Why Not Divide and Conquer? Targeted Bargaining and Violence in Civil War

Rex W. Douglass

A DISSERTATION
PRESENTED TO THE FACULTY
OF PRINCETON UNIVERSITY
IN CANDIDACY FOR THE DEGREE
OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE
BY THE DEPARTMENT OF POLITICS

Adviser: Joanne Gowa

September 2012
For my parents, Debra and Larry.
Abstract

How do rebel groups maintain cohesion when faced with powerful and wealthy governments? Successful rebel groups are a paradox in international relations because they manage to solve collective action problems in wartime environments that lack third-party enforcement and monitoring opportunities. Governments ought to be able to split these rebel groups using a divide-and-conquer strategy of directed amnesty, rewards, and intimidation. I investigate three specific dimensions of the cohesion of a rebel movement: (1) the degree to which rebels can operate among the civilian population outside of their main base areas; (2) the rate at which rebel groups lose members through defection to the government; and (3) the degree to which civilians are willing to withhold information from the government to protect rebels from arrest and assassination even at risk to themselves.

Of all the tools of persuasion (e.g. ideological appeals, public goods, targeted rewards), I show that rebel cohesion is most clearly threatened by brute military force. Civilians will provide the tips needed for selective targeting when the alternative is indiscriminate targeting. Rebels will defect when the government militarily takes control of their communities. I explain the success of brute force over softer appeals by detailing the organizational and principal agent problems inherent to rebel organization in a war-zone. Large structural factors, particularly the ability to develop a monopoly of
control over territory, provide far more leverage over civilians and fighters than punishment and reward strategies ever could.

I test and illustrate this argument using remarkably detailed microlevel evidence from the Vietnam War. Using textual and electronic archival records, I provide new data on Viet Cong defections, government assassinations of civilians, the division of territorial control, and other novel measures. New kinds of data require new techniques for analysis. I show that by disaggregating selective targeting by the source of information used to identify the suspect, the role of government coercion in generating civilian cooperation is revealed. I also show that even amorphous concepts like territorial control can be accurately measured on a large scale by expert surveys through application of models from item response theory.
Acknowledgements

In the almost four years of work on this project and close to nine years of training in social science, I have accrued a long list of debts across a number of institutions. I thank my dissertation advisers Joanne Gowa, Kris Ramsay, and Jake Shapiro for their mentorship, advice, and support. I thank Ethan Bueno de Mesquita for his feedback and coming on as my outside reader. Like war, dissertations succeed or fail based on logistics and Cindy Ernst and Kristen D. Seith have gone above and beyond to ensure that my dissertation never ground to a halt. A number of individuals assisted in this research. In the early phases I appreciate help provided by David Madden and Josh Martin. In later phases, I appreciate the help of Josh Borkowski, Amy Dao, Katherine Elgin, Stephanie Jordan, and Jacques R. Singer-Emery. A particularly talented researcher, Walter Fick, made a heroic effort to help me over the last hump of writing and completion.

I gratefully acknowledge both direct and indirect financial support from a grant by the Minerva Research Initiative through the Air Force Office of Scientific Research and a grant from Bobst Center for Peace and Justice. I had the opportunity to present parts of this research in a number of venues. I appreciate the comments and feedback from the participants of the Princeton International Relations Graduate Seminar, the Empirical Studies of Conflict Governance, Development, and Political Violence Workshop, and the Yale Program on Order, Conflict, and Violence.
This work is based on evidence which was preserved by hundreds of dedicated individuals, of which several generously shared their time and expertise with me. At the United States National Archives in College Park I thank archivists Richard Boylan, Martin Gedra, Lynn Goodsell, and Andrew Knight. At the University of California Irvine Special Collections and Archives I thank archivist Christina Woo and former RAND analyst Joseph Carrier who shared with me a great deal of insights into his records on and experience with Viet Cong defection. At the United States National Archives Kansas City I thank archivists Pamela Anderson and Jake Ersland and two research assistants Will Hickox and Dustin Stalnaker. Additionally I thank the staffs at the U.S. Survivability/Vulnerability Information Analysis Center and the U.S. Air Force 14th Weather Squadron.

I have learned from and enjoyed the company of many scholars in the course of this project. Almost all gave feedback on this project or at a minimum one of its precursors. I particularly appreciate the opportunity to have learned from Chris Achen, Kosuke Imai, Tse-min Lin, Adam Meirowitz, and to have gained appreciation for historical research from H.W. Brands and Francis J. Gavin. For their support in navigating the first phases of graduate school I thank Aaron Friedberg, Helen Milner, and Keith Whittington. For mustering the resources, setting the example, and providing feedback and encouragement, I thank members of the Empirical Studies of Conflict Group including Eli Berman, Joseph Felter, David Laitin, Jason Lyall, and Jeremy
Weinstein. Through that group, I had the opportunity to meet and learn from a number of talented individuals including Michael Callen, Luke Condra, Radha Iyengar, Patrick Johnston, Oliver R. Kaplan, Christopher Paik, Abbey Steele, and Nils Weidmann. I greatly benefited from feedback from fellow travelers who have worked with the Vietnam data including Matthew Kocher, Håvard Kongsgård, and Stathis Kalyvas.

At Princeton, I worked and learned alongside a remarkable group of people. For on call editing and many late nights, I thank Kristen Harkness, Michael A. Hunzeker, Alexander Lanoszka, and Thomas L. Scherer. For their friendship and support I thank Lamis Abdelaaty, Scott Abramson, Matt Barnes, Graeme Blair, Brookes Brown, Peter E. Buisseret, Will Bullock, Sarah Bush, Steven Chaudoin, Jeff Colgan, Nick Goedert, Kasia Hebda, Sarah Hummel, Kevin Hughes, David Hsu, Matt Incantalupo, Kris Johnson, Adam Liff, Mike McKoy, Mike Miller, Dan Myers, Michelle Phelps, Steve Rogers, Dustin Tingley, and Teppei Yamamoto.

None of this would have been possible without the encouragement, financial support, and unpaid labor of friends and family. I thank Patrick McMillin for reminding me that there was a time before graduate school. I thank my in-laws Salvador Puente, Diane Romer, and Megan Puente. I thank my wife Ali Puente-Douglass for being the most supportive and loving partner anyone could ask for. Before I proposed six years ago, I told her parents that I wanted her by my side for this next phase of life, and now on the other end of it, I simply do not know how I could have done it without her.
Finally, I thank my parents for whom this dissertation is dedicated. Their love, support, and pride in my accomplishments never cease to amaze me.
Table of Contents

Abstract .. iv

Acknowledgements .. vi

List of Figures .. xiii

List of Tables ... xiv

Chapter 1 Introduction to the Essays ... 1

1.1 Rebel Cohesion in the Face of Strong Governments ... 1

1.2 The Evidence .. 2

1.3 Plan of the Dissertation and Overarching Themes ... 3

Chapter 2 Expert Surveys as a Source of Longitudinal Civil War Data: Measuring
Territorial Control in the Vietnam War .. 11

2.1 Introduction .. 12

2.2 Territorial Control .. 17

2.2.1 Defining Control .. 17

2.2.2 Control as an Equilibrium Outcome .. 19

2.3 Expert Surveys and Measuring Territorial Control in the Vietnam War 23

2.3.1 Background .. 23

2.3.2 Efforts to Measure Control ... 25

2.3.3 The Raters ... 26

2.3.4 Validity and the HES Questions ... 28

2.3.5 Measurement Error and Bias ... 31

2.3.6 Contemporary Aggregations Used during the War ... 32

2.4 Item Response for Cross Sectional Comparison .. 40

2.4.1 Question Selection and Screening ... 42

2.4.2 Partial Credit Item Response Models .. 44

2.4.3 How Did Different Questions Map onto Control? ... 46

2.4.4 How Did Control Vary over Space? ... 58

2.4.5 How Did Control Vary by Local Conditions/Demographics? ... 65

2.5 Measuring Control over Time .. 71

2.5.1 IRT Linking Methods .. 71
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5.2 How Did Control Vary over Time?</td>
<td>73</td>
</tr>
<tr>
<td>2.5.3 Robustness and Item Parameter Drift</td>
<td>75</td>
</tr>
<tr>
<td>2.6 Conclusion</td>
<td>78</td>
</tr>
<tr>
<td>Chapter 3 Why Not Just Bribe the Rebels? The Determinants of Rebel Defection in the Vietnam War</td>
<td>83</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>84</td>
</tr>
<tr>
<td>3.2 Literature</td>
<td>88</td>
</tr>
<tr>
<td>3.2.1 Individual Motivation</td>
<td>88</td>
</tr>
<tr>
<td>3.2.2 Outside Options</td>
<td>90</td>
</tr>
<tr>
<td>3.2.3 Organizational Design</td>
<td>92</td>
</tr>
<tr>
<td>3.2.4 Major Takeaways</td>
<td>97</td>
</tr>
<tr>
<td>3.3 Theory and Empirical Predictions</td>
<td>98</td>
</tr>
<tr>
<td>3.3.1 Shifts in Territorial Control</td>
<td>98</td>
</tr>
<tr>
<td>3.3.2 Propaganda, Chieu Hoi Centers, and Political Persuasion</td>
<td>99</td>
</tr>
<tr>
<td>3.4 The Vietnam War, the Chieu Hoi Program, and Data</td>
<td>102</td>
</tr>
<tr>
<td>3.4.1 Background on the Program</td>
<td>102</td>
</tr>
<tr>
<td>3.4.2 The Rebel Group</td>
<td>103</td>
</tr>
<tr>
<td>3.4.3 Who Defected and Why?</td>
<td>105</td>
</tr>
<tr>
<td>3.4.4 The Data</td>
<td>107</td>
</tr>
<tr>
<td>3.4.5 Dependent Variable - Defection</td>
<td>107</td>
</tr>
<tr>
<td>3.4.6 Independent Variables</td>
<td>110</td>
</tr>
<tr>
<td>3.5 Results</td>
<td>115</td>
</tr>
<tr>
<td>3.5.1 Territorial Control</td>
<td>115</td>
</tr>
<tr>
<td>3.5.2 Infrastructure</td>
<td>119</td>
</tr>
<tr>
<td>3.5.3 Placebo Test</td>
<td>122</td>
</tr>
<tr>
<td>3.6 Conclusion</td>
<td>125</td>
</tr>
<tr>
<td>Chapter 4 Hearts, Minds, or Bodies: The Strategy of Selective Violence in Civil War</td>
<td>128</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>129</td>
</tr>
<tr>
<td>4.2 Literature</td>
<td>134</td>
</tr>
<tr>
<td>4.3 A Model of Civilian Targeting in Civil War</td>
<td>139</td>
</tr>
<tr>
<td>4.3.1 Utilities</td>
<td>143</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>4.3.2 Equilibrium</td>
<td>145</td>
</tr>
<tr>
<td>4.3.3 Comparative Statistics and Hypotheses</td>
<td>150</td>
</tr>
<tr>
<td>4.4 The Empirical Setting: Violence toward Civilians in the Vietnam War</td>
<td>156</td>
</tr>
<tr>
<td>4.4.1 Dependent Variable- Selective Targeting</td>
<td>158</td>
</tr>
<tr>
<td>4.4.2 Independent Variables- Territorial Control and Intelligence</td>
<td>160</td>
</tr>
<tr>
<td>4.4.3 Control Variables</td>
<td>166</td>
</tr>
<tr>
<td>4.5 Results</td>
<td>167</td>
</tr>
<tr>
<td>4.5.1 Violence over Aggregate Territorial Control</td>
<td>167</td>
</tr>
<tr>
<td>4.5.2 Violence and Information</td>
<td>172</td>
</tr>
<tr>
<td>4.5.3 Violence, Government Control, and Rebel Control</td>
<td>175</td>
</tr>
<tr>
<td>4.5.4 Access to Information as a Moderating Variable</td>
<td>177</td>
</tr>
<tr>
<td>4.6 Conclusion</td>
<td>179</td>
</tr>
<tr>
<td>Appendix A</td>
<td>182</td>
</tr>
<tr>
<td>A.1 HAMLA Questions and Answers</td>
<td>182</td>
</tr>
<tr>
<td>A.2 HES70/71 Questions and Answers</td>
<td>185</td>
</tr>
<tr>
<td>A.3 Example Conditional Probability Tables from HES70/71</td>
<td>188</td>
</tr>
<tr>
<td>A.3 Proof of Lemma 1</td>
<td>189</td>
</tr>
<tr>
<td>A.4 HES70/71 Questions for the Government Control MOD1D</td>
<td>190</td>
</tr>
<tr>
<td>A.5 HES70/71 Questions for Rebel Control MOD1A</td>
<td>192</td>
</tr>
<tr>
<td>A.6 Overlap of Government and Rebel Selective Targeting</td>
<td>193</td>
</tr>
<tr>
<td>A.7 Intelligence Report based on Civilian Denunciation</td>
<td>194</td>
</tr>
<tr>
<td>References</td>
<td>195</td>
</tr>
</tbody>
</table>
List of Figures

Figure 2.1: Dichotomous Measure of Fully Rebel Controlled ... 35
Figure 2.2: HAMLA Additive Aggregation 1967-1969 ... 37
Figure 2.3: HES70/71 Bayesian Aggregation July 1969-1972 ... 39
Figure 2.4: Correlation Matrix of Candidate HAMLA and HES70/71 Questions 43
Figure 2.5: Distribution of Estimated Latent Control ... 48
Figure 2.6: Contemporary Measures Compared to the New Estimate ... 48
Figure 2.7: Person Item Map for HAMLA Questions in Oct. 1967 ... 51
Figure 2.8: Person Item Map for HES70/71 Questions in Oct. 1970 ... 54
Figure 2.9: Discrimination Parameters for HAMLA Questions Oct. 1967 .. 56
Figure 2.10: Discrimination Parameters for HES70/71 Questions Oct. 1970 ... 58
Figure 2.11: Average Relative Control by Province 1967-1972 ... 62
Figure 2.12: Map of Mean Provincial and Village Control in Oct. 1967 .. 64
Figure 2.13: Control and Hamlet History, Administrative Role, and Urbanity .. 67
Figure 2.14: Control and Hamlet Primary Occupation .. 68
Figure 2.15: Control and Hamlet Religion .. 69
Figure 2.16: Control and Primary Government Security Force ... 71
Figure 2.17: Change in Territorial Control over Time by Province ... 74
Figure 2.18: Unlinked Item Discrimination Parameters Across All Months ... 77
Figure 3.1: Monthly rates of Rebel Defection by Province 1965-1972 .. 87
Figure 3.2: Monthly Rebel Defections in South Vietnam 1965-1972 ... 109
Figure 3.3: Monthly Rebel Defections by Corps 1965-1972 .. 110
Figure 3.4: Availability of Chieu Hoi cadre across Hamlets by Corps ... 114
Figure 3.5: Availability of Chieu Hoi cadre across Villages by Corps ... 115
Figure 3.6: Defections and Shifts in Territorial Control by Corps .. 116
Figure 4.1: Expected Returns from Government Violence ... 143
Figure 4.2: Government’s Best Response given Differing Costs .. 152
Figure 4.3: The Community’s Best Response ... 154
Figure 4.4: Government and Rebel Selective Violence July 1969-December 1972 160
Figure 4.5: Control Disaggregated into Rebel and Government Control ... 163
Figure 4.6: Map of Village Control in Oct. 1970 ... 164
Figure 4.7: Availability of Intelligence and Territorial Control ... 166
Figure 4.8: Distribution of Selective Targeting over Territorial Control .. 170
Figure 4.9: Relationships between Control, Intelligence, and Informed Targeting 177
Figure A.1: Overlap of Government and Rebel Selective Targeting .. 193
Figure A.2: Intelligence Report based on Civilian Denunciation ... 194
List of Tables

Table 2.1: Temporal Overlap of the HES Surveys ... 26
Table 2.2: HAMLA Questions and Summary Statistics ... 29
Table 2.3: HES70/71 Question and Summary Statistics .. 30
Table 3.1: Shifts in Territorial Control and Defection ... 118
Table 3.2: Shifts in Chieu Hoi Infrastructure and Defection .. 121
Table 3.3: Infrastructure Placebo Test .. 124
Table 4.1: Violence and Aggregate Control .. 171
Table 4.2: Violence and Information ... 174
Table 4.3: Violence and Disaggregated Control ... 176
Table 4.4: Rebel Control and the Mediating Effect of Reduced Intelligence 179
Table A.1: HAMLA Questions and Answers .. 182
Table A.2: HES70/71 Questions and Answers .. 185
Table A.3: Friendly Military Presence (Level 1 Model Computation) 188
Table A.4: Friendly Military Presence (Conditional Probabilities) 188
Table A.5: Questions Aggregate Measure of Government Control MOD1D 190
Table A.6: Questions Included in Aggregate Measure of Rebel Control MOD1A 192
Chapter 1 Introduction to the Essays

1.1 Rebel Cohesion in the Face of Strong Governments

What explains the cohesion of rebel movements over time? Successful rebel groups are somewhat of a paradox in international relations because they manage to solve collective action problems in wartime environments that lack third-party enforcement and monitoring opportunities. Governments ought to be able to split these rebel groups using divide-and-conquer strategies such as directed amnesty, rewards, and intimidation. How is it that rebel groups survive even when faced with a strong central government, backed by powerful outside patrons?

To make this question tractable, I focus in this dissertation on three specific and measurable dimensions of the cohesion of a rebel movement: (1) the degree to which rebels can operate among the civilian population outside of their main base areas; (2) the rate at which rebel groups lose members through defection to the government; and (3) the degree to which civilians are willing to withhold information from the government to protect rebels from arrest and assassination even at risk to themselves. For each case, I aim to make a major theoretical or methodological contribution alongside a substantive test with original data.
1.2 The Evidence

I introduce new evidence from one of the largest and arguably the best documented cases of counterinsurgency, the Vietnam War. The Vietnam War is a particularly interesting laboratory for studying rebel cohesion in the face of different government strategies because the government of South Vietnam, with help from its patrons, had the bureaucratic and financial resources necessary to implement a large scale selective violence campaign, to accurately track and attempt to expand its control over territory in rural and remote areas, and to implement a large scale defector program with infrastructure reaching down into the smallest communities. The Vietnam War is also unique in the breadth and scope of efforts taken to quantify progress in counterinsurgency efforts on a wide range of issues. Under the direction of U.S. Secretary of Defense Robert McNamara, the Office of the Assistant Secretary of Defense for Program Analysis and Evaluation (ASDPAE) created the Operations Analysis System (OPSANAL) with the goal of performing the first large scale computerized documentation and study of the progress of a war. Using punch cards, proprietary military file formats and operating systems, and the IBM 360 mainframe, the U.S. military proceeded to document many aspects of the war.

