pmatrix}. \text{ Then:}
\]

\[
K\{d_v\}K = \sqcup n_1d_1K \sqcup n_2d_2K \sqcup n_3d_3K \sqcup \{d_4\}K
\]

where

\[
d_1 = \begin{pmatrix} \varpi_v \\ \varpi_v \\ 1 \\ 1 \end{pmatrix}, d_2 = \begin{pmatrix} 1 \\ \varpi_v \\ \varpi_v \\ 1 \end{pmatrix}
\]

155
\[d_3 = \begin{pmatrix} \varpi_v & 1 \\ 1 & \varpi_v \end{pmatrix}, d_4 = \begin{pmatrix} 1 & \varpi_v \\ \varpi_v & 1 \end{pmatrix} \]

where \(n_{1i} \) runs over matrices of the form
\[
\begin{pmatrix} 1 \\ 1 & \varpi_v & \varpi_v \end{pmatrix},
\begin{pmatrix} 1 & \varpi_v & \varpi_v \\ 1 & \varpi_v & \varpi_v \end{pmatrix},
\begin{pmatrix} 1 \\ 1 & \varpi_v & \varpi_v \end{pmatrix}
\]

As in the split case (actually even simpler), we see that

Lemma 13.2.2. Again let \(g_{0,v} = 1 \). For \(g \) such that \(g_v = m(g_{1,v}, 1) \) for some \(g_{1,v} \in U(1, 1)(F_v) \):

\[
(T_v(d_v) \cdot (E_{\phi} \cdot E_{\kappa_0}))_{\mathbf{P}}(g) = (q_0^3 + 1)T_v(\begin{pmatrix} \varpi_v \\ 1 \end{pmatrix})((E_{\phi} \cdot E_{\kappa_0})_{\mathbf{P}})(g)
\]

where \(T_v(\begin{pmatrix} \varpi_v \\ 1 \end{pmatrix}) \) is the Hecke action on \(\text{GU}(1, 1) \).

13.2.2 \(v|p \) Case

Suppose \(d = d_v = \begin{pmatrix} p^3 \\ p^2 \\ 1 \end{pmatrix}, \begin{pmatrix} p^{-1} \\ p^{-3} \\ \gamma \end{pmatrix} \), we study \((T_{d_v}(E_{\phi} \cdot E_{\kappa_0}))_{\mathbf{P}}(g) \). Using the decomposition \(KdK = \sqcup n_i dK \) where \(n_i \) runs over

\[
\begin{pmatrix} 1 & x \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & \alpha & \beta \\ 1 & \beta & \gamma \\ 1 \end{pmatrix}, \begin{pmatrix} -\bar{x} & 1 \\ 1 & 1 \end{pmatrix}
\]

156
and \(x, \alpha, \beta, \gamma\) runs over congruence classes modulo: \(O_v/(p, p), \mathbb{Z}_v/p^3, O_v/(p^2, p^2), \mathbb{Z}_v/p\) respectively. First notice that if \(x \neq 0\), \(E_{\phi, \mathcal{P}}(gn_id) = 0\), so we may ignore such terms while summing up. So

\[
(T_{d,v}(E_{\phi} \cdot E_{\kappa_0}))_{\mathcal{P}}(g) = \sum_{\alpha, \beta, \gamma} E_{\phi, \mathcal{P}}(gn_id)E_{\kappa_0, \mathcal{P}}(gn_id).
\]

Observe that for all choices of \(\beta, \gamma\), the above expression does not change. Therefore the summation is essentially only over \(\alpha\)'s.

If \(g = m(g_1, 1)\) for some \(g_1 \in U(1, 1)\) then an easy computation taking into account Hida’s normalization factors given by [35, 6.2.2.a] for \(U(2, 2)\) and \(U(1, 1)\) gives:

\[
(U_{d,v}(E_{\phi} \cdot E_{\kappa_0}))_{\mathcal{P}}(g) = p^{-\frac{1}{2}}(\kappa_\phi + \kappa_0)\tau_{\phi,v}(p, p^{-2})\tau_{\kappa_0,v}(p, p^{-2})U_{p^3}((E_{\phi} \cdot E_{\kappa_0})_{\mathcal{P}})(g).
\]

Here \(U_{p^3}\) is the \(U(1, 1)\) normalized Hecke operator associated to \((\begin{pmatrix} p^3 \\ 1 \end{pmatrix}, 1)\).

Recall if we define \(U_p^{(2,2)} := \prod_{d|p} U_{d,v}\), then \(c_{ord}^{(2,2)} = \lim_n U_p^n\).

The above calculation told us that

Lemma 13.2.3. Let \(g_{0,v} = 1\) For \(g\) such that \(g_v = m(g_{1,v}, 1)\) for some \(g_{1,v} \in U(1, 1)(F_v)\), then:

\[
(c_{ord}^{(2,2)}(\tilde{E}_\phi \cdot E_{\kappa_0}))_{\mathcal{P}}(g) = c_{ord}^{(1,1)}((\tilde{E}_\phi \cdot E_{\kappa_0})_{\mathcal{P}}(g).
\]

13.2.3 Construction of the Family

Now we define an automorphism \(\gamma : \Lambda_W \rightarrow \Lambda_W\) such that for any arithmetic weight \(\phi\), \(\gamma \circ \phi\) is an arithmetic weight with the same nebentypus at \(p\) but \(\kappa_{\gamma \circ \phi} = \kappa_\phi + \kappa_0\). The formula is given by: \((\gamma(1 + W_{1,v}) = (1 + W_{1,v}), (\gamma(1 + W_{2,v}) = (1 + W_{2,v})(1 + p)^{\kappa_0}\).

Then we consider \(\Gamma \otimes_{\Lambda_W, \gamma} \mathbb{I}\) (the \(\Lambda_W\)-algebra structure on the right \(\mathbb{I}\) is given by the natural one composed with \(\gamma\)). We choose a reduced irreducible component \(J'\) whose spectrum maps surjectively onto \(\text{Spec} \Lambda_W\). Then it is easy to see that both \(\Gamma\)'s inject to \(J'\). We define \(\mathbb{I}\) to be the normalization of \(J'\). (Intuitively \(\mathbb{I}\) is parameterizing pairs of forms with weight \(\kappa_\phi\) and \(\kappa_{\gamma \circ \phi}\)). We write \(j_1 : \mathbb{I} \rightarrow \mathbb{I}\) and \(j_2 : \mathbb{I} \rightarrow \mathbb{I}\) for the two embeddings. We have \(j_2 \circ \gamma = j_1\). We also define an automorphism \(\Lambda_D \rightarrow \Lambda_D\) which we again denote as \(\gamma\) such that the Eisenstein data we get by \(\phi\) and \(\phi \circ \gamma\) have the same "finite order part" and \(\kappa_{\phi \circ \gamma} = \kappa_\phi - \kappa_0\). Thus \(\xi_\phi = \xi_{\phi \circ \gamma}\) and \(\psi_\phi = \psi_{\phi \circ \gamma} \times \tau_{\kappa_0}\).

