Henry Darcy Distinguished Lecture Series in Ground Water Science

presented by the National Ground Water Research and Educational Foundation
To foster interest and excellence in ground water science and technology, the Henry Darcy Distinguished Lecture Series in Ground Water Science was established in 1986. The series—which has reached more than 50,000 ground water students, faculty members, and professionals—honors Henry Darcy of France for his scientific discoveries of 1856.
Established in 1994, the National Ground Water Research and Educational Foundation is operated by the National Ground Water Association as a 501(c)(3) public foundation and is focused on conducting educational, research, and other charitable activities related to a broader public understanding of ground water.

The Foundation is an arm of NGWA that is focused on activities related to a broader understanding of ground water.
The 2008 Darcy lecture

Geological Storage as a Carbon Mitigation Option

Michael A. Celia
Princeton University

Major Collaborators: Jan M. Nordbotten, Stefan Bachu, Sarah Gasda

Support: The Carbon Mitigation Initiative (CMI) at Princeton University (funding from BP and Ford Motor Company)
Outline

- Overview of the Carbon Problem
- Feasible Solutions
- Geological Storage
- Modeling Strategies for Storage and Leakage
- Applications at Two Field Locations
- Conclusions and Ongoing Work
Overview of the Carbon Problem

>650,000 years
CO$_2$ Emissions

Current Global Emissions: ~ 30 Gt CO$_2$/yr ≈ 8 Gt C/yr
Projected Emissions (2058): ~ 60 Gt CO$_2$/yr ≈ 16 Gt C/yr
“Stabilization Wedges”

Billions of Tons Carbon Dioxide Emitted per Year

Historical emissions

Current path = “ramp”

Flat path

16 GtC/y

1 Wedge = 25 Gt C

Interim Goal

3°C

How to achieve One Wedge

1. Increase **fuel efficiency** of 2 billion cars from 30 mpg to 60 mpg.
2. Replace 1,400 large-scale coal power plants with **natural gas plants**.
3. Add **twice today’s nuclear power**, replacing coal.
4. **Install CCS at 800 large-scale coal power plants.**
5. Drive 2 billion cars on Ethanol, using one-sixth of cropland worldwide.

How to achieve One Wedge

1. Increase fuel efficiency of 2 billion cars from 30 mpg to 60 mpg.

2. Replace 1,400 large-scale coal power plants with natural gas plants.

3. Add twice today's nuclear power, replacing coal.

4. Install CCS at 800 large-scale coal power plants.

"We conclude that CO₂ capture and sequestration (CCS) is the critical enabling technology that would reduce CO₂ emissions significantly while also allowing coal to meet the world's pressing energy needs." (The Future of Coal, MIT, 2007)
Carbon Capture and Storage (CCS)

- Current Number of Coal Plants Worldwide: 2,200
- Rate of building in China: 1-2 per week.
- Rate of building in US: <10 per year
- Potential number of wedges from CCS: 3 to 5.
- All projections of carbon reductions include a significant fraction from CCS.
- We need to understand the many aspects of CCS.
Injected Supercritical CO$_2$:

- Slightly miscible with brine \((\text{solubility limit } \sim 4\%) \)
- Less dense than brine \((\text{density ratio } 0.25 \text{ to } 0.75) \)
- Less viscous than brine \((\text{viscosity ratio } 0.2 \text{ to } 0.02) \)
- Water can evaporate into (dry) CO$_2$.

Geochemistry, Geomechanics, Nonisothermal, …
Plume of Injected CO$_2$

- Nonwetting Phase
- Wetting Phase
- Solid Phase

Diagram showing the plume of injected CO$_2$ with labeled phases and variables.

- Q_{well}
- $i(r,t)$
- $h(r,t)$
- CO$_2$
- Brine
- H
Plume of Injected CO$_2$

- Nonwetting Phase
- Wetting Phase
- Solid Phase

Q_{well}

CO_2

$i(r,t)$

$h(r,t)$

Brine

H

z

r
Worldwide Density of Oil and Gas Wells

(From IPCC, 2005)
Injection and Leakage

- How to model this system?
- Domain Size: 1,000 km2
- Leakage Pathways: 0.001 m2.
- Flow Properties along well highly uncertain.
- Possible Material Degradation.

(From Duguid, 2006)
Numerical Issues

- **Standard Simulations**
 - Need grid refinement around each well
 - Need vertical resolution for multiple layers
 - Minimum of many millions of grid cells.

- **Computational Options**
 - Upscale parameters in grid blocks with wells (*Gasda and Celia, 2005*)
 - Local grid refinement / Local time stepping (*Gasda, 2007*)
 - Dual-media approach around wells (*Gasda, 2007*)
 - Simplified governing equations (*Nordbotten, Celia, …*)
Possible Simplifications

- Focus on early time ➔ two-phase physics
- Ignore (bulk) Geochemistry and Non-Isothermal Effects ➔ Constant fluid properties in a given layer
- Sharp Interface with Vertical Equilibrium (in each layer)
- Homogeneous, Horizontal Formations
- No leakage in Caprock Formations, except through Wells
Similarity Solution

\[\Gamma \equiv \frac{2\pi\Delta \rho g k \lambda_w H^2}{Q_{in}}\]
\[\tau \equiv \frac{Q_{in} t}{2\pi H \varphi (1 - S_{res})}\]
\[\lambda_1 \equiv \frac{\lambda_c}{\lambda_w}, \quad \lambda_2 \equiv \frac{\lambda_{cw}}{\lambda_W}, \quad \vartheta \equiv \frac{\rho_{cw} - \rho_c}{\rho_w - \rho_{cw}}\]
\[h' \equiv \frac{h}{H}, \quad i' \equiv \frac{i}{H}\]

\[\chi \equiv \frac{r^2}{\tau}\]