The major change in civil conflict research in the last decade has been the shift towards increasingly fine grained subnational units of analysis. This approach is limited, as a recent review notes, because the necessary datasets are “expensive, hard-
won, and often require a mix of luck and ingenuity” (Blattman and Miguel 2010, 37). In this research, I demonstrate how civil war studies can tap an underutilized source: microlevel historical conflict data in government archives. I combine electronic records recovered from obsolete formats, tens of thousands of pages of raw data printouts, and unstructured or semi-structured narratives into coherent subnational conflict datasets. Initially, the Vietnam data were underutilized by researchers because of the lack of awareness and the difficulty in dealing with the size and format of these files (Harrison 1988). In addition to documenting, cleaning, and making available the Vietnam War data, an aim of this project is to show that with the proper eye to methodological problems these data are in some ways even better than the data available for modern conflicts.

1.3 Plan of the Dissertation and Overarching Themes

Each chapter represents a coherent essay organized around a specific research question. They are self-contained and can be read in any order, but each builds on results and historical background established in earlier chapters.

Chapter 2 addresses a methodological question of how we should measure territorial control in an ongoing conflict. The degree to which combatants take and hold territory is one of the most important and interesting concepts in civil war, but civil war environments are not conducive to large scale and systematic data collection. This is particularly true for measures that are not directly observably but instead must be
inferred through their impact on other observable factors. I propose a partial solution in the form of a theoretical conception of territorial control, a new source of information, and a method of analysis and aggregation.

I argue that territorial control is an equilibrium outcome that results from a strategic interaction between the government, rebels, and local civilians. That outcome is distinct and separate from the types of observable events we normally use to measure control, like attacks on military targets. I propose a method of measuring control with linked partial credit item response models which estimates territorial control as an unobserved latent trait which is realized in response patterns on longitudinal expert surveys. With this method, dozens of questions from different surveys can be used to generate a single consistent ranking for each community on the dimension of relative government control.

I apply this approach to a remarkable longitudinal expert survey called the Hamlet Evaluation System (HES). I generate monthly measures of territorial control across over 12,000 hamlets for 72 months (over half a million observations). Using the model’s estimates of item difficulty and discrimination, I show that despite the amorphous nature of control and the subjective nature of the questions and responses, the rater-provided responses follow a clear and consistent pattern. The relationship between responses on different questions, the ordering of difficulty of different questions, and the degree to which different questions discriminated between
communities of high and low government control all follow our theoretical understanding of counterinsurgency. I go on to compare estimated levels of government control across geographic, demographic, and economic subgroups in South Vietnam, and find a pattern which closely matches the qualitative historical record. Finally, I show that based on the metric of territorial control, the government of South Vietnam and its allies made major gains in pacifying the rural countryside in the period between 1969 and 1971. This is supportive evidence for the view that the government “won” the counterinsurgency only to have it undone by a conventional invasion from North Vietnam.

Chapter 3 addresses the puzzle of why rebel groups are sometimes able to maintain their ranks despite the lack of enforcement and monitoring opportunities in a wartime environment, and other times lose tens of thousands of fighters through defection to the government. The proposed answer is that rebel groups maintain command and control and solidarity in the face of a wealthy and powerful government not through reward and punishment strategies, but instead through physical separation and segregation of their fighters from government influence. Insurgency is distinguished as a strategy by the degree to which rebel fighters intermingle and hide among the civilian population, but there is a tradeoff in terms of the ease with which fighters can defect when in close proximity to government areas. Rebel groups expend a great deal of effort in attempting to hold sovereign territory, in minimizing contact
between their fighters and government areas, and limiting information flow to their fighters overall. In this formulation, the task for governments is not to convince fighters to lay down their arms by pacifying areas already under government control; rather, the task is to capture and hold new areas currently under rebel control to give pockets of fighters the opportunity to defect.

I draw several implications from this theory, including that rates of rebel defection should be most influenced by shifts in territorial control rather than government consolidation of areas already under control. To test this prediction, I introduce longitudinal data on monthly rates of Viet Cong defection across 44 provinces for eight years of the war. Using the measure of territorial control I developed in Chapter 2, I show that defections spike when the government first conquers a new area and then decline quickly. This pattern of raiding a new pocket of potential defectors also extends to the introduction of new propaganda/amnesty infrastructure to an area. Controlling for military factors, defections spike when the government first introduces new amnesty offices at the village and hamlet level, and then decline. The implications of these findings are subtle but important. Allegiance shifts in the very early period of expansion by either side, not over long periods during a “pacification” of areas already under control. The implication of this result is that governments should focus on liberating new areas rather than piling on resources in areas already under control.
Chapter 4 addresses the puzzle of why selective targeting of civilians in civil wars is often simultaneously described as both effective and incompetent. It asks how programs that routinely fail to target the right people can still generate concern among rebels and induce some civilian cooperation. The answer I propose is that selective and indiscriminate targeting are necessary complements to one another. Governments receive targeting information from communities, and the best information lies in communities where there is a large rebel presence. However, a rebel presence either indicates an affinity toward them by the community or a real risk of retaliation if the community shares information with the government. In rebel controlled communities, governments do not simply stop targeting because of the lack of information from the community; they switch to more brutal and arbitrary methods like mass arrests, checkpoints, and random interrogations. Eventually, the costs of those arbitrary tactics may make cooperating worthwhile to the community, opening the flow of information, and ultimately allowing selective targeting after all. This theory explains why selective violence programs score occasional victories while at the same time brutalize so many people.

I test the theory using evidence from one of the most infamous selective violence programs, the Phoenix Program of the Vietnam War. I introduce detailed data preserved in archival records on the identification and targeting of nearly 50,000 individuals over a period of three and half years. I combine that data with measures of
territorial control across communities, rebel acts of selective violence, and measures of reported information flow from each community. I show that it is important to disaggregate selective violence into the arbitrary random kind designed to induce cooperation and the informed and specific kind designed to target individuals based on clear tips. Based on this disaggregation, the pattern of violence in Vietnam supports the theory. Communities in rebel areas suffered more violence overall, but when they cooperated by sharing information, they shifted the portfolio of violence away from arbitrary and indiscriminate targeting toward more selective targeting. They were in effect able to limit the total amount of pain they suffered by providing at least some begrudging cooperation. In this way, indiscriminate and selective targeting are really two sides of the same coin. Further, governments with the resources and the reach to threaten far-flung rebel communities with violence will be able to induce at least some cooperation, even when they don’t have the “hearts and the minds” of the population.

All three chapters share overarching themes that are relevant to security studies more broadly. First, how actors take and exclude others from a given territory is a central question of inter and intra-state conflict. I develop a novel method for measuring territorial control over time in Chapter 2. In Chapter 3, I use shifts in territorial control to explain patterns of rebel defection, and I use division of territorial control to explain selective violence in Chapter 4.
Second, every organization faces similar problems in recruiting, monitoring, and maintaining control over members. Chapter 2 studies these problems in terms of potential bias in survey responses when raters are judged partly on progress shown in their own ratings. In Chapter 3, I investigate the role of ideology, rewards, punishments, and physical control in preventing defection of rebel fighters to the government. In Chapter 4, I explore these principal agent problems in a different context by investigating how government and rebel forces use the threat of violence to compete for the collaboration of civilians.

Finally, civil war studies are increasingly turning to the role of information, and civilian provision of that information, as a key variable in explaining patterns of civil war events and civil war outcomes. Chapter 3 argues that one mechanism through which territorial conquest by the government can cause defection is through providing information to rebel fighters about the likelihood of actually winning the conflict. Chapter 4 develops a theory of selective violence where civilians strategically provide and withhold information from the government in order to limit the total amount of violence they suffer from both sides. In a departure from the existing literature which must infer the role of information because no direct measures are available, I introduce two new actual measures of information flow in (1) the use of tips in the targeting of an individual and (2) the proportion of rebels in a community thought to be known by government intelligence agents.
Chapter 2 Expert Surveys as a Source of Longitudinal Civil War Data: Measuring Territorial Control in the Vietnam War

Abstract

Control over territory is both a significant means and ends of civil war. Yet, despite its importance, little consensus exists as to the meaning of territorial control or the appropriate way to measure it. In order to improve our understanding of this critical concept, I propose a method of measuring territorial control using expert surveys. I use a partial credit item response model and a test-linking procedure to measure territorial control as a latent trait of a community. That trait is then reflected in answers that military or civilian raters provide on a bank of security related questions. I apply the method to an expert survey from the Vietnam War called the Hamlet Evaluation System that provided monthly ratings of over 12,000 individual communities. I show that this method provides a valid and effective means for gauging relative control in an ongoing civil war. Based on those ratings, I find that the United States and the government of South Vietnam were largely successful in securing the rural countryside in the period between 1969 and 1971.
2.1 Introduction

How do governments and rebel groups share and compete over territory in civil war? The division and overlap of control of territory and people is a central feature of policy and academic research on civil war, appearing in nearly all theoretical discussions of civil war events and outcomes. Scholars have suggested that the propensity for civil war depends on the state’s capacity to find and destroy rebels (Sobek 2010; Braithwaite 2010), which is in turn shaped by conflict-specific features like favorable terrain (Fearon and Laitin 2003). The most effective structure for a rebel organization depends on the availability of safe havens (Sinno 2009). Civilian collaboration and information sharing depend on the combatants having physical access to threaten communities (Kalyvas 2006). Governments manipulate that access with their choice of denial tactics (Toft and Zhukov 2012). In fact, the distinction between a terrorist campaign and a civil war depends on the group’s ability and willingness to take and hold territory, which they can then parlay into mass recruitment of civilians (Sanchez-Cuenca and Luis de la Calle 2009).

The important role of territorial control in counterinsurgency programs and nation building means that to some degree academics, government and civilian agencies, aid groups, think tanks, and private contractors all use or produce sub-national measures of security. Given the lack of a clear underlying theory, the difficulty of measurement in a war zone, and the diversity of actors involved, there are a vast
number of ad hoc compilations of metrics for recent conflicts.\(^1\) Efforts to track territorial control have been particularly disjointed. Humphreys and Weinstein (2006) use surveys of ex-combatants to retroactively estimate their location and activities during the conflict in Sierra Leone. Wood (2003) had interviewees in El Salvador draw maps of control showing shifts in their local areas. Mvukiyehe and Samii (2010) use civilian surveys to assess security conditions around known peacekeeping bases in postwar Liberia. Condra and Iyengar (2012) use two questions from a commercial survey of civilians in Afghanistan on the presence of rebel forces in communities and rebel control over local roads. Stam and Davenport (2009) reconstruct the front line over time during the Rwandan Genocide using contemporary military maps and order of battle estimates. Kalyvas (2006) reconstructs control over 200 villages in the Greek Civil War using primary documents from both combatants. Recently, cross national event datasets such as ACLED and UCDP GED have attempted to record shifts in control reported in local news sources (Raleigh et al. 2010; Sundberg et al 2010).

I provide new evidence from an extensive wartime longitudinal expert survey, the Hamlet Evaluation System (HES).\(^2\) For over six years, hundreds of American

\(^1\) Notable examples include the International Security Assistance Force Commander’s District Assessments (Downes-Martin 2011), the weekly UN Afghanistan Security Situation Report (United Nations 2010), the Measures of Progress in Afghanistan reports (Cordesman 2012), and the Iraq Index (O’Hanlon and Livingston 2012).

\(^2\) Expert surveys (where respondents are practitioners, journalists, etc.) are relatively rare in civil war studies compared to surveys of civilians and combatants. For a recent review see Brück et al (2010). Surveys of former combatants have measured the motivations for joining and leaving rebel groups and the determinants of successful reintegration (Arjona and Kalyvas 2008; Guichaoua’s 2007; Mvukiyehe et
military officers, their staffs, and their Vietnamese counterparts, systematically rated over 12,000 individual communities every single month. The effort was unparalleled in scope, resources, and, in some ways, sophistication. Kalyvas and Kocher (2009) find the survey better than anything available for other conflicts. HES has been used to test the relationship between urbanization and control (Kocher 2004), selective violence against civilians and control (Kalyvas and Kocher 2009), the distribution of military attacks (Kongsgaard 2010), and the effects of indiscriminate bombing (Kocher et al. 2011).

Unfortunately, there is a great deal of historical and contemporary pessimism towards HES and systems like it. A recent thorough review sums up the position: “HES appears to show that the most extensive and structured effort to obtain ground truth in a centralized quantitative system likely produced fabricated or irrelevant data that had no real utility at the tactical, operational, or strategic levels of operation and decision-making” (Connable 2012, 131). This divide stems largely from the questions and the methodologies from which different camps approach the use of metrics. Historical accounts show that only a small minority of policymakers and analysts had the skill set, resources, and incentives to develop and use data during the conflict responsibly.

al. 2007). Using surveys to determine violent deaths over time is difficult (Spagat, Mack et al. 2009), but have been employed in a number of cases (Roberts et al. 2004; Burnham, et al. 2006; 2008). Specifically, surveys have been used to determine several aspects of genocide including the demographics of the perpetrators (Verwimp 2005) and their victims (Verwimp 2003). The individual downstream psychological and economic effects of civil war have been evaluated with surveys that gauge wartime experiences such as suffering, witnessing, or committing violence (Annan et al. 2006, 52; Annan et al. 2007). Similar studies track the occurrence and determinants of post-traumatic stress disorder in veterans (Kulka 1988).
Problems of measurement, manipulation, and a-theoretical analysis provide endless anecdotes.³

This chapter illustrates the potential of expert surveys for estimating a key civil war variable, territorial control. Specifically, I address three questions. First, how should we measure territorial control, and can longitudinal expert surveys like the Hamlet Evaluation System in Vietnam provide a credible approach in a wartime environment? Second, given the measurement of control provided by HES, how did control in South Vietnam vary across space? Third, given the above, did the United States and the Government of the Republic of Vietnam (GVN) make demonstrable progress in securing the countryside in the later part of the Vietnam War?

I argue for a conceptualization of territorial control as an equilibrium outcome resulting from the strategic interaction of government, rebels, and civilians. It should be considered separate and distinct from the occurrence of violent events. Unlike violent events, territorial control is not directly observable. Whether it is safe to enter a village can only be inferred by knowledge about past experiences, the balance of nearby forces, and the preferences of the population. Yet, we can indirectly observe control through things like the willingness of government officials to sleep in the area, the likelihood of observing rebel forces operating nearby in open daylight, and the cooperation of the

³ It is telling that canonical examples of debunking of Vietnam era data such as the account of Sam Adams’s take down of the Viet Cong Order of Battle Statistics (Adams 1994), were done by even more systematic analysis using additional data and evidence, not less.
local population. To the degree that these downstream effects can be documented, expert surveys can provide sufficient information from which detailed longitudinal measures of control can be constructed.

I show that the Hamlet Evaluation System exhibits a number of desirable properties. I use an item response theory approach to directly estimate territorial control as a function of survey responses over time. I use a generalized partial credit model which can handle mixed dichotomous and polytomous responses, missing data, and unordered response. It also allows each question to have varying ability to discriminate weakly government-controlled hamlets from strongly-controlled ones. Even though the HES survey changed multiple times during the war, including a complete switch in surveys midway, I am able to generate a single consistent measure of control running for the entire period using IRT linking methods.

The remainder of the chapter is as follows. Section 2 defines territorial control in a civil war as an equilibrium outcome and reviews the relevant literature. Section 3 evaluates the meaning of territorial control in the context of the later part of the Vietnam War and introduces the Hamlet Evaluation System. Section 4 proposes an item response model approach to estimate territorial control using expert surveys. Section 5 presents results from HES with the original and new estimators. According to HES, territorial control shifted decidedly in the government’s favor from 1967 to 1972. Section
6 concludes with a discussion of the results and suggestions for evaluating control in other conflicts.

2.2 Territorial Control

2.2.1 Defining Control

I define *territorial control* as the degree to which a government has exclusive military and administrative access to a fixed geographic space. A further distinction is between segmented and fractured control. Under *fractured control*, the areas monopolized by either side are relatively small and both actors have at least some access to and presence in most places.\(^4\) This share of monopoly by either side lies along a continuum and is not directly observable. In practice, it is useful to divide control conceptually into ordered categories. Samson (1970) provides a detailed and ordered coding of fragmented control in South Vietnam that is worth reproducing here:

1. **GVN village**: The land and living areas were controlled by the Government ("GVN"), and both GVN officials and Americans could travel unescorted during the day and in most places at night.

2. **Semisecure GVN village**: The living area but not the land was controlled by the GVN. The ability of Americans and Vietnamese officials to move about in living areas or closely associated fields (within 3km) in daytime depended on the

\(^4\) In contrast, segmented control is closer to a conventional war with a clear front line and most areas completely under control of one actor or the other.
continuous presence of the local militia (Popular Forces, Regional Forces, or Revolutionary Development Cadre Team). At night, free movement for such persons was restricted to that area enclosed by wire fortifications in the case of a fenced-in former strategic hamlet or to that area in the immediate vicinity of the village-guard command post (usually the village office) for other villages. Village officials could not live in their homes at night and slept in the closely guarded village office.

3. **Contested village**: Neither the living area nor the land was freely accessible to unescorted officials in daytime or at night. But since such villages were not the permanent residence of troops from either side, movement with only light (platoon) protections was possible. At night such villages were often subject to Viet Cong efforts to propagandize, entertain, draft (for labor or military purposes), or tax their inhabitants. In daytime similar pressures came from the GVN side.

4. **Semisecure Viet Cong village**: These villages were the permanent residences of Viet Cong militia and civilian officials. Their economies were usually isolated from GVN area markets because of roads cut by ditches or blown bridges. They were the frequent targets of GVN search and destroy missions during which the Viet Cong cadres, properly warned, withdrew to secure Viet Cong areas.
5. **Viet Cong Village**: These villages contained a full complement of Viet Cong military and civilian personnel and frequently had not been entered by GVN or United States Government (“USG”) officials since 1946.

Variants of this ordinal coding scheme have been used in a number of conflicts (Kalyvas 2006). Galula (1964, 70-71) describes a system used in Algeria where zones were either government controlled (white), rebel controlled (red), or contested (pink). Most recently, the ISAF District Assessment Model used in Afghanistan scores districts as actively supporting the government, sympathetic for the government, neutral, sympathetic to the insurgency, or actively supporting the insurgency.\(^5\)

2.2.2 Control as an Equilibrium Outcome

I argue that territorial control is an equilibrium outcome resulting from decisions by the government, the rebel opposition, and the civilians that live there. Therefore, control over any particular area might vary over a short time frame for a number of reasons. First, the government may choose not to allocate personnel and resources to an area because of finite resources. Logistical requirements impose a limit on an army’s ability to project force across distance in a civil war, shifting the expected front line of fighting (Hegre et al 2009). Even great powers face resource constraints. The United Kingdom often lacked effective intelligence and policing capabilities in its colonies

5 “ISAF Joint Command District Assessments 100408,“ http://info.publicintelligence.net/ISAFdistrictassessments.pdf
because of intentionally low commitments of resources (Anderson and Killingray 1992). Similarly, even if the U.S. had entered Iraq with the largest recommended force sizes, it may still have not been able to maintain control over most of the country (Enterline et al. 2009).