Now recall that we have defined a point \(\phi_0\) (subsection 11.3.1) on \(\text{Spec} \Lambda_D\) which induces the point on the weight space mapping all the \(W_{1,v}\)'s and \(\Gamma_K\) to 1. We denote \(\Lambda_{D, 1} = \Lambda_D \otimes_{\mathbb{I}, j_1} \mathbb{I}\). We also
denote some point (choose any) on SpecΛ_{D,\phi} inducing \phi_0 on SpecΛ_D via j_1 still by \phi_0. Moreover, recall that by the definition of 1_{\mathbf{r}} in chapter 11 and the fact that the congruence number for \mathbf{f}_2 is finite, we have defined a \mathbf{b} in remark 11.4.1 such that \mathbf{b}(\phi_0) \neq 0 and \mathbf{b}1_{\mathbf{r}} is an integral Hecke action. Therefore \mathbf{b}\mathcal{L}^0_{D} \in \Lambda_D and \mathbf{b}\mathcal{E}_D is an \Lambda_D-\text{adic} (in other words integral) form. Thus both \mathbf{j}_1(\mathbf{b}\mathcal{E}_D) and \mathbf{j}_2(\mathbf{b}\mathcal{E}_D,E_{e_0}) are \Lambda_{D,\phi}'s such that \mathbf{b}\mathcal{E}_D is an \Lambda_D-\text{adic} (in other words integral) form. Thus both \mathbf{j}_1(\mathbf{b}\mathcal{E}_D) and \mathbf{j}_2(\mathbf{b}\mathcal{E}_D,E_{e_0}) are \Lambda_{D,\phi}'s. We consider \mathbf{f} as a \mathbb{J}-\text{adic} Hida family.

Similarly as above we can let \mathbf{P}_{\mathbf{r}} := \mathbf{P}_{\mathbf{r}}(T_{v_1}, \ldots, T_{v_m}) be a polynomial with coefficients in \mathbb{J} such that \mathbf{P}_{\mathbf{r}} = \mathbf{a} \mathbf{r} \mathbf{1}_{\mathbf{r}} for some \mathbf{a} \mathbf{r} \in \mathbb{J} such that \mathbf{a} \mathbf{r}(\phi_0) \neq 0. We define a \Lambda_D-\text{coefficient formal} \mathbf{q}\text{-expansion:}

\[
\begin{align*}
\mathbf{E}^\mathbf{q} := (\mathbf{P}_{\mathbf{r}}(\tilde{T}_{v_1,d_{e_1}}, \ldots, \tilde{T}_{v_m,d_{e_m}}) &\cdot \mathbf{D}_{U(2,2)}(\mathbf{b}\mathcal{E}_D \cdot \mathbf{j}_2(E_{e_0}))) \\
\end{align*}
\]

where

\[
\tilde{T}_{v}(d_v) := \begin{cases}
\frac{1}{q_v}(T_v(d_v) - q_v^2(\tilde{\tau}_2)(\varpi_v) \cdot \tilde{\tau}_2(\varpi_v) - \tilde{\tau}_1(\varpi_v))\Psi_{\mathbf{2},v}(\varpi_v) & \text{if } v \text{ splits in } \mathcal{K}/F \\
\frac{1}{q_v+1}T_v(d_v) & \text{if } v \text{ is inertial in } \mathcal{K}/F
\end{cases}
\]

Here \(d_v\)'s are defined as before and \(\Psi_{\mathbf{2},v}\) is to take care of the difference between Hecke eigenvalues between \(U(1,1)\) and \(GL_2\). We should justify the operator \(e_{\mathbf{ord}}^{\mathbf{U}(2,2)}\) acting on \(\Lambda_{D,\phi}\)-\text{adic forms}. This can be done in the same way as \([35, 12.2.4] \text{ (i)}.\)

We have already computed that if \(g\) is such that \(g_v = 1\) for \(v|p\) and \(g_v = w\) for \(v \nmid p, v \in \Sigma\) and \(g_v = 1\) for \(v|\infty\) then the constant term \(\mathbf{j}_1(\mathbf{b}\mathcal{E}_D)_{\mathbf{P}}(m(g_1,1)g)\) is given by

\[
\mathbf{j}_1(\mathbf{b}\mathcal{E}_D)_{\mathbf{P}}(m(g_1,1)g) = \mathbf{j}_1(\mathbf{b}\mathcal{E}_D)_{\mathbf{P}}(m(g_1,1)g) = \mathbf{j}_2(\mathbf{b}\mathcal{E}_D)_{\mathbf{P}}(m(g_1,1)g) = \mathbf{j}_2(\mathbf{b}\mathcal{E}_D)_{\mathbf{P}}(m(g_1,1)g) = \mathbf{j}_2(\mathbf{b}\mathcal{E}_D)_{\mathbf{P}}(m(g_1,1)g)
\]

for each \(g_1 \in U(1,1)(\mathbb{A}_{\mathcal{F}})\). Therefore the constant terms

\[
\begin{align*}
\mathbf{j}_2(\mathbf{b}\mathcal{E}_D,E_{e_0})_{\mathbf{P}}(m(g_1,1)g) &\cdot \mathbf{E}_{e_0}^1(g_1 \prod_{v \nmid p, \infty} \begin{pmatrix} 1 & 0 \\
-1 & -1
\end{pmatrix}_v) \\
\end{align*}
\]

Now we consider a 1-dimensional subspace of \(\Lambda_D\) defined by the Zariski closure of the arithmetic \(\phi\)'s such that \(\xi_\phi\) is trivial and \(f_\phi\) has trivial neben typus at \(p\) (but allow the weight of \(f_\phi\) to vary).