(From Nordbotten and Celia, *JFM*, 2006)
When $\Gamma < 0.5$:

\[
h'(\chi) = \frac{h(\chi)}{H} = \frac{1}{\lambda - 1} \left(\sqrt{\frac{2\lambda}{\chi}} - 1 \right)
\]

$\chi_{\text{min}} = \frac{2}{\lambda}$

$\chi_{\text{max}} = 2\lambda$

(From Nordbotten and Celia, *JFM*, 2006)
Similarity Solution: Simplified

\[
\Delta p'(\chi) - F(h') = \begin{cases}
0, & \chi \geq \Psi \\
-\frac{1}{2\Gamma} \ln\left(\frac{\chi}{\Psi}\right) + \Delta p'(\Psi), & \Psi > \chi > 2\lambda \\
\frac{1}{\Gamma} - \frac{\sqrt{\chi}}{\Gamma \sqrt{2\lambda}} + \Delta p'(2\lambda), & 2\lambda > \chi > 2/\lambda \\
-\frac{1}{2\lambda \Gamma} \ln\left(\frac{\chi \lambda}{2}\right) + \Delta p'(2/\lambda), & 2/\lambda > \chi
\end{cases}
\]

\[
\Psi = \frac{4.5\pi H \phi k (1 - S_B^{res})}{\mu_B c_{eff} Q_{well}}
\]

(Location where \(\Delta p=0\))

(From Nordbotten and Celia, *JFM*, 2006)
(See: Nordbotten and Celia, *CMWR*, 2006)
A Semi-analytical Model

1. Injection Plume, Secondary Plumes and Pressure Fields: Similarity Solution (*Nordbotten and Celia, JFM, 2006*)

2. Leakage Dynamics: Multi-phase Darcy Flow along Leaky Well Segments (*Nordbotten et al., ES&T, 2005, 2008*)

3. Upconing around Leaky Wells (*Nordbotten and Celia, WRR, 2006*)

4. Grid-free solutions: We can now solve 50 years of injection over 2,500 km², 12 layers, and 1,200 wells in about 15 minutes.

\[Q_{\text{well}} \propto K_{\text{well}} k(S_\alpha)(\frac{p_1 - p_2}{H} - \rho_\alpha g) \]
Example: Possible Injection
Existing Wells
Stratigraphy

Location: 00/10-05-052-2W5

UPPER CRETACEOUS
- **EDMONTON GROUP**
 - Group:
 - Formation/Member:
 - Logs:
 - Lithology:
 - Hydrostratigraphy:
 - Sandstone:
 - Shale:
 - Aquifer:
 - Aquitard:

LOWER CRETACEOUS
- **MANVILLE GROUP**
 - Group:
 - Formation/Member:
 - Logs:
 - Lithology:
 - Hydrostratigraphy:
 - Sandstone:
 - Shale:
 - Aquifer:
 - Aquitard:

Lithology
- Sandstone
- Shale

Hydrostratigraphy
- Aquifer
- Aquitard
Domain Size: 50 km x 50 km with 7 permeable layers in the vertical.

Leakage Pathways: >1200 Wells

Monte Carlo Simulations: Well permeabilities are the random inputs (each segment uncorrelated)
Leakage (first layer) after 50 Years

Mean $\sim -2.4 \ [0.4\%]$

Leakage $>1\%$ occurs 25% of the time

$P(>1\%)=25\%$

Risk Assessment and CCS Regulations
Brine Leakage by Layer

Regulations: Where does the brine go?
Overall Modeling Strategy

- Vertical Equilibrium Models at Large Scale (Numerical: VESA; Semi-analytical: ELSA)
- Analytical Solutions for Sub-scale Interactions
- Full Compositional Simulations for Leakage Details
 - Cement Degradation
 - Non-isothermal Effects
- Application: Risk versus depth of injection.
- Application: Basin-wide modeling (500,000 km²).
- Application: Field Measurements along Wells.

From: Celia and Nordbotten, 2008
Concluding Comments

- Technologies exist to solve the carbon problem.
- The scale of the problem is enormous.
- CCS is likely to be an important option, we need to be prepared for large-scale injection projects:
 - Regulatory Issues (EPA Guidelines)
 - Economic Credit and Liability Systems
- Complex processes and systems need to be modeled.
- Simplified, non-traditional models can play an important part.
- Hydrogeology (site characterization, subsurface modeling, risk assessment) must play a central role!
Thank You!

Your vital and integral resource for ground water's future

For more information visit us on the web at www.ngwa.org or write us at the below address.

NGWREF
601 Dempsey Road
Westerville, OH 43081
Phone/ 614-898-7791
Fax/ 614-898-7786
Email/ ngwref@ngwa.org
Your vital and integral resource for ground water's future

For more information visit us on the web at www.ngwa.org
or write us at the below address.

NGWREF
601 Dempsey Road
Westerville, OH 43081
Phone/ 614-898-7791
Fax/ 614-898-7786

Email/ ngwref@ngwa.org