Second, the threat of violence might deter the government from entering a given space.6 Nighttime can shift the advantage to rebel forces such that government administrators and forces would conduct only daytime operations.7 Booby-traps are an effective and cheap means for deterring entry by an opposing force, and were used to great effect in Vietnam as well as in the recent conflicts in Iraq and Afghanistan (Bonsignore 2006). Casualty aversion leads to several strategies that are suboptimal from the point of view of taking and holding territory. Mechanization in modern militaries reduces access to the population and limits travel away from developed roads (Lyall and Wilson 2009). Occasionally, principal-agent problems appear when commanders will refuse combat orders for fear of being killed by someone in their unit (Prados 2009, 277-8). Other times there are local mutually agreed upon cease fires. The ARVN 25th division, for example, was reportedly very skilled at patrolling without accidentally engaging Viet Cong fighters (Clodfelter 1995, 88).

6 Seeking to avoid casualties, military units will often restrict themselves to bases or routes intentionally selected to avoid enemy contact.

7 An interesting reversal of this trend for military operations has resulted in the availability of effective night vision equipment to government but not rebel forces.
Third, the government may simply be disinterested in entering or governing the space. The government may have no interest in controlling an area that has little resources, particularly if it has access to another concentrated resource like diamonds or timber elsewhere (Weinstein 2007). Taxation is an important objective for governments, and often the only experience ordinary civilians in rural areas will have with the government is through brief visits by tax collectors accompanied by armed escort.

Fourth, the government may be physically prevented from entering the space by violent enemy tactics. As a matter of strategy, rebel forces typically retreat when government forces arrive in mass, but not always. Sunni insurgents along with foreign fighters intermittently held the city of Fallujah against American and Iraqi forces over a period of twenty months (West 2005).

Fifth, the presence of government forces is often not sufficient to prevent access by rebel forces. The strategy of guerrilla warfare developed by Mao Tse-tung calls for rebels to blend into the local population, making it impossible for government forces to distinguish rebels from non-combatants with any degree of certainty. This both complicates their goal of identifying rebel units for destruction while increasing the odds that they will inadvertently strike the civilian targets, thereby further increasing popular support for the insurgency. Without local support, it is often impossible to

identify rebel administrators and supporters living in the general population. In urban and jungle environments, even relatively large armed rebel units have been able to operate in close proximity to government forces without arousing suspicion.\(^9\)

There are two implications of this line of argument. The first is that control is a temporary outcome, predicated on the preferences and capabilities of the actors involved. This is different from the conception of “pacification” where areas are somehow made permanently aligned to one side or the other. Second, these complex strategic interactions suggest that we should distinguish between the concept of territorial control and the outbreak of violent events. Staniland (2012, 246) shows that brutal conflict, limited norms governed clashes, and active collusion to maintain a stream of rents from the population could all be consistent with an equal division of territorial control. Selective violence against civilians is argued to vary nonlinearly, peaking in areas of partial control (Kalyvas 2006). Logistical constraints suggest that attacks on military targets should be nonlinear with control, peaking at the edge of the government’s ability to easily project power into rebel areas (Hegre et al 2009). Properly specifying this functional form is important for testing theories of civil war using events (Signorino and Yilmax 2003). For this reason, efforts that focus specifically on patterns of violent events alone find it difficult to infer underlying causes (Schroden 2009, Gons et al. 2012).

\(^9\) There are multiple accounts of Viet Cong political and military operations in close proximity to American units as large as a Marine Corps infantry battalion’s headquarters (Ahern 2010, 249–250).
2.3 Expert Surveys and Measuring Territorial Control in the Vietnam War

2.3.1 Background

The Vietnam War was an internationalized civil war with combat taking place in North Vietnam, South Vietnam, Laos, and Cambodia. A number of countries committed personnel, including the United States, South Korea, Australia, New Zealand, the Philippines, China, and the Soviet Union. However, it was still a war fought primarily by Vietnamese communists against Vietnamese nationalists. In the GVN’s fight against the Viet Cong, over one million ethnic Vietnamese either joined or were drafted into the various military and police forces. The same was true for the prior colonial conflict between the Viet Minh and the French, where over 400,000 local Vietnamese were recruited into the colonial army.

Strategically, both sides fought a defensive action intended to wait out the other. The United States chose to intervene and designed a military strategy in order to buy the GVN enough time to survive on its own (Kolko 1985, 177-80). How that strategy was implemented changed over time. Thayer summarizes the shift: “the 1967-1972 pacification effort gradually built up the allied counterguerrilla and anti-Viet Cong infrastructure effort. Meanwhile, gradual U.S. withdrawal reduced the allied main forces. Hence the allied style and force structure were becoming somewhat less conventional as the communists became notably more conventional” (Thayer 1985, 39).

In this period, there were two major rebel events. The first was the Tet Offensive in
January of 1968, which the Viet Cong led in an attempt to inspire an uprising and takeover of urban areas. The second was the Easter Offensive, starting March of 1972, which was primarily a conventional attempt by the North Vietnamese to gain as much territory as possible prior to the conclusion of the Paris Peace Accords.

Geographically, South Vietnam was divided into four military regions, and the nature of the conflict varied greatly between them and within them over time. Further distinctions can be drawn between provinces and even between individual villages.

Only 10 of 44 provinces accounted for over half of all government or ally combat deaths (Thayer 1985, 14-5). The type of warfare varied greatly, with five of the provinces fighting a large-scale main force war, five fighting a primarily guerrilla war, and another five exhibiting a hybrid of the two (Prince et al. 1972, I-3). Recent comparisons of Viet Cong initiated incidents have found that the violence may have been even more localized to specific districts and villages (Lohman 2010).

10 The southernmost region, III Corps and IV Corps were closest to a locally grown and operated insurgency throughout the war. In the Viet Minh period, regional forces and local militia units were the only significant PAVN units in the southern Mekong Delta region (Pike 1986, 39). At the end of the war in South Vietnam, NVA units had largely taken over for Viet Cong forces everywhere except the Mekong Delta (Clodfelter 1995). III Corps contained the capital which guaranteed both a larger government presence as well as greater contestation by the Viet Cong. II Corps saw intense large-scale battles before returning back to insurgency style fighting. I Corps was practically a conventional war toward the later part of the war.

11 They were the northern provinces, Quang Tri, Thua Thien, Quang Nam, Quang Tin, Quang Ngai, Binh Diny, and three province critical to control around the capital in MR3, Tan Ninh, Dinh Tuong, and Kien Hoa.
2.3.2 Efforts to Measure Control

Both the GVN and the Viet Cong developed systems for reporting political and military conditions at the hamlet level.12 GVN reporting began as early as 1964 and ran into 1967.13 In April 1965, the government system began to rate some individual hamlets in addition to province-wide measures.14 In October 1966, the Department of Defense ordered the creation of an American system for measuring monthly progress. It was designed to provide for the basic requirements of a counterinsurgency campaign including census functions (tracking locations, names, demographics, and population of administrative units) and basic military intelligence functions (documenting the locations and activities of enemy and friendly forces). It also attempted to measure less tangible aspects of war such as government control over territory, progress in economic development and pacification, and progress in basic administration and governance.15

The first survey called HAMLA entered the field in January of 1967 and assigned each hamlet a letter grade (from E to A, with A the best) on 18 main questions along with a number of questions on specific problem areas.16 After a major review, the E to A subjective scores were replaced with specific questions that could then be aggregated

12 For discussion of the Viet Cong’s interpretation of control see Race (1972, 138-140) and Hunt (1974).
13 Data from this system has not yet been located, but from May 1964 through September 1966 a system called Population Control File (POPCA) recorded province-months estimates of the population living in “Secure,” “Semi-Secure,” “Contested,” “Unknown,” and “VC Controlled” areas.
14 One indication of the poor quality of this earlier system is that it showed major improvements in security during the near collapse of the government’s position in 1964 (Thayer 1975, 36).
15 For a recent review of the importance of a census to counterinsurgency operations see Shrout (2011).
16 The first few months of data from HES reported similar security conditions as the existing GVN system (Thayer 1975, 14-5).
into a meaningful overall grade. The redesign led to a survey called HES70/71, which ran from July 1969 and until the fall of Saigon in 1975. For the first year and a half, it carried 139 hamlet and village level questions – a number that was later increased to 165. The designers used a number of forward thinking approaches. They included overlap between the two systems to allow for calibration of responses. They allowed for the addition of new questions over time as they became relevant, and they generated a number of aggregation systems. The data analyzed here run from January 1967 to December of 1972 when the system was almost entirely transferred to the South Vietnamese. The temporal coverage of the two systems appears below in Table 2.1.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regime 1</td>
<td>HAMLA</td>
<td>Regime 2</td>
<td>HAMLA overlapping with HES70/71</td>
<td>Regime 3</td>
<td>HES70/71</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>First Half</th>
<th>Second Half</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regime 1</td>
<td>Regime 2</td>
</tr>
</tbody>
</table>

2.3.3 The Raters

A system like HES was only possible because of the significant advisory infrastructure developed during the war. One remarkable agency, the Civil Operations and Revolutionary Development Support (CORDS), consolidated disparate civilian and

17 The first incarnation was called HES70 and was replaced by HES71. These versions were largely identical.
18 HES71 took away 3 questions, VQE6, HQE3, HQE5, and added another 29.
19 The actual rating of hamlets was transferred gradually, starting early in mid-1972.
20 Declassification requests of the original microfilm copies of HES were not addressed in time for this analysis, but future work will be able to fill in and make available the full longitudinal series without gaps.
military pacification efforts under a single roof (Scoville 1982). Importantly, the advisory effort mirrored the federal structure of South Vietnam. An advisory team led by a Province Senior Advisor (PSA) was assigned to each of the 44 provinces. Each of the 240 districts had their own team of 5 to 13 persons headed by a District Senior Advisor (DSA) who was typically an Army major. The advisory system benefited from the continuity that resulted from repeated tours of advisors, the sometimes-extended rotations, and the limited options for transferring to other jobs or more secure districts (Osborne 2012,10). U.S. advisors were mirrored by their GVN counterparts, province and district chiefs. Provincial leadership, for the most part, consisted of career service officers who had a working knowledge of their province but were not typically from the area or they lacked local popular support (Silverman 1970).

The HES survey was filled out by the District Senior Advisors. Province advisors could provide accompanying comments but could not alter the scores provided by a DSA. Each DSA was responsible for on average about 60 hamlets (and for some districts over a 100). HES procedures required keeping a logbook of events during each month that would then be used to update the HES scores at the end of the month. DSAs were encouraged to accumulate as much information from as many sources as possible, preferably from direct observation through hamlet visits. In practice, DSAs depended

21 A small subset of districts were headed by civilians, usually from USAID.
22 Positions were normally assigned, and were held consecutively for either a 12-month rotation or were voluntarily extended to 18 to 24 months.
23 We would expect a strong temporal correlation because the DSAs were provided with last month’s scores and only made changes when necessary.
heavily on their Vietnamese counterparts for the information they used to generate their responses (de Sola Pool at al. 1968, 32).

2.3.4 Validity and the HES Questions

The major criticism of the validity of HES is that it was built to estimate “pacification” in counterinsurgency for which there was not, and still is not, a clear theoretical foundation. For some, HES focused too much on tangible security related factors to the detriment of relevant social factors (Race 1972, 223). For others, using security conditions in time t as an indication for “pacification” in $t + 1$ missed the whole point of security being a conditional outcome on the forces present at the time (Elliot 2003, 857; Race 1972, 223). Local security would naturally change when government forces left and rebel forces came back. A broader review of the search for metrics in Vietnam found that “Defining security, however, remained one of the more complicated aspects of MACV’s measurement system. Indeed, imprecise definitions plagued nearly all facets of U.S. reporting. How should “security” be defined? Quantitative reports like the HES never really said” (Daddis 2011).

There is nothing in these criticisms that suggest that HES is incapable of the more limited task of measuring territorial control and its change over time. There are two aspects of control, monopoly presence and monopoly access. The HES designers were very interested in both as metrics for counterinsurgency and included a number of questions regarding each. There are 13 HAMLA questions pertaining to the presence of
military forces and administration by either side. A list of questions and topics appear in Table 2.2, and the full E to A response descriptions appear in Appendix A.1. There are 21 hamlet level questions from HES70/71 that pertain to control. A list of questions and topics appear in Table 3, and the full E to A response descriptions appear in Appendix A.2. HES70/71 also includes a large number of village level questions that will be the subject of future analysis and are not included here.

Table 2.2: HAMLA Questions and Summary Statistics

<table>
<thead>
<tr>
<th>Abbrev.</th>
<th>Obs.</th>
<th>Mean</th>
<th>Min</th>
<th>Max</th>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLAC1</td>
<td>27127</td>
<td>3.455014</td>
<td>1</td>
<td>6</td>
<td>VC Village Guerrilla Unit</td>
</tr>
<tr>
<td>MLAC2</td>
<td>27118</td>
<td>3.125399</td>
<td>1</td>
<td>6</td>
<td>VC External Forces</td>
</tr>
<tr>
<td>PLAC1</td>
<td>27125</td>
<td>3.283682</td>
<td>1</td>
<td>6</td>
<td>VC Hamlet Infrastructure</td>
</tr>
<tr>
<td>PLAC2</td>
<td>27125</td>
<td>3.383637</td>
<td>1</td>
<td>6</td>
<td>VC Village Infrastructure</td>
</tr>
<tr>
<td>SECU1</td>
<td>27127</td>
<td>3.263596</td>
<td>1</td>
<td>6</td>
<td>Hamlet Defense Plan and Organization</td>
</tr>
<tr>
<td>SECU2</td>
<td>27128</td>
<td>3.405316</td>
<td>1</td>
<td>6</td>
<td>Friendly External Force Assistance</td>
</tr>
<tr>
<td>SECU3</td>
<td>27125</td>
<td>3.307295</td>
<td>1</td>
<td>6</td>
<td>Internal Security Activities</td>
</tr>
<tr>
<td>ADPL1</td>
<td>27126</td>
<td>3.494275</td>
<td>1</td>
<td>6</td>
<td>GVN Governmental Management</td>
</tr>
<tr>
<td>ADPL2</td>
<td>27126</td>
<td>3.220062</td>
<td>1</td>
<td>6</td>
<td>GVN Response to Popular Aspirations</td>
</tr>
<tr>
<td>GVNTAX</td>
<td>17538</td>
<td>0.833791</td>
<td>0</td>
<td>1</td>
<td>GVN Taxes Area</td>
</tr>
<tr>
<td>NOVCTAX</td>
<td>14867</td>
<td>0.577002</td>
<td>0</td>
<td>1</td>
<td>Viet Cong Do Not Tax Area</td>
</tr>
<tr>
<td>XPROB17</td>
<td>16468</td>
<td>3.664298</td>
<td>1</td>
<td>5</td>
<td>Safety of US Advisor Access - Surface</td>
</tr>
<tr>
<td>XPROB18</td>
<td>16330</td>
<td>3.739598</td>
<td>1</td>
<td>5</td>
<td>Safety of US Advisor Access - Airstrip</td>
</tr>
</tbody>
</table>

24 All HAMLA questions are monthly. For HES70/71, “HM” indicates a monthly question and “HQ” indicates a quarterly question.

25 Specifically, future work will consider a multilevel item response model that can properly aggregate observations recorded simultaneously for overlapping and nested geographic spaces.
Table 2.3: HES70/71 Question and Summary Statistics

<table>
<thead>
<tr>
<th>Abbrev.</th>
<th>Obs.</th>
<th>Mean</th>
<th>Min</th>
<th>Max</th>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMA1</td>
<td>305,855</td>
<td>2.07</td>
<td>0</td>
<td>5</td>
<td>Did any US advisory personnel visit this hamlet during the month?</td>
</tr>
<tr>
<td>HMA2</td>
<td>308,823</td>
<td>2.30</td>
<td>0</td>
<td>5</td>
<td>Did the GVN district chief visit this hamlet during the month?</td>
</tr>
<tr>
<td>HMB4</td>
<td>311,257</td>
<td>2.60</td>
<td>0</td>
<td>3</td>
<td>Were armed enemy military forces present in inhabited areas of this hamlet during the month?</td>
</tr>
<tr>
<td>HMB8</td>
<td>299,493</td>
<td>1.84</td>
<td>0</td>
<td>2</td>
<td>Were any enemy propaganda meetings held or was printed propaganda distributed in this hamlet during the month?</td>
</tr>
<tr>
<td>HQB1</td>
<td>312,728</td>
<td>2.96</td>
<td>0</td>
<td>4</td>
<td>Which of the following most closely reflects the status of the enemy infrastructure in this hamlet?</td>
</tr>
<tr>
<td>HQB2</td>
<td>303,240</td>
<td>1.54</td>
<td>0</td>
<td>2</td>
<td>Does the enemy collect taxes from hamlet households (in cash or in kind)?</td>
</tr>
<tr>
<td>HQB3</td>
<td>300,056</td>
<td>3.56</td>
<td>0</td>
<td>4</td>
<td>During daylight hours, do friendly local security forces conduct necessary security operations along approaches to this hamlet? (e.g., patrols, ambushes, listening posts, checkpoints, etc.) during the past quarter?</td>
</tr>
<tr>
<td>HQC2</td>
<td>308,954</td>
<td>1.947</td>
<td>0</td>
<td>3</td>
<td>During hours of darkness, do friendly local security forces conduct necessary security operations along approaches to this hamlet? (e.g., patrols, ambushes, listening posts, checkpoints, etc.)</td>
</tr>
<tr>
<td>HQC3</td>
<td>309,076</td>
<td>1.64</td>
<td>0</td>
<td>3</td>
<td>Are any hamlet households located in areas where enemy agents, recruiters, tax collectors, and other cadre move about with relative freedom during hours of darkness?</td>
</tr>
<tr>
<td>HQC4</td>
<td>314,257</td>
<td>3.25</td>
<td>0</td>
<td>4</td>
<td>Do any hamlet households have a member or members active in the PSDF?</td>
</tr>
<tr>
<td>HQC5</td>
<td>314,037</td>
<td>3.57</td>
<td>0</td>
<td>4</td>
<td>How active is the PSDF in this hamlet?</td>
</tr>
<tr>
<td>HQC8</td>
<td>130,462</td>
<td>4.12</td>
<td>0</td>
<td>5</td>
<td>Do local residents who are prime VC targets (members of PSDF, RDC, local government officials, young males, etc.) sleep in their homes at night?</td>
</tr>
<tr>
<td>HQC6</td>
<td>309,439</td>
<td>2.25</td>
<td>0</td>
<td>4</td>
<td>Are any hamlet households located in areas where GVN administrative personnel are unable to move about with relative freedom during daylight hours?</td>
</tr>
<tr>
<td>HQD2</td>
<td>314,674</td>
<td>1.78</td>
<td>0</td>
<td>2</td>
<td>During daylight hours, do GVN authorities enforce the laws in this hamlet?</td>
</tr>
<tr>
<td>HQD3</td>
<td>313,622</td>
<td>1.47</td>
<td>0</td>
<td>2</td>
<td>During hours of darkness, do GVN authorities enforce the law in this hamlet?</td>
</tr>
<tr>
<td>Question</td>
<td>HQD4</td>
<td>HQE1</td>
<td>HQE2</td>
<td>HQE4</td>
<td>HQF1</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>How often are National Police or NPFF present in the hamlet?</td>
<td>314,168</td>
<td>311,939</td>
<td>304,885</td>
<td>305,837</td>
<td>292,937</td>
</tr>
<tr>
<td>Is there a GVN hamlet chief for this hamlet?</td>
<td>3.34</td>
<td>1.82</td>
<td>2.68</td>
<td>2.58</td>
<td>2.97</td>
</tr>
<tr>
<td>Is the GVN hamlet chief regularly present in this hamlet?</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>How often does the GVN village chief visit this hamlet?</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Do any hamlet households have a member or members in enemy service?</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Do any hamlet households have a member or members in GVN civil or military service?</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

2.3.5 Measurement Error and Bias

A second criticism is of measurement error and measurement bias in the HES responses. On the point of error, limited resources and poor security conditions necessarily imply difficulty in assessing conditions on the ground. According to the HES data, a plurality of hamlets was rated without direct village or hamlet level experience. A HES70/71 question asks about the administrative level that best reflects the source of information used to rate each hamlet, which in July 1969 broke down as 40% at the district level, 28% at the village level, and 32% at the hamlet level. On the other hand, which areas of the district not to visit because of safety issues was something that DSAs had a strong interest in learning and could gather fairly easily. Elliot argues that although “they themselves often did not know the exact situation in many of the areas in their jurisdiction, they certainly knew where they were most likely to be shot at” (2003, 859). Several HAMLA questions ask about certainty on responses from 1 being least sure to 5 being certain, and in the same month only 4.5% reported very low (1 or 2) certainty on local security conditions.
On the point of measurement bias, HES was validated in a number of ways during the war. Concerned about inflated HES scores, the 9th Infantry Division G-2 undertook a conservative reassessment of every hamlet in Dinh Tuong province and found that their scores differed by only 10% with the scores by the District Senior Advisor (Hunt 2010, 82). Contemporary comparisons of HES scores to event data such as military attacks, ambushes, anti-aircraft fire, and terrorism have also shown a strong correlation (Thayer 1975, 61). An extensive review of combat data found HES responses to be reasonable and informative (Prince and Adkins 1973). A Simulatics Corporation study compared DSA responses to an original survey of hamlet chiefs and hamlet citizens, and found a strong correlation between them (Pool et al. 1968). There is anecdotal evidence that there was pressure to elevate scores (the mean may be biased upward), but there are also accounts of scores being biased downward as well. Bergerud (1993, 279) notes that despite significant pressure by the 25th Infantry Division commander General Williamson to inflate HES scores, the advisor team in Hau Nghia actually rated hamlets too pessimistically.