Observe that \(\mathbf{j}_1(\mathbf{b}\mathcal{E}_D)\) is not identically 0 along this family by the interpolation properties and the temperedness of \(f_\phi\)'s. (Recall also that we do not know that these points are interpolations points.
But by comparing with Hida we know that his and our constructions coincide along a subfamily containing the 1-dimensional family above and we can use Hida’s interpolation formula. So we can choose \(\kappa_0 \) so that \(j_2(L_P^0) \) does not belong to \(\phi_0 \). (only need to avoid a finite number of points).

(Note that \(j_2(L_P^0) \) does not interpolate any classical \(L \)-values at \(\phi_0 \) since the weight is \(2 - \kappa_0 \).) Let \(P \) be any height one prime of \(\Lambda_{D,j} \) contained in \(\phi_0 \). Then \(P \) is prime to \(j_2(L_P^0) \).

To sum up, for \(\prod_v g_v = g \), if:

\[
\begin{cases}
 P(F_v)K_v, & v|p \\
 P(F_v)wK_v, & v \in \Sigma \setminus \{v|p\} \\
 Q(F_v), & v|\infty \\
 1, & \text{otherwise}
\end{cases}
\]

then there is an \(a \in J \) satisfying:

\[
(j_1(L_P^0,L_{\chi_\xi}^0,E^0))_\phi (g) = (a \cdot a_r)_\phi (j_2(L_P^0,L_{\chi_\xi}^0,E))_\phi (g)
\]

and \(a_\phi = b_\phi \) (This can be seen easily from our computations for the constant terms for \(E_\phi \) along \(P \) in the first section.) In the case when \(\kappa_\phi >> \kappa_0 \) our previous computations on Rankin-Selberg convolutions told us that \(a_\phi \neq 0 \) by the temperedness of \(f_0 \) along \(\phi_0 \) and \(P \).

Theorem 13.2.1. There is a \(\Lambda_{D,j} \)-coefficients formal \(q \) expansion \(F \), such that:

(i) For a Zariski dense set of arithmetic points \(\phi \), \(F_\phi \) is an ordinary cusp form on \(GU(2,2)(\mathbb{A}_F) \).

(ii) \(F \equiv a_\phi a_j j_2(b\tilde{L}_D^0 \mathcal{L}_{\chi_\xi}^0)b\tilde{E}_D \) (mod \(j_1(b\tilde{L}_D^0 \mathcal{L}_{\chi_\xi}^0) \)) for some \(0 \neq a_\phi \in \mathbb{J}(\Gamma_\xi_0^0) \).

(iii) For any height 1 prime \(P \) of \(\Lambda_D \) containing \(j_1(b\tilde{L}_D^0) \) passing through \(\phi_0 \) which is not a pull back of a height 1 prime of \(\mathbb{J}(\Gamma_\xi_0^0) \), there is a coefficient of \(F \) not contained in \(P \).

Proof. Take \(F := j_1(b\tilde{L}_D^0 \mathcal{L}_{\chi_\xi}^0))^{E^0} - a_\phi a_j j_2(b\tilde{L}_D^0 \mathcal{L}_{\chi_\xi}^0)b\tilde{E}_D \). From our computations we know that the constant terms for \(F \) along \(P \) is 0. The constant terms along other standard parabolic subgroups are 0 by the corresponding properties of Klingen Eisenstein series. Thus \(F \) is cuspidal. For (iii) we need to use proposition 12.3.2.
Chapter 14

Proof of the Main Results

We prove the main results in this chapter. Recall that we use \(f \) and \(\mathfrak{f} \) to denote a nearly ordinary Hilbert modular form or Hida family with some coefficient ring \(I \). Let \(\psi, \tau \) be Hecke characters of \(\mathbb{A}_K^\times \) and \(\psi, \tau \) be \(p \)-adic families of Hecke characters of \(\mathbb{A}_K^\times \). We require that the restrictions of \(\psi \) and \(\psi \) to \(\mathbb{A}_F^\times \) to be the same as the central character of the \(f \) or \(\mathfrak{f} \). Let \(\xi \) and \(\chi \) be \(\psi \) and \(\tau \). These are part of the Eisenstein datum \(D \) defined at the beginning of chapter 11.

14.1 the Eisenstein Ideal

14.1.1 Hecke Operators

Let \(K' = K'_\Sigma K^\Sigma \subset G(\mathbb{A}_F^\Sigma) \) be an open compact subgroup with \(K^\Sigma = G(\mathcal{O}_F^\Sigma) \) and such that \(K := K' K_p^0 \) is neat. The Hecke operators we are going to consider are at the unramified places and at primes dividing \(p \). We follow closely to [35, 9.5,9.6].

Unramified Inert Case

Let \(v \) be a prime of \(F \) inert in \(K \). Recall that as in [35, 9.5.2] that \(Z_{v,0} \) is the Hecke operator associated to the matrix \(z_0 := \text{diag}(\varpi_v, \varpi_v, \varpi_v, \varpi_v) \) by the double coset \(K z_0 K \) where \(K \) is the maximal compact subgroup of \(G(\mathcal{O}_{F,v}) \). Let \(t_0 := \text{diag}(\varpi_v, \varpi_v, 1, 1), t_1 := \text{diag}(1, \varpi_v, 1, \varpi_v^{-1}) \) and \(t_2 := \text{diag}(\varpi_v, 1, \varpi_v^{-1}, 1) \). We define the Hecke operators \(T_i \) for \(i = 1, 2, 3, 4 \) by requiring that

\[
1 + \sum_{i=1}^{4} T_i X^i = \prod_{i=1}^{2} (1 - q_v^\mathcal{O}_v [t_i] X)(1 - q_v^\mathcal{O}_v [t_i]^{-1} X)
\]
is an equality of polynomials of the variable X. Here $[t_{i,v}]$ means the Hecke operator defined by the double coset $Kt_{i,v}K$. We also define:

$$Q_v(X) := 1 + \sum_{i=1}^{4} T_i(Z_0 X)^i.$$

Unramified Split Case

Suppose v is a prime of F split in K. In this case we define $z_0^{(1)}$ and $z_0^{(2)}$ to be $(\text{diag}(\varpi_v, \varpi_v, \varpi_v, \varpi_v), 1)$ and $(1, \text{diag}(\varpi_v, \varpi_v, \varpi_v, \varpi_v))$ and define the Hecke operators $Z_0^{(1)}$ and $Z_0^{(2)}$ as above but replacing z_0 by $z_0^{(1)}$ and $z_0^{(2)}$. Let $t_1^{(1)} := \text{diag}(1, (\varpi_v, 1), 1, (1, \varpi_v^{-1}))$, $t_2^{(1)} := \text{diag}((\varpi_v, 1), 1, (1, \varpi_v^{-1}), 1)$. Define $t_i^{(2)} := t_i^{(1)}$ for $i = 1, 2$. Then we define Hecke operators $T_i^{(j)}$ for $i = 1, 2, 3, 4$ and $j = 1, 2$ by requiring that the following