2.3.6 Contemporary Aggregations Used during the War

Before turning to a more complicated method of aggregation, it is worth reviewing the picture of control provided by the three contemporary measures used during the war: a dichotomous categorization of hamlets as fully rebel controlled and
thus un-ratable, a linear additive aggregation of V to A scores on each HAMLA question, and a Bayesian aggregation of specific questions from HES70/71.

2.3.6.1 Dichotomous Measure of Viet Cong Control

The simplest metric of control is a dichotomous scoring of hamlets as ratable or completely rebel controlled and thus unratable. The distribution of unratable hamlets over time is presented in Figure 2.1. By this metric, about a third of hamlets were under full Viet Cong control for 1967 and 1968. Starting in November 1968, the share began to drop to only 10% by mid-1969, to under 5% by mid-1970, and to practically nonexistent by 1971.26 The Northern-led and largely conventional Easter Offensive in 1972 temporarily reversed these trends bringing the share momentarily back up to 10% primarily in Military Regions 1 and 2 where most of the fighting took place. The decline coincides with the major losses suffered by the Viet Cong from the Tet Offensive and the subsequent wave of defections in 1969. The decline also begins prior to the shift in systems, so it is unlikely that the effect is solely because of the change in surveys.

There is further concern that fully rebel controlled hamlets may have simply left the sample. They could leave in one of two ways, either by being destroyed/abandoned or by simply disappearing off the roll. A relatively small share of hamlets, 1,375, exited unexpectedly from the sample. The other 11,490 exited at expected times with 7,983

26 However, the dichotomous measure is crude and one can imagine a number of reasons for the decline in 1969. Two years in, more resources might have meant an increased ability to rate hamlets that would have been considered unratable before.
exiting due to missing data in December of 1971 and 3,507 lasting until the end of the sample in December 1972. Of those premature exits, a disproportionate share were Viet Cong hamlets, 610, and another 198 were listed as having been destroyed. This accounts for some, but not the entire disappearance of the 2,357 hamlets that were rated V in the first month of the survey.

27 Data missingness in the latter half of 1969 and all of 1972 make it difficult to identify permanent exits from destruction in those windows.

28 A more interesting possibility is that a V hamlet was temporarily closed and then reopened with some degree of government control. There were 2,058 hamlets that were shown as destroyed at least at one point.
Figure 2.1 Dichotomous Measure of Fully Rebel Controlled
This figure shows the proportion of hamlets listed as unratable because of full Viet Cong control in either HAMLA or HES70/71. N=780,983.

Both surveys used their own method of aggregating individual questions into overall security scores. HAMLA used an additive linear model, assigning the V to A responses on each of the 18 questions a number (V=0, E=1, D=2, C=3, B=2, A=1) and then grouping them into V, E to A aggregate scores based on arbitrary cut points. The “problem areas” questions such as on taxation and safety of access were not included in the final aggregation. In notation,

\[S_{lt} = \sum_{j}^{l} \sum_{v=2}^{k} b_{jv} \]
Where S_{jv} is the score for each hamlet-month, j is the question out of l questions, v is the step out of k possible steps for that question, and b_{jv} is an indicator variable (0,1) for whether the response reached that step. No points are awarded for reaching the lowest step, a score of V, so summation begins starting at the second step.

Using the nine E to A HAMLA questions outlined in section 3, this method produces the distribution of scores presented below in Figure 2.2. By this method, security conditions also seem to have improved, at least in parts of the country. Consistent with the historical record, I and IV Corps have the largest share of completely Viet Cong controlled hamlets, and I Corps has the lowest starting median security score. Over time there is a minor decline following the Tet Offensive, but there appears to be a slight upward trend afterwards in each corps.
This figure shows an additive aggregation of responses to 9 main HAMLA questions relevant to territorial control. N= 271,273.

2.3.6.3 Bayesian Aggregate HES70/71 Measure

The HES70/71 system used a Bayesian weighting scheme to produce aggregate scores. At each month, each hamlet was considered to have equal probability of laying in one of the five aggregate ratings (E to A). The designers handpicked the conditional probabilities for several models that mapped each question answer to low potential letter scores. The aggregation function and examples of conditional probability tables are available in Appendix A.3. Village scores were composed of population-weighted

hamlet scores. The assigned letter score on each aggregation was the category with the highest probability as given by Bayes rule.

The E to A scores from one of the Bayesian aggregations, MOD3A, that comes closest to the control related questions I have selected appears below in Figure 2.3. The overall upward trend remains. From the beginning of 1969 onward, D and E hamlets shrink as a proportion of all hamlets, while the share of B hamlets grows to become the largest plurality. By this metric, the government made major security gains until the 1972 Easter Offensive. The increase in government controlled hamlets in 1971 resulted from the inclusion of major cities for the first time, broken down into individual wards. Again, the drops in total observations for 1970 in the II Corps and 1972 in the III and IV Corps are due to data preservation problems unrelated to security conditions during the war.
This figure shows scores on an original Bayesian aggregation from the HES70/71 survey called MOD3A. N=319,148.

2.3.6.4 Problems with the Existing Aggregations

There are a number of problems with the contemporary aggregations that merit an alternative approach. Linear aggregations that are not grounded in theory can mask important causal effects (Signorino and Xiang 2011). In this case the linear aggregation makes, by assumption, a shift on every question and every step within every question exactly equivalent. For example, a shift on MLAC1 from B to A, indicating that a rebel guerrilla unit in the village has been completely driven out of the village and adjacent villages, is equivalent to moving on ADPL1 from E to D, indicating the inclusion of
some local participation in hamlet management. That equivalency would not be true if we thought some aspects of control were necessary conditions for others, if some levels of control were more difficult to reach than others, or if advisors defaulted to middling responses when they lacked good information.

Similarly, the Bayesian aggregation depends on *a priori* decisions about the relative importance of various question-answers. This is disadvantageous if we want to test hypotheses about which questions should be most important. Also, the aggregation is not replicable because, with few exceptions, the original conditional probability tables have not been located. Finally, there is no easy means of matching aggregations from each system against one another. Accordingly, the analysis is necessarily limited to short periods rather than the full 72 month panel.

2.4 Item Response for Cross Sectional Comparison

Broadly, the item response modeling strategy is to treat answers to HES questions as realizations of an underlying and unobserved latent trait. In almost every case, HES questions on topics of local security can be treated as ordinal responses ranging from least government control to most government control. In political science, item response models have been used for estimating a wide range of important but unobservable concepts like democracy (Treier and Jackman 2008; Pemstein et al. 2010), legislative accomplishments (Clinton and Lapinski 2006), the ideology of legislators
(Poole and Rosenthal 2000), judges (Jesse and Tahk 2011), and agencies (Clinton and Lewis 2007).

This approach is consistent with the view of territorial control as a relative measure. Contemporary analysts suggested a similar interpretation of security as a relative measure (Prince 1973), and factor analysis showed HAMLA questions reflected only two distinct underlying traits: security and development (Sweetland 1968). It also directly addresses a concern that is repeatedly raised about HES—that subjective classifications do not translate into real world measures of security. A recent review goes so far as to argue that “this kind of dissociated quantitative response would make the aggregated data all but meaningless because there would be no standard associated with the numbers…The kinds of quantitative and graphic reports produced from the data would be meaningless” (Connable 2012, 118).

The item response theory approach allows for subjective questions to map into an unobserved objective measure. We do not have to know beforehand which values on which questions distinguish the most difficult to achieve levels of control; the responses themselves will provide that ordering. To the degree that we are concerned with this process varying substantially from rater to rater, we can check for differences in the structure of this mapping from region to region.30 It places both surveys (and their

30 Another concern is of inter-rater reliability. Without information on the raters, or preferably multiple raters, there is not much that can be done for controlling for individual raters proclivities. Future research will tackle this question specifically.
changes over time) onto a single consistent scale. The IRT model also produces estimates of uncertainty that can then be taken into account in other analyses.

2.4.1 Question Selection and Screening

2.4.1.1 Dimensionality

Below in Figure 2.4 is a plot of the pairwise correlation between all of the candidate HES questions related to control. Questions are clustered by their degree of association using a seriation algorithm suggested by Kastellec and Leoni (2007). Two points are of note. First, the HAMLA questions are highly clustered relative to HES70/71 questions. This observation suggests there may be less information available in the HAMLA survey than the HES70/71 survey overall. Second, after reordering the responses to point substantively in the same direction, the correlation is positive for almost every question. There are two exceptions that are candidates for removal, government taxation (GVNTAX) and visitation by U.S. personnel (HMA1), which is actually positively correlated with Viet Cong taxation (or in this case negatively correlated with “not taxing”), and negatively correlated with several other questions. Further investigation shows that hamlets were almost always recorded as having government taxation, 146,212 (83.38%) to 29,146 (16.62%). Responses about visitation by U.S. personnel were more evenly divided across possible answers, but the weak
correlation, suggests it may have been either an unimportant indicator or one prone to deception.

Figure 2.4: Correlation Matrix of Candidate HAMILA and HES70/71 Questions
This figure shows the pairwise correlation of all the potential hamlet level questions pertaining to just territorial control from HAMILA and HES70/71. Questions are clustered by their degree of association. The main HAMILA questions are highly correlated and grouped in the bottom left. HES70/71 questions are more independent of one another. A few questions grouped in the top right are poorly or even negatively related to others.

2.4.1.2 Item Non-response

Both surveys have items that provide “unknown” as a valid response. I evaluated several approaches for dealing with these responses. The first and most preferable approach is modeling the non-response directly. A combination of a partial credit model for given responses and a sequential model (Tutz 1990) for the number of
missing responses would properly attribute both answer and missingness to the underlying latent trait (Glas and Pimentel 2008). I attempted a version of the sequential model and latent tree framework (De Boeck and Partchev 2012) and found it to be computationally infeasible given the number of questions and time periods. A second approach is to simply score the missing questions as the lowest possible category, equating unknown with fully rebel controlled. However this approach is known to produce biased estimates (Rose et al. 2010). A third approach is to consider each non-response as missing at random. The Generalized Partial Credit Models (GPCM) handles these missing observations by giving them a weight of zero in the conditional likelihood (Fischer 1994, 181). In this application, this option is not unrealistic given that often only one or two questions were marked unknown and overall missingness was very low. Usually, only a few percent of responses were missing except for two questions that have a missing rate of just over 5%.

2.4.2 Partial Credit Item Response Models

Many HES questions are categorical, ordered along the same latent dimension of control. The partial credit model allows each question and each step within each question to have varying difficulties (Andersen 1983, Masters 1982). Assume that each

31 Specifically, even with subsampling the number of hamlets the memory requirements rise nonlinearly with the number of time periods. The approach failed on a server with 128gigs of ram using the lme4 R package (Bates and Sarkar 2007).

32 An alternative for polytomous items is the Graded Response Model. I prefer the partial credit model because it allows the ordering of difficulty of the responses to vary if that is reflected in the data. This is
HES question can be broken into steps such that each step represents a greater degree of government control than the prior step. For example, question HQB2 asks “Does the enemy collect taxes from hamlet households (in cash or in kind)?” and has three ordered responses: “No,” “Yes, sporadically,” and “Yes, regularly and systematically.” From the government’s perspective, an answer of No indicates greater control than sporadically, which is also better than regularly and systematically. In notation, let X_{ij} represent the number of correct steps by respondent i on question j out of k possible steps for that question. The partial credit model takes the following form:

$$P_{ijk} = P(X_{ij} = v | \theta_i, a_j, b_{jv}) = \frac{\exp \left[\sum_{v=1}^{k} D a_j (\theta_i - b_{jv}) \right]}{\sum_{h=1}^{k} \sum_{v=1}^{h} D a_j (\theta_i - b_{jv})}$$

Where the parameter θ_i represents the individual’s ability on a single underlying latent trait. The parameter b_{jv} is a step parameter, the item’s difficulty (how hard it is for the whole group). The item’s discrimination parameter represents how much harder it is for individuals of low ability compared to individuals of high ability and is represented by a_j (Baker 2001). The parameter D is a scaling constant. In terms of HES, we would consider θ_i to be the degree of the unobserved control by the government; b_{jv} how common it is to have positive reports on that particular security question; and a_j how common it is to have positive reports on that particular security question for communities with very poor security relative to communities of generally high security.

particularly important for HES questions because responses to rebel presence and government presence could interact in unpredictable ways.
Probabilities are expressed in terms of the base category, for which I have reordered responses so that the base category always represents the most Viet Cong controlled. I estimate the model using marginal maximum likelihood with the Gauss-Hermite quadrature rule implemented in the R package ltm (Rizopoulos 2006).

For each month, there are three estimated parameters, a discrimination parameter for each question, a_j, a difficulty parameter for each step within each question, b_{jk}, and a person parameter for each hamlet, θ_i. I have included 13 HAMLA questions and 22 HES70/71 questions, which means there are 79 question parameters per month for HAMLA alone. Rather than present 72 models and a few thousand parameters, I instead organize the results around three questions. First, how did the HES questions map into control? Second, how did control vary across space in South Vietnam? Third, how did control vary across groups within South Vietnam?

2.4.3 How Did Different Questions Map onto Control?

Control Estimates

One way of examining relative control between areas is to compare the estimates of $\hat{\theta}$, representing the underlying latent degree of government territorial control. In the IRT literature these are called person parameters or factor scores. The scale itself is determined by the chosen functional form and does not have inherent theoretical properties (Reckase 2009, 17). Each unadjusted estimate of $\hat{\theta}_i$ reflects the relative degree
of control between hamlets in that given month. This estimate of latent control is on an interval scale which could in principal run from negative infinity to positive infinity but for this sample ranges from -4.65 to 3.07, see Figure 2.5. Figure 2.6 shows that the estimated measure of control varies nonlinearly with the additive aggregation, and that there is a great deal of overlap in the distribution of theta $\hat{\theta}_l$ for different final letter scores from the Bayesian aggregation.
Figure 2.5: Distribution of Estimated Latent Control
This figure shows the distribution of latent control, the person parameter estimates $\hat{\theta}_k$, across every model. By assumption, the distribution should be normally distributed around zero with variance 1. Here, the mean is -.03282, standard error .9626822, min -4.580942, and max 3.079416.

Figure 2.6: Contemporary Measures Compared to the New Estimate
This figure shows how contemporary aggregations used during the war compare to estimates of latent control from the partial credit model. The HAMLA additive aggregation is the sum of the 9 main questions. The HES70/71 Bayesian aggregation is MOD3A. The additive measure misses the nonlinear distribution of responses and control, particularly for hamlets that are more rebel controlled. The Bayesian aggregation does vary linearly with the new measure, but it has a great deal of unnecessary overlap between neighboring categories.
Item Difficulties

Each step of each question has an estimated difficulty parameter b_{ij}, which is the point on the latent scale where reaching a given category is equally likely as staying at the previous category. There are then $k - 1$ difficulty parameters for k levels of answer for each question. In every case the base category is the lowest category, $k = 1$, for the answer signifying the most Viet Cong control. A person item map is a convenient way of graphically representing difficulty parameters against the distribution of the latent trait.33 I provide person item maps for two cross-sections: October 1967 and its HAMLA based questions, and October 1970 and its HES70/71 based questions. Along the top is a histogram of estimated hamlet control levels. Below, each question’s difficulty parameters are represented by numbered open circles arranged in order of increasing difficulty. A solid black circle indicates the item’s threshold difficulty, which is an average of all of the individual item difficulty parameters.

Figure 2.7 summarizes item difficulty for HAMLA questions asked in October 1967.34 Overall the polytomous responses do a good job of distinguishing shades of control along the whole latent dimension, with a bit more information provided at the higher end of government control. The model captures the way that some letter grades on some questions are very different from one another while others are for all practical

33 The person-item maps were generated using a modified version of the plot functions in the R package eRm (Mair and Hatzinger 2007).

34 Recall that being fully Viet Cong controlled serves as a type of left censoring, where no information is available and thus further variation in control is impossible to determine.
purposes interchangeable. It also captures how responses are sometimes not strictly ordered along the dimension of control. Consider the two questions on US Advisor access to the hamlet, XPROB17 and XPROB18. A second level response states “not feasible except by accompanying an operation,” which scores higher on government control than the third level, “special security arrangements necessary.” In this case, the ambiguity of the responses and the likely extra dimension of where “operations” are conducted overrode the intended ordering on the form. The partial credit model is specifically designed to catch these types of unordered responses.
Figure 2.7: Person Item Map for HAMLA Questions in Oct. 1967
This figure summarizes difficulty parameters for HAMLA questions asked in October of 1967. The top portion is a histogram of hamlet control estimates. The bottom portion shows the difficulty parameter of each answer of each question, with the lowest base answer omitted. The solid circle is the average of a question’s difficulty parameters. The model is a generalized partial credit model with Log likelihood -89085.95, AIC 178285.9, and BIC 178672.7.
Given that a hamlet was rated, hamlets with the least government control were distinguished by a score of E on MLAC1 and SECU2, and the lowest category on XPROB17 and XPROB18. These were hamlets where the village guerrilla unit was effective with village defenses intact, the clandestine village political infrastructure was intact and functioning, and where U.S. Advisor access to the hamlet was unfeasible by either surface road from the district headquarters or by airstrip/helicopter. Conversely, hamlets that were strongly government controlled were distinguished by a score of A on SECU1 and ADPL2, as well as the highest category on the two travel questions XPROB17 and XPROB18. In these hamlets weapons were unnecessary for travel by air or surface, there were adequate local defense forces with police day and night in urban areas, and there was a resident GVN grievance representative living in the hamlet.

Rebel rent collection in the form of Viet Cong taxation lands squarely in the middle of the distribution.

Figure 2.8 summarizes item difficulty for HES70/71 questions asked in October 1970. Again the questions do a good job of distinguishing across the full range of the latent measure. The most strongly Viet Cong controlled hamlets are distinguished by the lowest category on HQF1, HQF2, HMB4, and HQB1. These are hamlets in which nearly all of the households have members in the rebel group, where no households have members in government civil or military service, where armed rebel military forces were present regularly, and rebel forces were the primary authority day and
night. The most highly government controlled hamlets were distinguished by the highest category on HQC2, HMA1, HMA2, and HQF1. These were hamlets in which local security patrols were not needed at night because there was no rebel threat, US advisory personnel were resident in the hamlets, and no households had members in the rebel organization.
Figure 2.8: Person Item Map for HES70/71 Questions in Oct. 1970
This figure summarizes difficulty parameters for HES70/71 questions asked in October of 1970. The top portion is a histogram of hamlet control estimates. The bottom portion shows the difficulty parameter of each answer to each question, with the lowest base answer omitted. The solid circle is the average of a question’s difficulty parameters. The model is generalized partial credit model with Log likelihood -138056.2, AIC 276302.3, and BIC 276968.4.
Item Discrimination

In addition to item difficulty, there is the question of how well an item discriminates between hamlets on low and high levels of control. Ideally, a question would be perfectly discriminating such that every hamlet that scored positive on that question was, for certain, above a particular level of control and a negative response would indicate control was, for certain, below a particular level. In practice, items will not perfectly discriminate but instead will have a slope for which steeper is more informative.

Figure 2.9 presents discrimination parameters for HAMLA questions from October 1967, where higher values imply greater ability to discriminate Viet Cong controlled hamlets from government-controlled hamlets. The results are what we would expect based on the wording of the questions and responses, and are strong evidence for the internal validity of HES. For example, the discrimination of questions varies directly with the specificity of the question wording. The most discriminating question, PLAC1, asks about Viet Cong political infrastructure stationed directly in that hamlet, while most other questions refer to the village overall. The least discriminating question, MLAC2, refers to the broadest area, general military capabilities across an entire district, “within a few hours travel to the hamlet.” Another interesting pattern is that questions on security factors trump questions on political factors, with both administration questions ADPL2 and ADPL1 ranking next to lowest in discrimination.
Security could be a pre-requisite for political infrastructure, or raters completing the survey could have been more familiar with military matters in each hamlet. Interestingly, no Viet Cong taxation places highly in discrimination, up with guerrilla and political infrastructure presence, suggesting that lack of rent collection in an area is a strong indicator of no rebel presence.

![Item Discrimination Oct. 1967 (HAMLA)](image)

Figure 2.9: Discrimination Parameters for HAMLA Questions Oct. 1967
This figure shows the item discrimination parameters for the 12 HAMLA questions available in October 1967. Item discrimination is the slope of the item’s response function. Highly discriminating questions are more difficult for hamlets with lower government control than hamlets with high government control.

Figure 2.10 presents discrimination parameters for HES70/71 questions from October 1970. The four least discriminating questions, HMA1 and HMA2, HQD4, and HQE4 all pertain to the frequency of visits by U.S. and GVN personnel to the hamlet.
This could either mean that security conditions did not greatly influence the likelihood of visiting, which is unlikely, or there was a tendency to exaggerate the frequency or importance of visits. In contrast, the most discriminating questions are directly in line with the theoretical understanding of control proposed in section 2. HQD2 and HQD3 ask about the government’s ability to actually enforce law in the hamlet. This is nice confirmation of the view that there is a tendency for governments to claim security in areas if a few administrators visit in day time while accompanied by guards, but in reality these areas are either ungoverned or rebel governed. As it was before, Viet Cong taxation, HQB2, is a highly revealing question.
2.4.4 How Did Control Vary over Space?

Methodological Concerns

Hamlets that were scored “V” (completely rebel controlled) were not rated on any other dimension. Because of this, IRT results only pertain to the subset of hamlets for which the government had at least some degree of control. This selection effect is likely to understate the relationship of independent variables on government control (Achen 1986). There are multiple ways of addressing this problem. One way is to
impute an IRT score for hamlets under rebel control, setting it to minimum($\hat{\theta}_i$) in each month.

Additionally, special care has to be taken when using an estimate of a latent trait as a dependent variable instead of a directly observed trait.35 In the latter, uncertainty is rooted in measurement error and sampling. In the former both of those are present as well as uncertainty from the estimation process. Variation in the estimation uncertainty acts as a type of heteroskedasticity in ordinary least squares (OLS). This will not bias the OLS estimates, but it will affect the standard errors. Employing White (1980) or Efron (1982) heteroscedastic consistent standard error estimators will address this heteroskedasticity, but we can do better by directly incorporating the information we have on the uncertainty of the estimates as reported alongside the IRT estimates. I use the two-step procedure implemented by Lewis and Linzer (2005) and first described by Hanushek (1974). In that procedure, a set of weights w_i for observations $i = 1, ..., N$ are constructed such that:

$$w_i = \frac{1}{\sqrt{\omega_i^2 + \hat{\sigma}^2}}$$

35 See Borjas and Sueyoshi (1994), Lewis and Linzer (2005), and Huber and Kernell (2005).
Where, ω^2_t is the known variance of the sampling error and $\hat{\sigma}^2$ is the usual variance from the OLS procedure. Those weights are then fed into Feasible Generalized Least Squares.36

Variation in Control by Province

To gauge relative control across provinces for the entire period, I estimate a FGLS model with the following form,

$$\hat{\theta}_{it} = \eta_{it} + \delta_t + \text{Province}_p + \epsilon_{it}$$

where $\hat{\theta}_{it}$ is the estimate of latent control generated by the GPCM, η_{it} is an intercept term, δ_t is a month fixed effect, Province_p is a province fixed effect, and ϵ_{it} is hamlet-month error term.37 I estimate 95% confidence intervals using robust standard errors clustered on each hamlet and the two-step correction described in the previous section. I estimate the model twice, setting the base province the second time to the one with the mean estimate on the province fixed effect, which in this case was Ba Xuyen. The province fixed effects can then be interpreted as the relative change in latent government control averaged across hamlets within a province and across time periods for which data are available.

36 The procedure is implemented in Stata as edvreg 1.1, http://svn.cluelessresearch.com/twostep/trunk/

37 The control estimates used here are not linked, as described in the next section. How then can we compare estimates from different models? The estimates of control are relative to one another, and the distribution is imposed by the IRT process, mean zero and variance one. We are then effectively only asking whether a particular province was above or below average in each individual period.
The province estimates are below in Figure 2.11. Even at this level of aggregation, many provinces are statistically distinguishable from one another in control and the results compare favorably to historical accounts of the conflict. The cities, Da Nang, Hue, Saigon, Vung Tau, all appear toward the top end of government control. An Giang which was home to the strongly anti-communist Hoa Hao sect is the second most government controlled province (Kalyvas and Kocher 2007). Provinces that ranked lowest in government control are not surprising either. Hau Nghia, Dinh Tuong, and Long An were all selected for detailed historical case studies based on their centrality to the conflict in III Corps near Saigon (Bergerud 1993, Race 1972, Elliot 2003).
Figure 2.11: Average Relative Control by Province 1967-1972
This figure shows the difference in relative control of each province (and autonomous city) for the whole period from 1967-1972. The mean province, Quang Tri, serves as a base category. Point estimates are from a Feasible Generalized Least Squares regression with month fixed effects, and confidence intervals are calculated from robust standard errors clustered on hamlet and weighted by the IRT sampling error as discussed in the text. N= 485,505, and $R^2 = 0.184$.

Average Relative Government Control by Province 1967-1972
A more focused comparison over space is provided in Figure 2.12 which plots average latent control (imputed for fully rebel control) for a single cross section of October 1967. Quang Tri which directly faced North Vietnam, Binh Long which was a major jumping off point for the Hoi Chi Minh Trail, An Xuyen which was extremely rural and remote from the government’s perspective, all have the lowest levels of government control. The inset displays variation in control by village that picks up the spatial clustering of control. One can see both the pro government areas, like the Hoa Hao villages which are white in the upper left, as well as fully Viet Cong controlled villages which are black, particularly along the border with Cambodia.
Figure 2.12: Map of Mean Provincial and Village Control in Oct. 1967
This figure shows estimates of control from Oct. 1967 averaged at the provincial and village level. Here, values for unratable hamlets are imputed with the minimum for the month.
2.4.5 How Did Control Vary by Local Conditions/Demographics?

Without a strong theoretical reason for why some hamlets are considered fully Viet Cong controlled and unratable while others are not, it is important to consider the effects of a regressor on both the probability of being rated and the degree of control if rated. In comparing variation in control across subgroups, I estimate two models. The first is, as before, an estimate of latent control in a linear framework with a global intercept, month fixed effects, and a series of dummy variables for each nominal category of the variable of interest. The second uses a logistic regression to estimate the probability of being rated, with robust standard errors clustered on hamlet. For both models, I include the log population of the hamlet.

Variation in Control by Demographics and Economic Conditions

Territorial control varied widely. Both sides invented terms to describe their hold over territory, including “oil spots,” “iron bands,” “security belts,” etc. Both sides attempted to employ fortifications to move hamlets from contested or partially controlled into fully controlled. The Viet Cong built “combat hamlets” and the GVN attempted a failed program to relocate civilians to new fortified communities closer to the main roads called “New Life Hamlets.” Urban areas contained communist infiltrators and sympathizers yet communists were rarely able to raise or maneuver large units in those areas. In repeated attempts from 1951 to 1968, both the Viet Minh and Viet Cong repeatedly failed to seize control over urban areas. Despite its dominant
advantages in manpower and firepower, the government similarly found it difficult to take and hold territory outside urban areas. At the tactical level, the modal strategy was to deliver forces into an area, establish a defensive position, and then to rely on air and artillery fire if the rebels chose to engage (Clodfelter 1995,72). Figure 2.13 shows differences in ratability and control by the type of hamlet, its prominence as an administrative center, and its urban or rural status. As expected, urban status and status as an administrative center have strong positive relationship with government control, even while controlling for population size. Refugee camps appear slightly more government controlled than others, but older hamlets, recently built hamlets, and refugee camps were not statistically distinguishable from one another.

38 The Viet Cong were aided by a number of geographic features. Dense jungles provided concealment, allowing rebels to close with government forces unnoticed. In other parts of the country, the soil was amenable to tunneling, and the Viet Cong dug an estimated 30,000km of tunnels including some under U.S. bases. (Clodfelter 1995,77).
Figure 2.13: Control and Hamlet History, Administrative Role, and Urbanity
This figure shows variation in control and ratibility as a function of recent hamlet history, status as an administrative center, and urbanity. Parameter estimates are from logit, N=544,968 and Pseudo $R^2 = 0.2374$, and FGLS, N=481,167 and $R^2 = 0.2531$. Administrative center and hamlet history are imputed for HAMLA observations based on the first recorded value in HES70/71.

Figure 2.14 shows government control over the main occupation reported for each hamlet.39 Breaking down control by occupation confirms that the Vietnam War was largely a rural insurgency fought in and over agricultural communities, particularly the rice farmers. Government forces tended to exert far more control over communities built around manufacturing or military service. A relatively small number of hamlets, between 80 and 160, were rated as most residents being unemployed.

39 Occupation was first recorded in the July 1969 HES70/71 survey, and has been interpolated backwards for HAMLA observations here.
Hamlets with high unemployment were middling in government control. This is neither strong support for or against the economic deprivation theory of rebellion.40

![Hamlet Occupation and Control](image)

Figure 2.14: Control and Hamlet Primary Occupation
This figure shows variation in control and ratability as a function of the hamlet's primary occupation. Parameter estimates are from logit, $N=557,021$ and Pseudo $R^2=0.2363$, and FGLS, $N=484,523$ and $R^2=0.1496$. Occupation is imputed for HAMLA observations based on the first recorded value in HES70/71.

Figure 2.15 confirms that there were clear distinctions in control between hamlets with different religious compositions (Kalyvas and Kocher 2007). 90\% of the population was Buddhist, and their areas were less likely to be rated and less government controlled than any of the minority religions. Beginning with President Hgo Dinh Diem, the government of South Vietnam built institutions around the Catholic minority which

40See Blattman and Miguel (2010) for a general survey of this literature. Other measures of economic development in South Vietnam, including some recorded by HES, may provide a more definitive test.
alienated the Buddhist majority. This came to a head in I Corps in 1966 when war weariness, recent elections, and a desire for self-determination led to an open revolt by military officers and Buddhist leaders (Roberts 1966; Donnel and Joiner 1967). Consistent with historical accounts, Catholic, non-Catholic Christian, and Hoa Hao groups were most strongly under government control. The Hoa Hao had been strongly anticommunist for decades, and their spiritual leader, Prophet Huynh Phu So, was targeted for assassination by the communists in 1947 and then disappeared (Truong 2011, 12).

![Diagram](image)

Figure 2.15: Control and Hamlet Religion. This figure shows variation in control and ratability as a function of the hamlet’s primary religion. Parameter estimates are from logit, N= 556,814 and Pseudo $R^2= 0.2320$, and FGLS, N= 484,510 and $R^2= 0.1457$. Religion is imputed for HAMLA observations based on the first recorded value in HES70/71.
Finally, Figure 2.16 shows that patterns of control in South Vietnam followed a clear ordering along the type of units that were tasked with maintaining security. The ordering supports a theoretical conception of pacification sometimes called “clear, build, hold,” where big units engage and remove rebel units and then transfer responsibility of security to regional forces, then local militias, and eventually professional police forces (Pirnie and O’Connell 2008). Large regular combat units from the U.S., RVN, or allied nations operated in the most dangerous rebel controlled areas. Behind them were irregular regional forces, including the Rural Forces and the Civilian Irregular Defense Group (locally raised militias which were eventually converted to forward operating Vietnam Army Ranger units). Popular Forces were militias raised and stationed at the village level. National police field forces traveled out of the cities at the district level. The People’s Self Defense Forces were members of the local community provided with light arms. Finally, National Police were what we would recognize today as professional law enforcement rather than a military agency.
Figure 2.16: Control and Primary Government Security Force
This figure shows variation in control and ratability as a function of the hamlet’s primary source of security by the government. The categories from left to right are: no primary security force, conventional mainforce units from the South Vietnamese, American and/or allied militaries, the Rural Forces, the Civilian Irregular Defense Group, the Popular Force, the National Police Field Force, the People’s Self Defense Force, and the National Police. Parameter estimates are from logit, N= 315,341 and Pseudo $R^2 = 0.5778$, and FGLS, N= 304,609 and $R^2 = 0.3005$. Because the primary type of security force does change over time it was not imputed, and observations are only available for the HES70/71 period.

2.5 Measuring Control over Time

2.5.1 IRT Linking Methods

To measure change in control over time, estimates from one period have to be placed on the same scale as estimates from another period. The IRT parameters are scale invariant; the ordering is unique but the distribution is imposed by the model. Because of this, estimates from one model can be placed on the same scale as any other through a linear transformation. The process is known as equating, and the equated estimates,
\(\hat{\theta}_t \), can then be compared month to month in the same way as relative degrees of government control. There are at a minimum 9 common questions asked between any two months and a maximum of 34 because of the six-month overlap in the two surveys. This is known as a common-item nonequivalent groups design (Kolen and Brennan 2004).

There are two general methods of equating scores from multiple surveys, concurrent calibration and separate calibration (Hanson and Béguin, 2002). The size of HES precludes concurrent calibration that involves estimating all of the parameters using all of the data simultaneously. Instead, separate calibration is used to estimate item parameters for each month. Then, using a linear relationship of the parameter estimates, parameters are made comparable from month to month and between the different HES systems. There are several linking procedures, but the Stocking-Lord method is preferred (Kolen and Brennan, 2004; Hanson and Béguin, 2002; Kim and Kolen, 2006). The procedure is as follows: (1) Estimate the IRT model of choice on each test separately; (2) Identify common or similarly discriminating questions on both tests; (3) Using those questions as anchors, find the linear transformation which minimizes the sum of squared differences between the test characteristic curves on those questions.

\[41 \text{ For a review of the distinction between prediction, scaling, linking, and the stronger method of equating, see (Dorans et al. 2011)} \]

\[42 \text{ For a review of the literature on linking methods, see (Holland and Rubin 1982; Kolen & Brennan, 2004; von Davier 2011)} \]
(Stocking and Lord 1983). The Stocking-Lord method is implemented in the R package Plink (Weeks 2010).

2.5.2 How Did Control Vary over Time?

Figure 2.17 presents the monthly mean linked estimate of latent control over time and by province. Plots are ordered from top left to bottom right by increasing steepness of the time trend in control. Even at this level of aggregation, several clear temporal patterns are discernable. First, HES was not a constantly improving metric as one would expect if raters were trying to create a false impression of progress.43 Second, overall trends reflect major events, particularly the Tet Offensive which occurred in January of 1968. Thirty of the provinces exhibited at least a minor decline in ratings of control following Tet. Tet also reduced both scores on hamlets and also the number of hamlets being scored (Kamras 1969, 38). Tantalizingly, eight of those provinces show at least a slight decline in security prior to Tet. Gayver (2010, 7) notes that early indications of Tet appear in several of the HES indicators in the months leading up to the event.44

43 A more difficult problem would be a cyclical reporting style, with raters dropping scores at the beginning of their tour in order to raise them by the time they leave (Connable 2012, 224). Coding of the accompanying advisor reports will allow a comparison of an expert survey to qualitative narrative reports in the same environment. I am in the process of gathering information on the rotation of district senior advisors so that observations can be further clustered on the specific individual filling out the form.