$$1 + \sum_{i=1}^{4} T_i^{(j)} X^i = \prod_{i=1}^{2} (1 - q_i^{\frac{1}{2}} [t_i^{(j)}] X)(1 - q_i^{\frac{3}{2}} [t_i^{(j)}]^{-1} X)$$

to be equalities of polynomials of the variable X. Here $j' = 3 - j$ and $[t_i^{(j)}]$’s are defined similarly to the inert case. Now let $v = wu$ for w a place of K. Define $i_w = 1$ or w depending on whether the valuation associated to 2 comes from the projection onto the first or second factor of $K_v = F_w \times F_v$.

Then we define:

$$Q_w(X) := 1 + \sum_{i=1}^{4} T_i^{(1+w)} (Z_0^{(3-i_w)} X)^i.$$

p-adic Case

Let $t = \text{diag}(p^{a_1}, p^{a_2}, p^{a_3})$, let u_t be Hida’s normalized operator defined in [35, 6.2.2.a].

Let $h_D = h_{D}(K')$ be the reduced quotient of the universal ordinary cuspidal Hecke algebra which is defined by the ring of elements in $\text{End}_{\Lambda_D}(S_{\text{ord}}(K', \Lambda_D))$ generated by the Hecke operators $Z_{v,0}$, $Z_{v,0}^{(i)}$, $T_{i,v}$, $T_{i,v}^{(j)}$, $u_{t,v}$ defined above. This is a finite reduced Λ_D-algebra. Now we define for each prime w of K a polynomial $Q_{w,D}(X) = \det(1 - \rho_D(\text{frob}_w) X)$ where D is the Eisenstein datum mentioned at the beginning of this chapter and ρ_D is the Galois representation defined in subsection 14.2.2.

We define the Eisenstein ideal I_D (which is actually the kernel of homomorphism from the abstract Hecke algebra to Λ_D determined by the Eisenstein family) generated by:

- the coefficients of $Q_w(X) - Q_{w,D}(X)$ for all finite places v of K and not dividing a prime in Σ.
- $Z_{v,0} - \sigma_v \sigma_{\xi}^{-1}(\text{frob}_v)$ for v a finite place outside Σ.

162
• $Z^{(i)}_v = \sigma_v \sigma_i^{-1}(\text{frob}_w)$ for all v outside Σ such that $v = w_1 w_2$ being the factorization of $K_v = F_v \times F_v$.

• For all $v|p$, $u_{t,v} - \lambda_{E_D}(u_{t,v})$ with $a_1 \leq \cdots \leq a_4$

Here σ is the reciprocity map of class field theory, λ_{E_D} is the Hecke eigenvalue for $u_{t,v}$ acting on E_D. It follows from the computations in part one (lemma 4.4.2) that these are elements in $\mathbb{F}[[\Gamma_K]]$ (the $\lambda_{i,v}(p)$’s can be expressed in terms of the Hecke eigenvalues of U_v on f and $\xi_{v,1}(p)$ and $\xi_{v,2}$’s in our situation). We omit the precise formulas. We remark that the elements in E_D all annihilate E_D and that, in fact, E_D is the image of the annihilator of E_D in the abstract Hecke algebra generated by the Hecke operators at unramified primes and primes dividing p as above.

The structure map $\Lambda_D \to h_D/I_D$ is surjective and we denote $E_D \subset \Lambda_D$ to be kernel of this map so that:

$$\Lambda_D/E_D \sim h_D/I_D.$$

Recall that we have defined ϕ_0 to be the point on the weight space in subsection 11.3.1 such that the special L-value interpolated is $L(f_2,1)$ where f_2 is an ordinary form in our Hida family of parallel weight 2 and trivial nebel typus at primes dividing p. (In fact this notion is a little bit ambiguous since we might have several f_2’s inside the Hida family and what we are going to prove is true for any of such point ϕ_0).

Recall that in chapter 13 we have chosen a $b \in \mathbb{I}$ such that $b(\phi_0) \neq 0$ and $b1\mathbb{I}$ is an integral element of Hecke action. Then $b\mathbb{L}^{(1)}$ and $b\tilde{E}_D$ are all integral. Recall also that we have defined a finite extension \mathbb{J} of \mathbb{I} and map j_1 in 13. We can replace \mathbb{I} by \mathbb{J} and make all the constructions above for $E_{D,J}$, $h_{D,J}$, $I_{D,J}$, etc. We will write \tilde{E}_D for $j_1(\mathbb{L}^{(1)})$ as well. We have the following theorem which is the analogue of [35, 6.5.4] in our situation:

Theorem 14.1.1. There is a finite normal extension \mathbb{J} of \mathbb{I} such that if $P \subset \Lambda_{D,J}$ is a height one prime of $\Lambda_{D,J}$ contained in ϕ_0 (Recall that in chapter 13 we choose any point on $\text{Spec}\Lambda_{D,J}$ inducing ϕ_0 in $\text{Spec}\Lambda_D$ via j_1 defined there) such that $b\tilde{E}_{D,J}$ is non-zero modulo P (i.e. if the ideal generated by the Fourier coefficient of bE_D is not contained in P), and that P is not a pull back of a height one prime from $\mathbb{J}[[\Gamma_K]]$ then:

$$\text{ord}_P(E_{D,J}) \geq \text{ord}_P(j_1(E_D^{(1)}))$$

where j_1 is the map defined in chapter 13.

Proof. The proof is completely the same as [35, 6.5.4]. Let F be the $\Lambda_{D,J}$-adic cuspidal family constructed in chapter 13. Then for some $\beta \in S_2(F)$ and $x \in U(2,2)(\mathbb{A}_F)$ unramified at primes

163
dividing \(p \) we have the Fourier coefficient \(c(\beta, x; F) \) is not in \(P \). Suppose \(P^r \parallel j_1(\tilde{\Sigma}_D) \) then the map \(\mu : h_D \mapsto \Lambda_{D,1} \) defined by \(\mu(h) = c(\beta, x; hF)/c(\beta, x; F) \) is \(\Lambda_{D,1} \)-linear and by theorem 14, for any \(h \in h_D \) we have

\[
c(\beta, x; hF) \equiv c(\beta, x; hE) \equiv \lambda_D(h)c(\beta, x; E)(\mod P^r).
\]

Here \(\lambda_D(h) \) is the Hecke eigenvalue of \(h \) for \(E_D \) and note that \(b \notin P \). Thus \(\mu \) gives

\[
\Lambda_{D,1}/\xi_{D,1}\Lambda_{D,1}P = \Lambda_{D,1}/P^r\Lambda_{D,1}P.
\]

This gives the theorem. \(\square \)

14.2 Galois Representations

14.2.1 Galois Theoretic Argument

In this section, for ease of reference we repeat the set-up and certain results from [35, chapter 4], which are used to construct elements in the Selmer group.

Let \(G \) be a group and \(C \) a ring, \(r : \rightarrow Aut_C(V) \) a representation of \(G \) with \(V \cong C^n \). This can be extended to \(r : C[G] \rightarrow End_C(V) \). For any \(x \in C[G] \), define: \(Ch(r, x, T) := det(id-Tr(x)) \in C[T] \).

Let \((V_1, \sigma_1) \) and \((V_2, \sigma_2) \) be two \(C \) representations of \(G \). Assume both are defined over a local henselian subring \(B \subseteq C \), we say \(\sigma_1 \) and \(\sigma_2 \) are residually disjoint modulo the maximal ideal \(m_B \) if there exists \(x \in B[G] \) such that \(Ch(\sigma_1, x, T) \mod m_B \) and \(Ch(\sigma_2, x, , T) \mod m_B \) are relatively prime in \(\kappa_B[T] \), where \(\kappa_B := B/m_B \).

Let \(H \) be a group with a decomposition \(H = G \rtimes \{1, c\} \) with \(c \in H \) an element of order two normalizing \(G \). For any \(C \) representations \((V, r) \) of \(G \) we write \(r^c \) for the representation defined by \(r^c(g) = r(cgc) \) for all \(g \in G \).

Polarizations:

Let \(\theta : G \rightarrow GL_L(V) \) be a representation of \(G \) on a vector space \(V \) over field \(L \) and let \(\psi : H \rightarrow L^\times \)
be a character. We assume that θ satisfies the ψ-polarization condition:

$$\theta^c \simeq \psi \otimes \theta'.$$

By a ψ-polarization of θ we mean an L-bilinear pairing $\Phi_\theta : V \times V \to L$ such that

$$\Phi_\theta(\theta(g)v, v') = \psi(g)\Phi_\theta(v, \theta^c(g)^{-1}v').$$

Let $\Phi'_\theta(v, v') := \Phi_\theta(v', v)$, which is another ψ-polarization. We say that ψ is compatible with the polarization Φ_θ if

$$\Phi'_\theta = -\psi(c)\Phi_\theta.$$

Suppose that:

(1) A_0 is a pro-finite \mathbb{Z}_p algebra and a Krull domain;

(2) $P \subset A_0$ is a height one prime and $A = \hat{A}_{0,P}$ is the completion of the localization of A_0 at P. This is a DVR.

(3) R_0 is local reduced finite A_0-algebra;

(4) $Q \subset R_0$ is prime such that $Q \cap A_0 = P$ and $R = \hat{R}_{0,Q}$;

(5) there exist ideals $J_0 \subset A_0$ and $I_0 \subset R_0$ such that $I_0 \cap A_0 = J_0, A_0/J_0 = R_0/I_0, J = J_0A, I = I_0R, J_0 = J \cap A_0$ and $I_0 = I \cap R_0$;

(6) G and H are pro-finite groups; we have subgroups $D_i \subset G$ for $i = 1, \cdots, d$.

the set up: suppose we have the following data:

(1) a continuous character $\nu : H \to A_0^\times$;

(2) a continuous character $\xi : G \to A_0^\times$ such that $\bar{\chi} \neq \bar{\rho} \bar{\chi}^{-c}$; Let $\chi' := \nu \chi^{-c}$;

(3) a representation $\rho : G \to Aut_A(V), V \simeq A^n$, which is a base change from a representation over A_0, such that:

$$a.\rho^c \simeq \rho' \otimes \nu,$$

$\bar{\rho}$ is absolutely irreducible,

ρ is residually disjoint from χ and χ';

(4) a representation $\sigma : G \to Aut_{R \otimes_A F}(M), M \simeq (R \otimes_A F)^m$ with $m = n + 2$, which is defined over
the image of R_0 in R, such that:

\begin{enumerate}
\item $\sigma^c \simeq \sigma^v \otimes \nu$,
\item $\text{tr}\sigma(g) \in R$ for all $g \in G$,
\item for any $v \in M, \sigma(R[G])v$ is a finitely-generated R-module
\end{enumerate}

(5) a proper ideal $I \subset R$ such that $J := A \cap I \neq 0$, the natural map $A/J \to R/I$ is an isomorphism, and

$$\text{tr}\sigma(g) \equiv \chi'(g) + tr\rho(g) + \chi(g) \bmod I$$

for all $g \in G$.

(6) ρ is irreducible and ν is compatible with ρ.

(7) (local conditions for ρ) For each $v|p$ there is a G_v stable sub A_0 module $V^+_0,v \subset V_0$ such that V^+_0,v and $V^-_0,v := V_0,v/V^+_0,v$ are free A_0 modules.

(8) (local conditions for σ). For each $v|p$ there is a G_v-stable sub-$R \otimes_A F$-module $M^+_v \subseteq M$ such that M^+_v and $M^-_v := M/M^+_v$ are free $R \otimes_A F$ modules.

(9) (compatibility with the congruence condition) Assume that for all $x \in R[G_v]$, we have congruence relation:

$$\text{Ch}(M^+_v,x,T) \equiv \text{Ch}(V^+_v,x,T)(1 - T\chi(x)) \bmod I$$

(then we automatically have:

$$\text{Ch}(M^-_v,x,T) \equiv \text{Ch}(V^-_v,x,T)(1 - T\chi'(x)) \bmod I$$

(10) For each F-algebra homomorphism $\lambda : R \otimes_A F \to K$, K a finite field extension of F, the representation $\sigma_\lambda : G \to GL_m(M \otimes_{R \otimes F} K)$ obtained from σ via λ is either absolutely irreducible or contains an absolutely irreducible two-dimensional sub K-representation σ'_λ such that $\text{tr}\sigma'_\lambda(g) \equiv \chi(g) + \chi'(g) \bmod I$.