44 Future analysis could retroactively compare shifts in latent control leading up to Tet in areas where rebel forces were staging to control areas matched on a number of criteria.
Figure 2.17: Change in Territorial Control over Time by Province
This figure shows the province mean latent control every month from January 1967 to December 1972. Hamlet level measures of latent control are first estimated with 72 individual monthly partial credit item response models and then linked to a single common scale using the Stocking-Lord method. Unratable hamlets are imputed with the minimum value for the entire series. Vertical red line indicates Tet Offensive in January 1968.
2.5.3 Robustness and Item Parameter Drift

Unfortunately, there are two different states of the world that are observationally equivalent. The first is that the common anchor items function the same way across every group and every time point, and differences in the scores are completely due to differences in the underlying trait of interest. The second is that the groups actually have the same measure on the latent trait, and the difference in score is completely attributable to differences in the way the test behaves for each group. The degree to which this occurs is called differential item functioning (DIF) or the case of multiple time points parameter drift/longitudinal invariance (Goldstein 1983). The absence of DIF is formally defined as (Osterlind and Everson 2009):

\[f(Y|\theta, G = R) = f(Y|\theta, G = F) \]

where \(Y \) is the response to particular test item, the latent trait is \(\theta \), \(f(\cdot) \) is the probability distribution of responses given the trait, and \(G \) is either the focal group \(F \) or the reference group \(R \). For a test to have zero differential item functioning, the probability of a correct response must be equal for two individuals from different groups that share the same level of that trait.

45 For a practical guide to checking measurement invariance in longitudinal IRT models see Millsap (2010).

46 Items can vary in difficulty, discrimination, or both and even when close to one another from one month to the next they can still exhibit a long term linear shift across the whole sample (Demars 2004). Another case is when items shift in opposing directions over time (Han et al. 2012).
Analysis of the parameter estimates show differential item functioning both across months and between groups within months. Items with DIF can be flagged automatically using a logistic regression method of detecting differential item functioning proposed by Swaminathan and Rogers (1990), extended to polytomous items (French and Miller 1996; Miller and Spray 1993; Zumbo 1999), and implemented as in R package lordif (Choi et al. 2011). For several months and several different subsets of the data, many if not every item was flagged for DIF. Consider a visual comparison of discrimination parameter for each question over time, shown below in Figure 2.18. The ordering of questions remains relatively constant, but items tend to become more discriminating over time. The estimates also become more noisy month to month in periods where missingness reduces the sample size, in 1969 and again in 1972.
Figure 2.18: Unlinked Item Discrimination Parameters Across All Months
This figure shows the item discrimination parameter of each question for each of the 72 monthly partial credit item response models. Ideally, a question will perform roughly the same across months but in practice will vary for a number of reasons. In this case, estimates become much noisier in 1969 and 1972 when the sample size is cut in half due to missingness. Many items also become more discriminating over time as previously unratable hamlets are included in the pool.

It is difficult to say how much of the temporal pattern is driven by changes in the underlying distribution of control versus shifts in the functioning of the survey. The existing research on the actual impact of item drift on estimates of the latent trait suggests that the effect may be small. Studies of unidirectional item drift over time have found a small impact (Wells et al. 2002; Witt et al. 2003; Kim and Cohen 1992; Rupp and Zumbow 2003, 2006; Stahl, Bergstrom, and Shneyderman 2002; Takala and Kaftandjieva 2000). Puhan (2009) studied equating across long chains of test forms and found a relatively small impact of drift. A review of recent studies on the relationship between
DIF and item parameters suggests that there is only a small effect on estimates of the latent trait (Li 2009).

Item drift in this case likely results from a number of sources. First, the sample changes over time in a number of ways. Previously unratable hamlets gradual begin entering the full sample as strongly rebel controlled. III and IV Corps are missing data in 1969 and again in 1972. A large group of urban hamlets representing wards of the major cities are first included in 1971. Second, this analysis has assumed a single underlying dimension of control when there may in fact be several underlying dimensions to this data related to control, reporting, or other aspects of the war. Chapter 4 capitalizes on this fact by disaggregating control into rebel and government control using the original HES70/71 Bayesian aggregations. Future work should specifically investigate these sources of parameter drift in HES and similar surveys of security conditions.

2.6 Conclusion

For the task of gauging relative government control in a given cross-section of time, HES exhibited several desirable properties. HES included many questions directly pertaining to control, both the physical presence of competing forces and their monopoly access. Those questions and answers ranged in difficulty along the entire latent dimension, allowing hamlets to be distinguished from one another at both the
high and low ends of government control. Question difficulty varied in ways expected by the theoretical conception of territorial control. Question discrimination varied in clear predictable ways with the specificity of the questions asked and the theory of control. Cross-sectional comparisons of territorial control show variation between areas that conform to the existing historical narratives. Cross-sectional variation in control also varies in the expected ways when compared across the types of security forces present, the demographic characteristics of the communities, and their occupation. The temporal variation in control also reflected contemporaneous real world events. In sum, the understandable pessimism with which scholars and policy makers have levied toward the HES experiment would appear far overstated.

By the single metric of territorial control, the government of South Vietnam and its allies did manage to expand control into a great deal of rural country side from 1969 onward. This supports the historical hypothesis that the Viet Cong were largely decimated by the Tet Offensive and the following government counterattack (Bullington 2012; Moyar 2006; Colby and McCargar 1989; Lewy 1978; Woodruff 1999). The rapid expansion of militia and police forces provided the manpower to reoccupy areas not held by the government in years. This result is important to the historical debate over the degree to which the United States “won” or “lost” the counterinsurgency campaign in the rural areas of South Vietnam. There is an argument that pacification was ultimately doomed, and American efforts were too little too late to
make a difference (Sorel 2011, Hunt 1998). This finding would support an alternate conclusion that the focus on pacification, development, and regional security forces resulted in a genuine counterinsurgency victory that was later undone by a conventional invasion by the North. Chapter 3 investigates this finding more closely in terms of rates of rebel defection during this period of government expansion in territorial control.

The modeling approach could be strengthened in a number of ways. The multilevel nature of the data, responses nested within questions, which are nested within hamlets, in villages, in districts, etc. can be handled by estimating the Rasch model in a mixed effects GLM framework (Doran et al. 2007). Further, the ordered categorical nature of the response, nonrandom missingness, and autocorrelation structure can be handled through an IRTree model proposed by De Boeck and Partchev (2012). The missingness of data should also be modeled explicitly as a function of control. This too can be handled directly within the IRT framework (Rosas and Shomer 2008; Wahab 2012).

Ultimately, HES did more in Vietnam with punch cards than is typical in modern wars because the need for accurate metrics and institutional resources came together at the right time. Despite relatively primitive technology, the HES system did well because of the remarkable resources that were made available. Even at peak deployments in Iraq and Afghanistan, the U.S. committed only a fraction of the resources that were made
available to the metrics program in Vietnam. With the drawdown in forces in those conflicts, and the coming shift in resources away from irregular war fighting, it is unlikely that the United States or others will be able to replicate the HES experiment.

How should we measure territorial control in future conflicts? HES provides several important lessons that inform a potential solution. First, even abstract concepts like territorial control in an irregular conflict can be approximated with a level of accuracy that is useful for many policy and academic questions. Second, expert surveys require direct local experience, which in this case meant relatively educated personnel working directly in the areas for which they were responsible for measuring. If nothing else, they learned which areas not to travel to for their own personal safety which is a key equilibrium outcome in irregular war. Third, determining where information is lacking is just as important as correctly measuring an important concept. Drawing confidence intervals and highlighting areas on the map where nothing is known are key pieces of information for policy makers. The approach taken here does this in only one limited sense by showing just how differentiated two hamlets can be given the similarity in answer on the same underlying survey. Future work will look specifically at modeling uncertainty as an outcome of interest.

I propose a modern version of HES grounded in the idea that individual soldiers, aid workers, journalists, contractors, and civilians, are the key sources of real time information about the economic, political, and military conditions in different areas.
Ad-hoc grassroots intelligence collection has already been suggested as a replacement for the rigid command centered structure in Afghanistan (Flynn et al. 2010). Methods are available today that can aggregate disparate reports over time and location from multiple individuals into a coherent picture of at least some measures of civil war, such as territorial control. The application would be very straightforward. The individual would be presented with a basic web-applet where they would select their geographic boundary of experience, perhaps their hometown or their area of operation. They would be given a survey of a few important questions about that area within a given timeframe. In a Bayesian framework, that individual’s responses would be combined with other raters to form a sparse network of estimates on key metrics. The end user could weight those responses however they saw fit, comparing civilian to military sources, down weighting older information, etc. The system could identify in real time areas where information has become outdated or where there is no consensus among raters. With ubiquitous access to cell phones and PDAs, policy makers could request new information with one or two questions through an SMS message to those trouble areas. A system like this would have wide application, not just in warzones, but also in nation building, humanitarian disaster operations, and in law enforcement.
Chapter 3 Why Not Just Bribe the Rebels? The Determinants of Rebel Defection in the Vietnam War

Abstract
Because incentives to free ride and defect make rebellion difficult, existing work on the causes of civil war focuses primarily on pre-conflict factors conducive to collective action like shared ethnicity, ideology, or class. However, rebel cohesion varies wildly within conflicts over time and therefore cannot be explained by initial conditions alone. I investigate two important factors which vary during a conflict: (1) the taking and holding of previously controlled rebel territory by the government and (2) the roll out of propaganda and amnesty-related political infrastructure at the community level. In the Vietnam War, over 200,000 Viet Cong fighters formally defected to the government side at varying rates across time and space. Using data on Viet Cong defections at the province-month level for over eight years, I show that the government induced defection by expanding into previously rebel held areas with military and political infrastructure. The point is subtle, but important: conquest and territorial expansion led to greater political realignment than did consolidation and pacification of existing government areas.
3.1 Introduction

Why in civil wars do rebel groups sometimes retain their ranks and other times shed members in droves? All organizations, including corporations, universities, sports teams, and street gangs, face the same problems of recruitment and retention. When a member leaves for a rival with military or trade secrets, the cost to the organization can be immense. In civil wars, both government and rebel group’s ability to recruit and retain members varies widely across time and location. We do not yet have well-developed theories for addressing this ebb and flow over time, nor do we have much in the way of empirical evidence.

We should care a great deal about rebel defection because it bears directly on the conduct and outcome of civil wars. Rebel inability to retain recruits has led to disastrous manpower shortages. For example, General Robert E. Lee reported that a high desertion rate was what forced him to retreat from Maryland (Martin 1932, 235), and desertion may have doomed the entire Confederate war effort overall (Weitz 2005). Moreover, inducing rebel desertion through political bargains could make peaceful outcomes more likely by fracturing the rebel movement. Indeed, research suggests that in the context of self-determination movements, internal divisions are more likely to generate peaceful war ending concessions from the government (Cunningham 2011).

47 There is also growing interest in the effect of desertion and military cohesion on the outcome of international conflicts. The participatory effects of democracy are seen as one of the major sources of Western military power (Biddle and Long 2004). Similarly, it is seen as one of the major weaknesses of corrupt and autocratic government. Both Jason Lyall and Allan C. Stam have major ongoing projects on the role of military cohesion and desertion in world politics.
Further, the risk of defection hinders command and control. A government officer complained that he could not discipline his troops for human rights abuses for fear that they would defect to the Khmer Rouge (Pokempner et al. 1995, 47).

In irregular civil wars where cover and concealment are key to survival, defections leak critical intelligence information to government forces. Interrogations of captured rebel fighters and intelligence provided by defectors provided crucial targeting information in the Malayan Emergency (Comber 2008, 82) and the Vietnam War (Moyar 2007, 86-107). In 1951, rebel leaders during the Malayan Emergency expressed concern about the increase in government reward offers (Ramakrishna 2002, 341), and the Viet Cong repeatedly attacked government defection centers and personnel (Koch 1973, 57). The defection of even a few members can be devastating to organizations that rely on secrecy for survival, like insurgent groups, terrorist organizations, and criminal gangs (Berman 2009). Captured members of the Irish Republican Army provided the best source of operational intelligence during The Troubles in Northern Ireland (Jeffery 1987). The defection of mob underboss Salvatore “Sammy the Bull” Gravano led to testimony that took down the Gambino crime family (Davis 1994).

This study investigates patterns of defection during one of the largest and longest wartime defection program ever carried out, the Chieu Hoi program of the Vietnam War. A recent review notes that despite the direct relevance of the American
experience in Vietnam with Chieu Hoi to present conflicts, “there is still no comprehensive research on this program” (Tovy 2012, 142). The Vietnam case is interesting for a number of reasons. First, unlike many conflicts, there was a standing amnesty offer implemented early in the war. Observers have noted that in other conflicts such as Iraq, the incumbent has suffered from a lack of a broad amnesty offer that could have provided badly needed human source intelligence (Pirnie and O’Connell 2008). Second, for much of the war the rebel group’s agricultural resource base made them dependent on broad popular support for recruitment and resources (Weinstein 2007). Third, the government of South Vietnam had the financial and bureaucratic resources to implement a national amnesty program with offices in each province. Finally, rates of defection varied wildly across location and time. Figure 3.1 presents that variation in the monthly rate of defection across the 44 provinces of South Vietnam.

48 It is estimated that 80 to 90 percent of rebel finances were obtained from rice taxes (McChristian 1994, 167).
The next section provides a brief literature review. Section 3 develops testable predictions about the relationship between territorial control, psychological/amnesty infrastructure, and defection. Section 4 provides a historical overview of rebel defection in the Vietnam War and introduces new data from the conflict. Section 5 tests the predictions against data and discusses the results. Section 6 concludes by drawing lessons from the experience in Vietnam toward the efficacy and role of amnesty and defection in modern conflicts.
3.2 Literature

There are three interrelated strands of literature related to rebel defection—individual motivation, outside options in the legal labor market, and organizational design.49 This section briefly reviews these three strands and highlights several stylized facts about defection in civil war which should inform theoretical expectations about patterns of defection over time.

3.2.1 Individual Motivation

A number of studies emphasize the role of ideas and grievances amongst members of the rebel organization and the communities from which they recruit. Early sociological research dating back to World War II emphasized the bond between individuals in the same unit as the primary reason for continued participation (McPherson 1997, 86; Stouffer et al. 1949, 109). Government brutality and violence generates collective anger and grievance which provides individual moral rewards to participating (Wood 2003), and rebel indiscriminate violence similarly provides incentives to join the government (Kalyvas 2008).50 In Algeria, for example, the increased use of violence by the FLN in civilian areas reportedly caused, at least in part, large numbers of civilians to defect to the government’s side, particularly ethnic Muslims (Hamoumou 1993, 157). A survey of American volunteers in the Spanish Civil

49 The wider literature on violent organizations, rebellion, and civil war is massive (Lichbach 1995, Blattman and Miguel 2010).

50 The Revolutionary Armed Forces of Colombia (FARC), for example, does not pay its members (Gutiérrez Sanín 2008, 14).
War found ideology to be an important correlate of fear in battle (Dollard 1943, 555). Records of desertion from the American Civil War suggest that soldiers recruited from pro-war communities were less likely to desert (Costa and Kahn 2008). Others emphasize how strong leadership provides an important and compelling justification for continued participation (Hanson 1999).

However, a growing number of surveys of captured, defecting, and retired rebels suggests that changes in ideology or grievances do not explain the decision to join or leave rebel groups (Scaff 1955, 116-129; de Posada 2009; Arjona and S. N Kalyvas; Borrego, Ballén, and Percipiano 2002; Pye 1981; Guichoa 2007; Obeyesekere 1974; Carrier 1966; Berman 1974). Modal rebel responses report personal ambitions and concern for personal or familial safety as their proximate cause for either joining or leaving an organization. Joiners report a desire to acquire a level of income or position not available to them in the private sector or that they hope to spare themselves or their family retribution for refusing to join. Defectors and deserters sometimes indicate disillusionment with the rebel organization itself, but rarely do they report changes in their fundamental beliefs about the cause or the government. Those who leave do so because of the hardships of military life, a falling out with their organization, and/or incentives provided by the government.

51 For a compilation of post conflict surveys see “Post-Conflict and Ex-Combatant Surveys,” http://www.columbia.edu/~mh2245/XCSURVEYS/
Exposure to extreme violence and personal setbacks are argued to impose important psychological costs and to cause individuals to reevaluate the expected utility of continued participation. For example, in World War I, soldiers rebelled when casualty figures became too high (Keegan 1976, 276). Desertion was higher in Union units of the American Civil War that had suffered the greater casualties (Costa and Kahn 2008). Additionally, protection from violence can be a primary motivation for joining an organization in the first place (Goodwin 2001; Kalyvas and Kocher 2007). Similarly, in cases like the Nepalese Civil War, where rebel groups had to resort to coerced recruitment during periods of combat but otherwise could rely on ideological appeals, the risks of military combat influenced the propensity to join (Eck 2010).

3.2.2 Outside Options

Determining what type of life might be waiting for defecting rebels in the legal labor market is central to the question of why rebels might leave or stay with an organization. Those that have couched rebellion in terms of a collective action problem (Olson 1965), point to the importance of short and long term material incentives (Popkin 1979; Collier and Hoeffler 1998; Weinstein 2007) and the many available strategies for delivering selective rewards and punishments (Lichbach 1995). The literature on disarmament, demobilization, and reintegration (DDR) following the end of a conflict (Colletta, Kostner, and Wiederhofer 1996; Humphreys and J Weinstein 2005; Muggah
focuses largely on the availability of jobs in the private market and on providing vocational training to soldiers in order to ease the transition to a new career.

The importance of short term economic conditions on participation during war has been studied indirectly with participation serving as an intervening variable for aggregate levels of violence. In Columbia, a decline in coffee prices depressed wages and was associated with an increase in violence in coffee growing regions (Dube and Vargas 2008). Higher spending on aid projects through the Commander's Emergency Response Program in Iraq is associated with lower levels of subsequent violence (Berman et al. 2011), and the effect is greater for more labor intensive projects (Lyengar et al. 2011). There is conflicting evidence on the relationship between unemployment and violence, with higher levels of unemployment related to lower levels of violence in Afghanistan, Iraq, and the Philippines (Berman et al. 2011), but higher levels of violence in Indonesia (Barron et al. 2004) and Nepal (Do and Lyer 2007).

Evidence on the relationship between economic conditions and recruitment has come primarily from field surveys. A survey in Burundi finds a positive correlation between civilian reporting of rebel recruitment in the past year and reporting of negative crop conditions (Nillesen and Verwimp 2009). A survey in Sierra Leone finds that poverty predicts joining fighting groups, but poor civilians were equally likely to join either rebel or government forces (Humphreys and Weinstein 2008). Field work in Uganda, Mozambique, and Peru suggests that the type of civilians who join rebel
groups suggest that conflicts with concentrated lootable resources attract more opportunistic joiners with weaker ties to the local community (Weinstein 2007).