166
One defines the Selmer groups $X_H(\chi'/\chi) := \ker\{H^1(G, A_0^e(\chi'/\chi)) \to H^1(D, A_0^e(\chi'))\}^*$ and $X_G(\rho_0 \otimes \chi^{-1}) := \ker\{H^1(G, V_0 \otimes_{A_0} A_0^e(\chi^{-1})) \to H^1(D, V_0^{-} \otimes_{A_0} A_0^e(\chi^{-1}))\}^*$.

Proposition 14.2.1. Under the above assumptions, if $\text{ord}_P(\text{Ch}_H(\chi'/\chi)) = 0$ then

$$\text{ord}_P(\text{Ch}_G(\rho_0 \otimes \chi^{-1})) \geq \text{ord}_P(J).$$

This is just [35, Corollary 4.5.7].

We record here an easy lemma about Fitting ideals and characteristic ideals which will be useful in proving main conjectures.

Lemma 14.2.1. Let A be a Krull domain and T an A-module. Suppose $f \in A$ is such that for any height one primes P of A, $\text{ord}_P(\text{Fitt}_A T) \geq \text{ord}_P(f)$, then $\text{Char}_A(T) \subset (f)$.

Proof. for any $g \in \text{char}_A(T)$ the assumption and the definition for characteristic ideals ensures that for any height 1 prime P, $\text{ord}_P(gf) \geq 0$. Since A is normal this implies $g \in (f)$.

14.2.2 Galois Representations

Now we are going to apply the result in the last subsection to our situation. First we define a semi-simple representation $\rho_D := \sigma_{\psi} \epsilon^{-3} \oplus (\rho_f \otimes \xi^{-e} \psi^e \epsilon^{-2}) \oplus \epsilon^{-1} \text{det} \rho_f \sigma_{\psi}^{-1} \sigma_{\psi}$.

Recall that here σ means the reciprocity map. We will see that this is the Galois representation associated to the Eisenstein family constructed in the next chapter.

On the other hand, recall that we have fixed some prime to p level K_p and let $K = \prod_{v|p} K_v^p K_p$ by an argument completely the same as [35] Proposition 7.2.1 there exists a pseudo-representation $T_{K_p}^\Sigma : G_K \to \mathfrak{h}_D$ such that for each for each automorphic representation on $GU(2,2)_F$ of weight k and $\pi_k^{K_p} \neq 0$ then:

$$\text{tr}(R_p(\pi)) = \lambda_\pi^{ord} \circ T_{K_p}^\Sigma.$$

Here λ_π^{ord} is the character of \mathfrak{h}_D determined by the Hecke eigenvalues for π.

As in [35, 7.3] we let T_D be the pseudo-character $T_{K_p}^\Sigma$. We have defined $\mathfrak{h}_{D,J}$ and let $B_D := \mathfrak{h}_{D,J} \otimes \Lambda_{D,J} F_{\Lambda_{D,J}}$. Let T_D and $T_{D,J}$ be the localization of \mathfrak{h}_D and $\mathfrak{h}_{D,J}$ at the maximal ideal containing the Eisenstein ideal.

167
For any prime \(v | p \) of \(F \) we let \(T^+_{\ell,v} \subseteq T_{\ell} \) be the rank one \(J \)-summand of \(T_{\ell} \) that is \(G_v \)-stable.

Given a height one prime \(P \) of \(\Lambda_{D,3} \) containing \(E_{D,3} \) let:

- \(H := G_{F,\Sigma}, G := G_{K,\Sigma}, c = \) the usual complex conjugation;
- \(A_0 := \Lambda_{D,3}, A := \hat{\Lambda}_{D,3}, P; \)
- \(J_0 := E_{D,3}, J := E_{D,3} A; \)
- \(R_0 := T_{D,3}, I_0 := I_{D,3}; \)
- \(Q \subset R_0 \) is the inverse image of \(P \) mod \(E_{D,3} \) under \(T_{D,3} \rightarrow T_{D,3}/I_{D,3} = \Lambda_{D,3}/E_{D,3}; \)
- \(R := T_{D,3,Q}, I := I_{D,3} R; \)
- \(V_0 := T_{D,3} \otimes A_{D,3}, \rho := \rho_{\ell} \otimes \sigma_{\xi}^{-c} \sigma_{\psi}^{-c} \epsilon^{-2}; \)
- for any \(v | p \), \(V^+_{0,v} := T^+_{\ell,v} \otimes A_0, V^-_{0,v} := (T_{\ell}/T^+_{\ell,v}) \otimes A_0 A; \)
- \(V = V_0 \otimes A_0 A, \rho = \rho_0 \otimes A_0 A, V^\pm := V^\pm_{0,v} \otimes A_0 A; \)
- \(\chi := \epsilon^{-1} \det \rho_{\ell} \sigma_{\xi}^{-1} \sigma_{\psi}^{-c} \epsilon^{-4}; \)
- \(\chi' := \sigma_{\psi}^{-c} \epsilon^{-3} \) so \(\chi' = \nu \chi^{-e}; \)
- \(M := (R \otimes A F_A)^4, F_A \) is the field of fractions of \(A; \)
- \(\sigma \) is the representation on \(M \) obtained from \(T_{D} \) in the same way as [35, 7.3].

Let \(T := (T_{\ell} \otimes I[[\Gamma_K]])(\xi_K) \) and \(T^+_{\ell,v} := (T^+_{\ell,v} \otimes I[[\Gamma_K]])(\xi_K) \) for each \(v | p \). Let \(Ch^{\Sigma}_{\ell}(\rho_{\ell} \otimes \xi_K) \subset I[[\Gamma_K]] \) be the characteristic ideal of the dual Selmer group \(X^\Sigma_{\ell}(T, T^+_{\ell,v}|_{v | p}) \).

Theorem 14.2.1. Suppose \(I \) is an integrally closed domain. Let \(P_0 \subset \mathbb{J}[[\Gamma_K]] \) be a height one prime that is not a pullback of one of \(\mathbb{J}[[\Gamma_K]] \) and let \(P = P_0 \Lambda_{D} \) be the height one prime of \(\Lambda_{D} \) it generates. Suppose also that:

\[
V^+ \oplus A(\chi) \text{ and } V^- \oplus A(\chi') \text{ modulo } P \text{ do not have common irreducible pieces .} \tag{14.1}
\]

Then

\[
\text{ord}_{P_0}(Ch^{\Sigma}_{\ell}(\rho_{\ell} \otimes \xi_K)) \geq \text{ord}_P(E_{D,3}).
\]
Proof. One just applies proposition 14.2.1. The condition (10) there is guaranteed by an argument similar to [35] theorem 7.3.1: we use the modularity lifting results in [40] for ordinary Galois representations satisfying \((\text{irred})\) and \((\text{dist})\) and Harris’s result that there is no (CAP) forms when the weight \(k\) is sufficiently regular. We also use the main conjecture for totally real field \(F\) proven in [43] to conclude that \(\text{ord}_P(\text{Ch}_H(\chi'/\chi)) = 0\). (Since the \(p\)-adic \(L\)-function for a Dirichlet character involves only the cyclotomic direction and is non-zero, so it is not in \(P\). By [43] we know that the characteristic ideal is controlled by this \(p\)-adic \(L\)-functions and thus is not contained in \(P\).)

14.3 Proof of the Main Result

Now for \(f\) a Hilbert modular form with trivial nebentypus. Recall that we have define \((\text{irred})\) and \((\text{dist})\) in the introduction. Then:

Theorem 14.3.1. Let \(p\) be a rational odd prime that splits completely in \(F\). Let \(f\) be a Hilbert modular form over \(F\) of parallel weight 2 and trivial character. Suppose:

(i) \(f\) is ordinary at all primes of \(F\) dividing \(p\);

(ii) \((\text{irred})\) and \((\text{dist})\) hold for \(\rho_f\).

If the central critical value \(L(f, 1) = 0\), then the Selmer group \(H^1_f(F, \rho_f^*)\) is infinite.

Remark 14.3.1. The reason for assuming that \(p\) splits completely is that we only have the various non-vanishing modulo \(p\)-results in this case. The computation part of the argument could be done more generally.

Proof. We only need to prove the theorem in the case when the root number for \(f\) is +1 since otherwise it is a well known result of Nekovar [29], (which crucially uses the work of S. Zhang).

First suppose that \(d = [F : \mathbb{Q}]\) is even. Then we choose an imaginary quadratic extension \(K\) of \(F\) so that \(K/F\) is split at all primes at which \(f\) is ramified and such that \(L(f, \chi_K/F, 1) \neq 0\) where \(\chi_K/F\) is the quadratic character of \(\mathbb{A}^\times_F\) associated to \(K/F\). This is possible by a well known result of Waldspurger [41], [42]. Then the \(S(1)\) defined in [4, p123] consists of exactly all the infinite places, and since \(d\) is even we are in the definite case there.

The (normalized ordinary) form \(f\) belongs to a Hida family. (This is well known to experts. One first considers \(f\) as an ordinary \(p\)-adic modular form and then from [10] the specialization map from the space of Hida families defined in \textit{loc.cit} to ordinary \(p\)-adic modular forms of given weight and...
neben-typus is an isomorphism.) Now that we have chosen \(\mathcal{K} \), recall we have defined the point \(\phi_0 \) in \(\text{Spec}\Lambda_D \) (subsection 11.3.1). We remark that later we will use \(\phi_0 \) to denote the point (or prime) not only of \(\text{Spec}\Lambda_D \) but also subspaces of it.

Now we do not know the Gorenstein properties for the Hecke rings associated with \(f \) in general, so we have to use \(1_f \) instead of \(\ell_f \) everywhere and the non-integral \(p \)-adic \(L \)-functions \(\tilde{L}^\Sigma_{f,\mathcal{K},1} \) (in \(F_3 \otimes_J \mathbb{Z}[[\Gamma_K]] \) actually) and non-integral Klingen Eisenstein serie \(\tilde{E}_D \). Suppose \(\tilde{L}^\Sigma_{f,\mathcal{K},1} = \frac{h}{g} \), it follows from the definition for \(1_f \) in chapter 11 and the fact that the congruence number for \(f_2 \) is finite that we may choose \(g \in J \) so that \(g(\phi_0) \neq 0 \). Start with the 1-dimensional family of cyclotomic twists of \(f \), i.e. the subspace \(\text{Spec}\Lambda[[\Gamma_K^+]] \) with \(\Lambda_{D,J} \to A[[\Gamma_K^+]] \) where the map \(J \to A \) is the specialization map at \(f \). Since \(L(f,1) = 0, h(\phi_0) = 0 \). Then there is a height 1 prime \(P_0 \) of the 1-dimensional space contained in \(\phi_0 \) and containing the image of \(h \). Here we again note that our construction did not include \(\phi_0 \) as an interpolation point of \(\tilde{L}^\Sigma_D \), but by the interpolation property we know that our \(\tilde{L}^\Sigma_D \) is the same as Hida’s ([11]) up to Euler factors at \(\Sigma \) at a sub-family containing the above 1-dimensional family.

Now we consider the specialization step by step. At each step the Iwasawa algebra is a Krull domain. Suppose we have 2 Iwasawa algebras \(\Lambda_1 \) and \(\Lambda_2 \) such that both are quotients of \(\Lambda_{D,J} \) and the corresponding closed spaces contain the point \(\phi_0 \). Suppose \(\text{Spec}\Lambda_1 \hookrightarrow \text{Spec}\Lambda_2 \) where \(\Lambda_2 \) has one more variable than \(\Lambda_1 \), i.e. \(\Lambda_1 = \Lambda_2/\langle x \rangle \Lambda_2 \) for some variable \(x \). If \(P_1 \) is a height 1 prime of \(\Lambda_1 \) passing through \(\phi_0 \) and containing the image of \(h \) in \(\Lambda_1 \) then we can find \(P_2 \) a height one prime of \(\Lambda_2 \) also contained in \(\phi_0 \) and contains the image of \(h \) in \(\Lambda_2 \) such that \(\text{Supp} P_1 \subset \text{Supp} P_2 \) under \(\text{Spec}\Lambda_1 \hookrightarrow \text{Spec}\Lambda_2 \). Finally we found some \(P \) a height one prime of \(\Lambda_D \) contained in \(\phi_0 \) and containing \(h \). Note also that \(P \) does not contain \(g \) since \(g(\phi_0) \neq 0 \). In chapter 11 we have seen that (NV1) is satisfied in our situation and thus \(h \) is not contained in any height one prime of \(J[[\Gamma_K^+]] \) contained in \(\phi_0 \). So \(P \) is not the pullback of a height one prime of \(J[[\Gamma_K^+]] \). Then proposition 12.3.2 (i) and the argument of theorem 14.1.1 involving the construction of chapter 13 gives:

\[
1 \leq \text{ord}_P \tilde{L}^\Sigma_D \leq \text{ord}_P (\mathcal{E}_{D,J}).
\]

By theorem 14.2.1:

\[
\text{ord}_P \text{Fitt}_{f_{\mathcal{K},1}}^\Sigma \geq 1.
\]
Then we need to specialize the variables back step by step to prove the theorem. Using the control theorem for the Selmer groups (results in subsection 6.4.1) we have at each step: we get \(\text{ord}_{P_i} \text{Fitt}_{K}^{\Sigma} \geq 1 \) here the \(P_i \) and the Selmer modules are interpreted in the context of each step.