3.2.3 Organizational Design

Arguably, every problem faced by rebel groups entails an organizational tradeoff. Decentralization and insurgent tactics are themselves an organizational innovation which trades the ability to mass force for increased concealment and safety from the government’s forces (Buhaug et al. 2009). Importantly for theories of defection, the size of a violent organization is limited by the kinds of resources which can be mustered. Mafias, for example, raise resources by inventing a market for protection in individual communities (Gambetta 1996). Rebel groups, on the other hand, sometimes raise revenues through lootable resources such as primary commodities (Collier 2006). As a country grows in wealth, the size of the prize grows but so does the difficulty in capturing that prize from a stronger more capable government (Sánchez-Cuenca and Luis de la Calle 2009). Because rebel groups acquire resources through looting and the government acquires resources through regular

52 In contrast, many of the interesting dynamic models of civil war assume that the organizations are unitary actors (Fortna 2008; Walter 2011; Glassmyer and Sambanis 2008; Walter 1997).

53 A larger, centralized, conventional rebel force is preferable when safe havens are available, but is suicide when there is no place to escape larger concentrated government forces (Sinno 2008).
taxation, the cost of fighting against the government tends to grow faster than the potential spoils from war as the economy improves (Fearon 2008).54

Defection should also vary with the types of people who are recruited, which vary depending on the available resources. When resources are concentrated, rebel groups tend to attract opportunistic joiners looking for short term material benefits (Weinstein 2007). Diffuse resources, such as agricultural commodities spread across a large rural population, require a recruitment strategy of long-term career rebels typically with stronger ties to the population. For smaller organizations, such as terrorist groups, resource requirements are less of a problem than the risk of defectors providing key intelligence to the government. For such organizations, religious or ideological appeals that require severe hardships serve to screen out opportunistic joiners that might be easily bribed (Berman and Laitin 2008).

There are still a number of cases, however, in which both large rebel groups and governments have substantial resources (or at least the backing of a wealthy patron). It is unlikely that rebel groups are simply outspending governments in terms of salary and material rewards.55 How, then, do large rebel organizations persist even when governments have sufficient resources to bribe their members? One possible answer is

54 The growth in the Iraqi economy, for example, greatly increased the operating costs of foreign insurgents. The result was greater predation on civilians, alienating many of them (Berck and Lipow 2010).

55 In the American Civil War, Confederate Major General Patrick R. Cleburne found that his soldiers were actually more likely to defect after having been paid than in periods with late and missing pay (Sears 1998).
that rebel groups maintain cohesion through the threat of selective punishment strategies. The penalty for defection is often elevated to death in the course of a conflict.

Punishment strategies, however, are incredibly hard to implement in an ongoing war. To understand why this is the case, consider the recent principal-agent approach to rebel recruitment and command. Effective control requires both the ability to detect deviations from desired behavior and the ability to sanction deviations. Conditions in civil war rarely provide either opportunity (Gates 2002). Empirically, punishment is ineffective. British executions for desertion in World War I were often commuted. They had no deterrent effect when there were randomly carried out, and actually led to an increase in desertion when the victim was falsely accused (Chen and Horton 2011). The Viet Cong threatened execution of defectors, but in practice there were too many defectors to do more than to try to selectively and arbitrarily punish some for egregious defection (surrendering a weapon or providing intelligence) and momentary lapses in heart (Carrier 1968).

Instead of punishment schemes, rebel groups are most likely to deter defection through the physical separation of the individual and his family from government control. Defectors are almost always from the local area, and rarely do soldiers defect when fighting overseas. In his study of the Russian Civil War, Landis concludes that “it was pointless to expect results when the principal areas targeted by the amnesty were effectively outside government control” (2008, 107). Stathis Kalyvas (2008) examines
willingness for civilians to join pro-government militias and finds that government units in the Greek Civil War were better able to recruit civilians for the local militia in areas where they had greater territorial control and where there had been greater levels of rebel indiscriminate violence. Holding and recruiting from areas that are primarily supporters of the rebel group provides further benefits for the organization in the form of unit homogeneity. Desertion rates from the American Civil War suggest that unit homogeneity was actually more important than either unit casualty rates or proxy measures of ideological commitment (Costa and Kahn 2008, 98-112).

Another possible answer is that amnesty offers are difficult for governments to carry out in practice. On the one hand, there is evidence to support claims that amnesty offers are effective. The British enjoyed much success with amnesty program in the Malayan Emergency (Ramakrishna 2002) and the Dhofar Rebellion (Mockaitis 1995, 90). In the Soviet experience in Afghanistan, tribal allegiance often shifted toward the best offer (Lynch 2010). The U.S. EDCOR defector program in the Huk rebellion provided important intelligence toward the end of the war (Scaff 1955, McCormick et al. 2007, 340), and the Chieu Hoi program accepted over 200,000 defectors in the Vietnam War. On the other hand, it is difficult to know whether the amnesty programs and their financial and political concessions led to military success or whether they simply

56 Amnesty is derived from a Greek term amnestia which means forgetfulness or oblivion. It is “an act of the legal sovereign conceding, from grace, a voluntary extinction from memory of certain crimes committed against the state” (Seligman 1937, 36).
exploited existing success. Anecdotally, many of these programs picked up only after major military progress on the battlefield. In other cases, amnesty programs have floundered. In Afghanistan, there are at least eight formal and informal paths for Taliban fighters and tribal leaders to reconcile with the government, but relatively few have chosen to do so (Semple 2009).

Amnesty offers might actually incentivize rebellion. First, amnesties directly lower the cost of joining in the first place. Civilians who might not have otherwise joined will now do so because they can always defect. Second, civilians might actually join in order to defect and claim the material rewards, education, and employment offered by the government. Third, because militarily strong governments do not need to offer amnesty, the offer might inadvertently embolden the rebel group by signaling weakness or desperation. The same mechanisms partly explain why governments are hesitant to negotiate with insurgent groups at all (Babat 2005).

57 Both the empirical and theoretical literatures on tax amnesties suggest pessimism. First, tax amnesties have at most only a limited effect on compliance. Second, the effect of amnesties on compliance cut in both directions, potentially driving compliance up or down in both the short and long run.

58 These concerns often lead to weak amnesties that exclude senior leadership or condition on the individual having never committed a serious offense. On August 7, 2004, the Iraqi interim Prime Minister Iyad Allawi made the first amnesty of the Iraq war. It excluded anyone who had committed murder (Napoleoni 2005, 163). A second attempt at a more comprehensive amnesty in 2006 was brought down by Shi’ites who had suffered attacks by Sunnis and by American politicians opposed to pardoning anyone who had killed American soldiers (Cordesman et al. 2008, 320). The Malayan Emergency also began with a weak offer in 1949 to the rebel Malayan Communist Party (MCP) that excluded anyone with “blood on their hands” (Ramakrishna 1999, 246).
3.2.4 Major Takeaways

In sum, existing research on rebel participation suggest several stylized facts about the decision to defect. First, the security conditions and opportunities for advancement play a larger role than changes in ideology or grievances. Those rebels that are initially more ideologically committed, however, may be less likely to defect overall. Second, exposure to violence may have countervailing effects. It may increase the risk of defection by accumulating psychological costs and reducing the future expected utility of participating. However, it may also reduce the risk of defection by sinking costs and generating grievances. Third, the relationship between defection and outside economic options is ambiguous; poverty can drive civilians into either the hands of the rebels or the government. Fourth, problems of monitoring and punishment mean that rebel groups are more likely to maintain cohesion through physical separation provided by territorial control rather than selective punishment schemes. Fifth, because positive inducements suffer from moral hazard problems, governments have greater latitude in manipulating defection by varying the level of negative sanctions.
3.3 Theory and Empirical Predictions

3.3.1 Shifts in Territorial Control

Under the territorial control thesis, defection varies with the government’s ability to directly gain access to the communities from which the rebels were recruited. Shifts in territorial control could influence defection through several mechanisms. First, maintaining command and control through punishment and reward schemes is difficult in wartime conditions. Rebel groups may prevent defection primarily by limiting opportunities to defect, which they do by maintaining control over territory. Second, civilians often join rebel groups to maintain security and so switch sides to whomever better provides protection of their home area. Komer, reflecting on the amnesty program in Malaya, argued that, above a certain level of reward money, defectors cared most about which side was best able to protect them from violence by the other side (1972, 74). Third, family ties serve both as collateral that can be threatened over defection and as a sociological motivation for participation. If the family changes hands, the individual may switch in order to stay with them. Fourth, physical access reduces the transaction costs of defecting by collocating defector offices with the defectors.

However, the relationship between territorial control and defection is not obvious. Areas already under government control should have relatively few rebels, and thus fewer defections. A related literature on violence toward civilians suggests that most of the realignment in collaboration should occur during the shift in territorial
control rather than before or after (Metelitis 2010; Ziemke 2008; Eck and Hultman 2007). Local defections should then increase in times of shifts in relative control toward the government and away from the rebel group. I cast these predictions as Hypothesis 1A and 1B.

H1A: Local levels of defection will be higher in times of government expansion of territorial control into previously rebel held areas.

H1B: Local levels of defection will be lower for areas with strong government control, all else being equal.

3.3.2 Propaganda, Chieu Hoi Centers, and Political Persuasion

Given the focus on security and control, what is the role of the infrastructure of persuasion such as local amnesty offices, propaganda, and political cadre? The existing literature suggests that changes in ideology are a relatively rare trigger for defection. However, there is a wide range of alternative mechanisms related to what are termed “psychological” operations. In his thorough study of the evolution of the Malayan and British amnesty program, Ramakrishna (1999) points to the content of the offer, the credibility of the offer, and the military context as the three key factors in rate of defection. In many cases, psychological operations provide real information on the state
of the war and events on the ground. Rebel fighters may then use this information, weighted for likely bias, to update their beliefs about the likelihood of victory (Battaglini 2002). The diversion of resources to the infrastructure around an amnesty program is a sunk cost which could signal the credibility of an amnesty offer to a potential defector (Schelling 1960; Fearon 1997). The institutions themselves may increase defection simply by lowering the transaction cost of defecting. The number of defections should increase as the political and propaganda infrastructure rolls out into formerly rebel areas, a prediction I frame as Hypothesis 2A.

H2A: Local levels of defection will be higher in times of government expansion of propaganda/defection infrastructure

Alternatively, critics suggest that governments in civil conflicts are generally incapable of executing an amnesty program. Institutions like Chieu Hoi offices falsified defections by recruiting civilians in order to pad their numbers. Many of the Taliban defections in Afghanistan, for example, are attributed to the personnel in provincial reconciliation offices recruiting friends and family to pose as defecting rebels (Semple 2009). There are observable implications that delineate the world in which amnesty infrastructure cause real defections and the world in which they merely reflect the extension of corrupt government bureaucracy to a new area. As suggested above,
defections should increase in times of expansion of infrastructure to new areas as the local rebel population switches sides. As the rebel population declines, defections should also decline and Chieu Hoi offices should effectively “put themselves out of business.” However, if even after controlling for territorial control, defection rates remained constant or continued to increase then that would be strong evidence that offices produced “defections” regardless of changes in the underlying distribution of rebels in the population. I frame this test as Hypothesis 2B.

H2B: Local levels of defection will be lower for areas with more sustained propaganda/defection infrastructure, all else being equal.

A final concern is that amnesty infrastructure does not have any direct causal impact. Instead, it might proxy for increased government control over an area in general. In order to operate, amnesty personnel need a degree of safety. The decision to allocate bureaucratic resources to an area is often a sign of consolidation, unrelated to the preferences of the rebel population. This observation suggests that a placebo test should be undertaken to differentiate the effect of amnesty related infrastructure from other infrastructure tied to territorial control and consolidation but not directly to defection. I cast this test as Hypothesis 3.
H3: After controlling for changes in territorial control, other types of village or hamlet infrastructure will have either no effect or a smaller effect on defections compared to propaganda/defection infrastructure.

3.4 The Vietnam War, the Chieu Hoi Program, and Data

3.4.1 Background on the Program

The period between partition in 1955 and the start of open revolution in 1958-9 was one of violent political consolidation by the Ngo Dinh Diem government (Race 1972). Upwards of 12,000 individuals were killed and another 40,000 were arrested based on ties to the Viet Minh, membership in opposition parties or criminal groups, and actual or suspected membership in the communist party (Kolko 1994, 89). Political accommodation was not national policy.

From 1959 onwards, rebel activity escalated to the point where the government’s position became threatened. Individual provinces began experimenting with returnee programs (Swift 1999, 15). Modeled after the EDCOR program in the Philippines and the British amnesty program in Malaya, rebel deserters were offered food, shelter, clothing, and a position in some of the early strategic hamlets. In January 1963, the

59 In 1962, outside advisors such as Sir Robert Thompson from the British Advisory Mission and Rufus Phillips from the U.S. Rural Affairs Office lobbied members of the executive for an amnesty program (Koch 1973, 20).
Chieu Hoi, or "Open Arms", program rolled out nationally.60 Over time, government forces established Chieu Hoi centers in every province and even in some individual villages. Conditions varied across Chieu Hoi centers, but the modal defector experience included: (1) an initial intelligence gathering interview; (2) processing; (3) a 60-day stay at the center with indoctrination and training courses; (4) provision of a small stipend; (5) and resettlement in a strategic hamlet or their home village. Importantly, defectors were exempt from government draft for only 6 months and could secure a position closer to home by volunteering immediately for a local militia.61 Organizational control over and support for the program fluctuated over time, but the program continued until the fall of South Vietnam in 1975.

3.4.2 The Rebel Group

The organizations that the Government of South Vietnam and its allies faced in the early 1960s had been in development since 1930 with the formal founding of the Communist Party of Vietnam, or the Party. In Mao Tse-tung’s strategy of guerrilla warfare, as adapted by the Party, political and military strategy is directly linked at multiple levels (\textit{dau tranh}). Rebellion is developed in stages beginning with an emphasis on political recruitment and party building, a transition to open irregular warfare, and

60 The programs original full name was “Phong-Trao Chieu-Tap Khang-Chien Lam Duong” or “The Movement to Regroup Misled Members of the Resistance” (Swift 1999). It was later shortened to “Chieu Hoi” or “call to return.” Those that defected through the program are said to have “rallied.”

61 The options available included the Regional Forces, Provincial Forces, Armed Propaganda Teams, Kit Carson Scouts, and later Provincial Reconnaissance Units. Otherwise, they could join the Army of Vietnam (RVN).
finally a consolidation period and takeover of urban areas. By 1960, the Party had
cycled between political development and open warfare no less than three times: the
failed Nghe-Tinh revolt in 1930-31 against the French, the resistance against the
Japanese occupation loosely allied with French administration in 1940-1945 followed by
all out warfare against the French from 1946-1954, and then again in South Vietnam
from 1959.

Vietnamese civilians were astute at avoiding commitment to just one side.
However, a number of events made nonalignment more difficult. The first was the
government’s use of repression to eliminate political opposition. Between 1956 and
1959, government crackdowns created an environment of terror and allowed for abuse
and corruption at very low levels of government. In May 1959, the proclamation of Law
10/59 broadened crimes of treason to include not just affiliation with communism or
past ties to the Viet Minh but any and all political opposition (Elliott 2003, 198; Race
1972, 183). Arrests and assassinations were often arbitrary among the civilian
population, reducing the difference between remaining neutral and actually joining the
rebel group (Kalyvas and Kocher 2007).

The Viet Cong Liberation Army (Quan Doi Giai Phong) consisted of both
conventional and irregular forces. The lowest levels of irregular forces were self-defense
forces (tu ve) consisting of persons not fit for guerrilla forces yet able to train recruits,
construct booby traps, and collect intelligence. Guerrilla forces were organized both at
the hamlet level (đu kich ap) – in anywhere between 3-man and full 12-man squads -
and at the village level (đu kich xa) - one or more platoons of about 36 to 48 men (Blood
guerrilla forces at this level as the “goons who collected taxes, spread terror or sabotage,
and served as bodyguards” (Black 2003, 176). The lowest level conventional force was
the regional/territorial forces (dai doi doc lop) or Viet Cong (VC) Local Force (LF),
which was subordinate to a provincial or district party committee and normally
operated only within a province or district (MACV Order of Battle Reference Manual
1967, 2). Local forces were organized into companies of 3 or 4 platoons, and were
normally based in a safe haven in the district from which they could launch attacks. LF
were tasked with launching raids into incumbent areas for both propaganda and
assassination. In addition to the district level forces, each Vietcong Province
Headquarters typically had one or two battalions of 300 to 700 men each (Blood
2005,63). Even larger, the main forces (Quan Doi Chu Luc) were organized into larger
regiments and divisions at the regional level. The largest forces, and the ones that took
most responsibility for the fighting after 1968, were provided by People's Army of
Vietnam (PAVN) which were also referred to as the North Vietnamese Army (NVA).

3.4.3 Who Defected and Why?

We know a great deal about those rebels that defected, at least from the 1965-
1968 period, thanks to a number of interview studies carried out by the Rand
Corporation (Davison 1972). The interviews include both thousands of captured rebel fighters that did not choose to leave their units and twenty thousand defectors that opted to formally defect through the government program (Goure 1968; Kellen et al. 1969). More directly and equally impressive is the work done by Rand researcher Joseph Carrier and his team. They translated and coded tens of thousands of defector entrance interview cards (Carrier 1966). The interviews are analyzed in a number of technical reports. These reports highlight patterns and cross-reference oral evidence with captured documents, interrogation reports, and intelligence coming in from the field (Gurtov and Kellen 1969; Benoit 1970; Chandler 1981).

In total, over 200,000 individuals officially defected through the government program. Some portion of those counted were not actual rebels but rather ordinary civilians. North Vietnamese troops rarely defected, even as they took on a greater share of combat operations towards the end of the war. Defectors were less likely to be full party members than Viet Cong that were captured in battle (Berman 1974, 93). Coercive recruiting was actually more prominent in Viet Cong controlled areas than in contested or government areas (Berman 1974, 69), and conscripts were particularly likely to defect (Koch 1973, 6). Desertion was much more common than defection, with

62 For recent reviews of this literature see Tovy (2010)
63 Advisors estimated that of the first 16,000 ralliers, probably 50-60% were genuine rebels (Koch 1973, 22).
RAND and CIA analysts estimating about seven deserters for every defector (Adams 1994, 46, 63).

3.4.4 The Data

This paper uses two kinds of data. The first set of data tracks rates of defection as measured at the province-month level through the Chieu Hoi reports. Defection reports were then aggregated at the province level and then forwarded to Saigon. The second set consists of responses from a longitudinal expert survey called the Hamlet Evaluation System (HES). Responses are used to measure province level government control as well as the diffusion of Chieu Hoi centers. This paper focuses on the period from 1967 to 1972, starting where data at the hamlet level first began to be collected. The unit of analysis for this study is the province-month. Civilians lived 44 provinces and five autonomous cities. The U.S. military further divided the country into four Corps Tactical Areas.