Finally we specialize to the point \(\phi_0 \) to get that the \(\Sigma \)-primitive Selmer group over \(K \) is infinity. But this implies that \(H^1_f(F, \rho_f^*) \) is itself infinity since the local Euler factors \(L_{\Sigma}(f_2, 1) \) is non zero. However by lemma 6.3.1 this Selmer group is the product of Selmer groups for \(f \) and \(f \otimes \chi_K \). By \cite{46} and our choice of \(K \), we know that the Selmer group for \(f \otimes \chi_K \) is finite. So our theorem is true.

Finally we assume \(d \) is odd. Then again by Waldspurger we can find a real quadratic character \(\chi_{F'/F} \) such that \(F' \) is split at all primes at which \(f \) is ramified and \(L(f, \chi_{F'/F}, 1) \neq 0 \). We consider \(f_{F'} \), the base change of \(f \) to \(F' \). Then \([F': \mathbb{Q}] \) is even and we deduce that at least one of \(H^1_f(F, \rho_f^*) \) and \(H^1_f(F, \rho_f^* \otimes \chi_{F'/F}) \) is infinite. But by \cite{46} we know that \(H^1_f(F, \rho_f^* \otimes \chi_{F'/F}) \) is finite. So \(H^1_f(F, \rho_f^*) \) must be infinite. \(\square \)
Bibliography

[17] Eisenstein congruence on unitary groups and Iwasawa main conjecture for CM fields. preprint

173

Index

\(<X,X>_h, 31
\)
\(A', 130\)
\(A(\rho, z, -), 22\)
\(A^*, 15\)
\(B, 9\)
\(B_D, 167\)
\(B_D(\beta, r, u), 130\)
\(B_D^{(m)}, 122\)
\(B_{D,1}, 130\)
\(B_{D,2}, 130\)
\(C_D(\beta, r, u), 130\)
\(C_D(\beta, x), 124\)
\(C_D^{(m)}, 122\)
\(C_v, 41\)
\(D_v, 112\)
\(E_P, 24\)
\(E_R, 24\)
\(E_D, 97\)
\(F_k, 22\)
\(F_v^0, 67\)
\(F_T^{(m)}(z, g), 113\)
\(F_{p,\nu}, 23\)
\(G, 8\)
\(G_D(Z, x), 124\)
\(H, 12\)
\(I_D^{(m)}, 116\)
\(I_D, 162\)

\(I_n(\chi), 24\)
\(J_n, 32\)
\(K, 53\)
\(K', 54\)
\(K'', 54\)
\(K^{±, \prime}_{\infty}, 20\)
\(K_s, 113\)
\(K_{\infty}', 20\)
\(K_{n,v}, 25\)
\(L^{(m)}_D, 123\)
\(M(z; -), 26\)
\(M_P, 9\)
\(M_D, 115\)
\(N_P, 9\)
\(P, 9\)
\(Q_n, 24\)
\(R^+, 146\)
\(S, 33\)
\(S', 33\)
\(T_{K_n}, 167\)
\(U_D, 115\)
\(X^+, 12\)
\(\Lambda, 87\)
\(\Lambda_2, 87\)
\(\Lambda_W, 82\)
\(\Lambda'_W, 82\)
\(\Lambda_D, 87\)
Λ_{D,\beta}, 157
\Phi, 126
Φ_{0, 100}
Φ_{0, y}, 100
Φ_{\theta, x}, 100
Φ_{h, \theta, x, y}, 100
Φ_{h, \theta, x}, 100
\Theta_{D, \beta}, 126
\Upsilon, 54
\alpha_{\psi}, 121
\alpha_n, 103
\alpha'_n, 103
\beta_{ijk}, 130
(dist), 3
(irred), 3
E_D, 140
\psi, 135
\varepsilon_F, 85
\varepsilon_K, 16
\xi, 135
\delta(m), 21
\delta_P, 21
\eta, 94
\gamma, 53
\gamma^{(m)}(\rho, z), 111
\gamma_n, 103
\gamma'_n, 103
\mathbb{I}, 83
\mathbb{I}_K, 87
J, 157
\mathbb{T}_{m_j}, 18
X_F^\Sigma, 16
a, 159
a_f, 158
b, 140
h_{D, \beta}, 167
\mathcal{L}_D^\Sigma, 138
\lambda^\omega, 135
\lambda_D^{\text{gen}}, 135
\varnothing_1, 125
\mathfrak{h}, 80
\text{Char}, 17
\text{Fitt}, 17
\text{rec}, 88
\mu_{1, \nu}, 95
\mu_{2, \nu}, 95
\phi', 63
\phi_0, 139
\phi_w, 62
\phi_{\text{aux}}, 62
\pi^\vee, 21
\pi_{\psi}, 93
\rho^\vee, 21
\theta_{r, s}, 8
\tilde{D}_v, 112
\tilde{R}_{D, \beta}^{(m)}, 119
\tilde{K}, 54
\tilde{K}'^\nu, 55
\tilde{\phi}, 126
\tilde{\mathcal{L}}_D^\Sigma, 138
\tilde{\mathcal{L}}_{f, K, \xi}^\Sigma, 137
\tilde{f}^\dagger, 47
\tilde{g}_{D, \beta}^{(m)}, 121
\tilde{k}, 13
a_g, 147
f^0, 67
\(f^1, 47 \)
\(f_D, 127 \)
\(f_u, 110 \)
\(f_a, 110 \)
\(f_v, 38 \)
\(g_{D,\beta}^{(m)}, 121 \)
\(j_1, 157 \)
\(j_2, 157 \)
\(u_K, 121 \)
\(v_K, 119 \)
\(w_n, 32 \)
\(E_D, 163 \)
\((NV1), 139 \)
\((NV2), 139 \)