3.4.5 Dependent Variable - Defection

Defection is measured at the province-month level through archived Chieu Hoi records. The data from Chieu Hoi show 172,326 defections over eight years, which is about 86% of the 200,000 defections typically attributed to the entire program. Only 400 province-months of 4,380 with data show zero defections, or 9%. The number of

defections range from 0 to 1,136 with an average of 39.34 per province-month and a median of 16. Figure 3.2 shows the broad pattern of defection for the entire country.

This countrywide pattern is evidence against defection being driven mechanically by the number of rebels under arms or the intensity of combat. Defections climb every year of American intervention but fall in anticipation of American withdrawal and bottom out around January 1968 when the Viet Cong launched a country-wide attack called the Tet Offensive. In no other period was irregular, hamlet-to-hamlet fighting as intense. Nor were rebel casualties as high as they were in 1968. However, defection rates climb with the governments counter offensive in the latter half of 1968 and accelerate even more during the pacification campaign of 1969.
Defections broken down by individual corps tell a similar story, presented in Figure 3.3. III and IV Corps were primarily embroiled in insurgent conflict against locally raised forces. Both exhibit the sharp drop in defections around the Tet Offensive and then a large spike during the period of government pacification in 1969. The big conventional unit war fought by II Corps was over before Tet, and the pattern of defection remains fairly constant afterward. I Corps saw some of the worst of both types of fighting, but was almost entirely a conventional war fought by North Vietnamese regular units in the 1971 and 1972 years. The complete drop in defections reflects both the conventional nature of the fighting and that the burden had been
shifted almost entirely to foreign forces. The only other uptick took place in 1972 with the massive Easter Offensive.

![Rebel Defections by Corps](image)

Figure 3.3: Monthly Rebel Defections by Corps 1965-1972
This figure shows monthly total defections broken down by Corps from January 1965 to December 1972. The black line shows the 9 month running average.

3.4.6 Independent Variables

3.4.6.1 Territorial Control

As described in Chapter 2, government control in Vietnam means the degree to which government military and administrative personnel had monopoly presence and access to a community. Each hamlet lies on a continuum from completely rebel controlled to completely government controlled. Because maintaining a perfect monopoly over a community is impossible, control in practice represents the degree to which either combatant has an advantage or parity in a particular community. Using
the approach described in Chapter 2, I measure government control as an unobserved latent trait realized through answers on the longitudinal expert survey called the Hamlet Evaluation System (HES). The Military Assistance Command Vietnam, Civil Operations and Rural Development Support created HES in 1967 in order to gauge pacification efforts of hamlets in villages and to help in the allocation of men and resources. U.S. District Advisers filled it out in collaboration with their South Vietnamese counterparts. There were three versions of the HES survey. From 1967 to 1969, they used a system called HAMLA which had the responding officer subjectively rank the hamlet along an E to A scale (worse to better) on several military, political, and economic dimensions. In 1969 the system was replaced by the HES7 questionnaire and then again in 1971 by the HES71 questionnaire, both of which moved in the direction of objective ‘yes’ or ‘no’ questions.

Filled out monthly for over 12,000 hamlets, HES asked high ranking American military officers and civilians to rate conditions on dozens of specific questions. There are at a minimum 9 and as many as 31 questions per month that bear directly on presence of rebel forces, government forces, safety of access to administrators, and more. I use a partial credit item response model which provides an estimate of difficulty for each question-response, the discrimination of each question, and a latent estimate of
control for each community (Andersen 1983, Masters 1982). Estimates are generated for all the available questions for each month separately, and then a linear transformation is used to place estimates from every month on a single comparable scale (Stocking and Lord 1983).

As shown in Figure 2.17 of Chapter 2, there is a great deal of variation in territorial control month-to-month and across provinces. Overall, and consistent with historical accounts, government control suffered a major setback immediately before and after the Tet Offensive, which it recovered from in the following year. The climb in government control was steeper for some province than others, but there was a countrywide positive trend from 1969 to 1970. This trend then flattened out in 1971 and actually declined in 1972.

3.4.6.2 Chieu Hoi Infrastructure

A major aspect of the government’s push for pacification in 1969 onward was the expansion of the Chieu Hoi program. The Chieu Hoi program utilized a wide range of psychological warfare tactics including messages in leaflets, radio, and television, direct appeals by family and friends, and financial inducements (Bairdain and Bairdain 1971). An important component of this expansion of Chieu Hoi was an investment in

An alternative for polytomous items is the Graded Response Model. I prefer the Partial Credit Model because it allows the ordering of difficulty of the responses to vary if that is reflected in the data. This is particularly important for HES questions because responses to rebel presence and government presence could interact in unpredictable ways.
infrastructure to provide Chieu Hoi cadres not just at the province level but also down to the village and even individual hamlet levels. Rebels could surrender at these local offices, and then be transferred to the province office for housing, reeducation, and stipend (Tho 1977). If weapons or documents were confiscated, it would be done at this initial level and receipt would be issued for possible reward or compensation at the main center (Prugh 1975, 127). After transfer to the main center, defectors were provided food, medical care, and were immediately fingerprinted and photographed to establish their identity and compromise them with the Viet Cong (Grinter 1967).

HES documents the rise of Chieu Hoi centers across South Vietnam at both the village and hamlet level from July 1969 to December 1972. In January of 1970, almost fifty percent of hamlets had no trained Chieu Hoi cadre, and only 37% had cadre living directly in the community. The picture at the village level was somewhat better with 60% of villages in January 1970 having a Chieu Hoi cadre living directly in the community. Figures 3.4 and 3.5 show the growth of the Chieu Hoi offices over time. The rate of expansion varied by region, with III Corps seeing the greatest gains in the first part of 1970, II Corps remaining stagnant, and I and IV Corps gradually improving throughout the period before leveling off at the end of 1971 through 1972.
Figure 3.4: Availability of Chieu Hoi cadre across Hamlets by Corps. This figure shows the quarterly status of Chieu Hoi cadre in each hamlet from July 1969 to December 1972. Data are reported in HES70/71 (question HQG1). Data are unavailable in III and IV Corps for 1972 and for part of II Corps in 1970 and 1971.
3.5 Results

3.5.1 Territorial Control

Figure 3.6 shows the pattern of defection and shifts in territorial control at the corps level. Shifts in territorial control tend to coincide with major upticks in defection, lagging behind by a couple of months. The pattern holds surprisingly well for the realignments in I, III, and IV Corps, but there is no clear uptick in II Corps to coincide with the improvements in the government’s ratings of control. At this level of
aggregation, it appears to be relative changes in control that are associated with increased defections and not the overall level.

![Defections and Territorial Control by Corps](image)

Figure 3.6: Defections and Shifts in Territorial Control by Corps
This figure shows monthly rebel defections over time as a 9 month running average and the monthly mean of latent government control in each Corps. Latent control is based on the linked parameter estimates from the generalized partial credited item response model introduced in Chapter 2. Values for unratable hamlets are imputed with the minimum estimate for the whole sample.

I test the relationship between control and defection in a fixed effects regression framework where

\[\text{Defections}_{it} = \alpha_i + \beta_i X_i + \mu_i + \epsilon_{it} \]
The unit of observation is the province-month and μ_i is a province fixed effect. Coefficients on the independent variables reflect changes in the within-province level of defection as a one unit change in the regressor. I estimate robust standard errors clustered on the province. Models 1 and 2 in Table 1 show that absolute levels of control do not predict within-province levels of defection. The inclusion of the time and time squared trends, show that defection varies quadratically with time, as was evident the plots above. Models 3 and 4 show that shifts in territorial control over time do predict an increased number of defections, and that this effect is in addition to the general time trend. Model 5 shows that changes in government control predict defection even when controlling for the current level of control, though the effect attenuates slightly. The immediate question to ask is whether the effect is being driven only by the major pacification campaign in 1969, when both control and defections spike. Model 6 shows that the relationship still holds even when observations from 1969 are omitted. The next question is whether the pattern holds for all of South Vietnam. Model 7 is restricted to just observations from II Corps where the pattern was visually weakest. The coefficients point in the expected directions, but become insignificant. This is largely due to the reduced power from a quarter of the sample, and the coefficients on changes in control become significant again if the time trend is dropped.
In terms of Hypothesis 1A and Hypothesis 1B, this is strong evidence that rebel fighters defect in periods of government expansion into rebel areas and not in periods of government consolidation. Allegiance shifts with rapid changes in the local security condition, not through a process of gradual pacification and winning of the hearts and minds.

In terms of the theories discussed in section 2, the implication is only partially decisive. On the one hand, it supports the view that military events, personal security, and the security of one’s family and community trump justifications for participation like grievances or ideology. On the other hand, it cannot distinguish between the

Table 3.1: Shifts in Territorial Control and Defection

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gov. Control</td>
<td>0.592</td>
<td>3.230</td>
<td></td>
<td>2.657</td>
<td>4.945</td>
<td>-5.244</td>
<td></td>
</tr>
<tr>
<td>Δ Gov. Control</td>
<td>20.05</td>
<td>17.75</td>
<td>16.15</td>
<td>10.06</td>
<td>7.335</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>5.056</td>
<td>4.654</td>
<td>4.237</td>
<td>-0.262</td>
<td>-6.039</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time^2</td>
<td>-0.0232</td>
<td>-0.0205</td>
<td>-0.0194</td>
<td>-0.000678</td>
<td>0.0246</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>44.62</td>
<td>-223.4</td>
<td>42.95</td>
<td>-212.8</td>
<td>-182.1</td>
<td>74.51</td>
<td>385.0</td>
</tr>
<tr>
<td>N</td>
<td>2550</td>
<td>2550</td>
<td>2477</td>
<td>2477</td>
<td>2477</td>
<td>2068</td>
<td>678</td>
</tr>
<tr>
<td>R²</td>
<td>0.000</td>
<td>0.018</td>
<td>0.010</td>
<td>0.023</td>
<td>0.025</td>
<td>0.016</td>
<td>0.059</td>
</tr>
</tbody>
</table>

Unit of Observation Province-Month; Model OLS; Province Fixed Effects, Robust Standard Errors Clustered on Province. Standard Errors in Parentheses * p < 0.05, ** p < 0.01, *** p < 0.001
physical aspects of taking and holding territory and the informational aspects of what fighters learn about the likelihood of their group winning the overall conflict and of themselves personally dying in the next engagement. Viet Cong defectors often cited the inability to hold captured territory after the Tet Offensive as a major reason for defecting (Connable and Libicki 2010, 23). In either case, the result suggests that defector programs like the one in Afghanistan are failing in large part because of the government’s inability to take and hold the sparse rural areas from which rebels are recruited.

3.5.2 Infrastructure

The next question is whether avenues exist for promoting defection in the consolidation phase once territory has fallen into the government’s hands. I focus on one program in particular, the creation of propaganda/defection infrastructure at increasingly lower levels of political administration. These investments represent credible commitments to respecting the terms of amnesty for defectors. They also serve as important tools of persuasion and recruitment at the community level, which mirrors the innovation of political cadres that were used so effectively by communist forces. I model within-province shifts in defection in the same fixed effects regression framework used in the previous section. Models 1 and 4 in Table 2 show that higher absolute levels of infrastructure at the village and hamlet level, respectively, actually predict fewer defections over time. Models 2, 5, and 7 show that even though higher
levels of infrastructure are associated with fewer defections, the period when offices are being brought to new communities is associated with an increase in defections. The next question to ask is whether the development of infrastructure is just a proxy for improvements in government control in the areas. Models 3, 6, and 8, show that the relationship still holds even while controlling for government control and shifts in government control, though as before the relationship attenuates slightly.
Table 3.2: Shifts in Chieu Hoi Infrastructure and Defection

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Village Chieu Hoi Office</td>
<td>-32.01***</td>
<td>-29.22***</td>
<td>-12.55'</td>
<td>-9.638</td>
<td>-0.112</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ Village Chieu Hoi Office</td>
<td>34.35"</td>
<td>27.13"</td>
<td></td>
<td>21.40'</td>
<td>19.08'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(11.05)</td>
<td>(9.949)</td>
<td></td>
<td>(8.865)</td>
<td>(8.323)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hamlet Chieu Hoi Office</td>
<td>-33.07***</td>
<td>-30.27***</td>
<td>-17.76"</td>
<td>-22.92''</td>
<td>-16.53'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(7.539)</td>
<td>(7.004)</td>
<td>(5.561)</td>
<td>(7.363)</td>
<td>(6.786)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ Hamlet Chieu Hoi Office</td>
<td>20.19"</td>
<td>14.10'</td>
<td>17.56"</td>
<td>14.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5.425)</td>
<td>(6.606)</td>
<td>(5.562)</td>
<td>(7.718)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gov. Control</td>
<td>-17.50"</td>
<td>-15.58'</td>
<td>-15.91"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(6.496)</td>
<td>(5.866)</td>
<td>(5.560)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ Gov. Control</td>
<td>18.93'</td>
<td>16.81'</td>
<td>15.48'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(7.572)</td>
<td>(7.160)</td>
<td>(7.667)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>124.1***</td>
<td>115.1***</td>
<td>108.9***</td>
<td>114.4***</td>
<td>106.8***</td>
<td>111.3***</td>
<td>114.2***</td>
<td>109.3***</td>
</tr>
<tr>
<td>N</td>
<td>1357</td>
<td>1303</td>
<td>1303</td>
<td>1356</td>
<td>1302</td>
<td>1302</td>
<td>1302</td>
<td>1302</td>
</tr>
<tr>
<td>R²</td>
<td>0.073</td>
<td>0.085</td>
<td>0.134</td>
<td>0.102</td>
<td>0.104</td>
<td>0.145</td>
<td>0.111</td>
<td>0.149</td>
</tr>
</tbody>
</table>

Unit of Observation Province-Month; Model OLS; Province Fixed Effects, Robust Standard Errors Clustered on Province. Standard Errors in Parentheses * p < 0.05, ** p < 0.01, *** p < 0.001.
In terms of Hypothesis 2A and 2B, the result confirms the importance of on the ground infrastructure for recruiting defectors at the community level. The process is not cumulative. Defections go up when offices start working in a new place, and then level out or actually decline. This is consistent with the view that when offices open up for the first time in a new place, local fighters who were near the cut point for deciding to defect are pushed over the edge. The result is also important from the perspective of data quality and concerns about the validity of the Chieu Hoi program overall. Given the argument that defector programs are highly corrupt, and that bureaucrats either recruit friends and family or invent defectors out of thin air, the number of defections should increase, within reason, with the number of bureaucrats regardless of the underlying distribution of rebels. What we see here is the opposite. Provinces actually report fewer defectors after rolling out new Chieu Hoi offices than beforehand.

3.5.3 Placebo Test

A final question is whether the propaganda/defection infrastructure is simply a proxy for some part of government control that is not captured by the aggregation of over a dozen security related questions. Perhaps the relationship is idiosyncratic and the infrastructure program just happened to be implemented during a spike prior to a lull. In order to guard against these two possibilities, I construct a placebo test set up exactly as before using two measures related to government control but unrelated directly to defection. The first measure asks about the status of a village office where
official business is regularly conducted or where village administrative records are maintained. This measure captures both the idea of security, being able to have a GVN office operating normally without threat, and infrastructure, the presence of government infrastructure down to the village level. The second measure asks about the presence of a GVN-sponsored maternity clinic in the village or an adjacent village. It captures the potential public good provision of a Chieu Hoi office. Models 1 and 2 show that both types of infrastructure show the same pattern as the Chieu Hoi offices and give cause for concern. Models 3 and 4, however, show that neither relationship survives the inclusion of measures on territorial control in general. Models 5 and 6 show that the Chieu Hoi offices continue to have a statistically significant relationship in addition to whatever correlation the presence of the two placebos might have with defection.
Table 3.3: Infrastructure Placebo Test

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Village Office</td>
<td>-133.1</td>
<td>-5.075</td>
<td>-4.130</td>
<td>18.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(72.09)</td>
<td>(77.17)</td>
<td>(66.47)</td>
<td>(73.71)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ Village Office</td>
<td>121.0'</td>
<td>49.66</td>
<td>37.36</td>
<td>1.189</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(57.22)</td>
<td>(52.22)</td>
<td>(54.64)</td>
<td>(60.92)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maternity Clinic</td>
<td>-58.08'</td>
<td>-16.13</td>
<td>-8.796</td>
<td>-11.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(23.59)</td>
<td>(22.47)</td>
<td>(15.59)</td>
<td>(16.48)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔMaternity Clinic</td>
<td>34.30'</td>
<td>16.79</td>
<td>4.845</td>
<td>-5.833</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(16.58)</td>
<td>(16.33)</td>
<td>(16.88)</td>
<td>(17.32)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5.389)</td>
<td>(5.760)</td>
<td>(4.973)</td>
<td>(5.223)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ Gov. Control</td>
<td>22.26'''</td>
<td>22.42''</td>
<td>14.16'</td>
<td>18.80''</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5.788)</td>
<td>(6.552)</td>
<td>(5.907)</td>
<td>(5.804)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hamlet Chieu Hoi</td>
<td>-16.83''</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Office</td>
<td></td>
<td></td>
<td></td>
<td>(5.442)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ Hamlet Chieu Hoi</td>
<td>14.66'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Office</td>
<td></td>
<td></td>
<td></td>
<td>(6.523)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Village Chieu Hoi Office</td>
<td>-11.69'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(5.433)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ Village Chieu Hoi Office</td>
<td>28.14'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Office</td>
<td></td>
<td></td>
<td></td>
<td>(11.72)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>169.0'</td>
<td>175.4''</td>
<td>93.43</td>
<td>119.7''</td>
<td>130.5</td>
<td>113.9</td>
</tr>
<tr>
<td></td>
<td>(65.09)</td>
<td>(51.47)</td>
<td>(69.05)</td>
<td>(51.40)</td>
<td>(66.41)</td>
<td>(74.46)</td>
</tr>
<tr>
<td>N</td>
<td>1303</td>
<td>1303</td>
<td>1303</td>
<td>1303</td>
<td>1302</td>
<td>1303</td>
</tr>
<tr>
<td>R^2</td>
<td>0.046</td>
<td>0.057</td>
<td>0.119</td>
<td>0.121</td>
<td>0.147</td>
<td>0.136</td>
</tr>
</tbody>
</table>

Unit of Observation Province-Month; Model OLS; Province Fixed Effects, Robust Standard Errors Clustered on Province. Standard Errors in Parentheses * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$.

124
3.6 Conclusion

This chapter investigates the determinants of rebel defection in an ongoing conflict. Observable implications were derived from two overarching views of counterinsurgency. In the first, fighters lay down their arms primarily during periods of government consolidation. Areas are first secured and segregated from rebel main forces, and then pacified through the provision of public goods, the extension of time horizons from repeated interaction, and from persistent protection. The second view is that the decision to defect is influenced primarily through rapid shifts in government presence into formally rebel controlled areas. Fighters switch sides as their communities fall under enemy control, or alternatively when their areas are liberated and the risk of rebel retaliation disappears.

Evidence on rates of defection in 44 provinces measured monthly over a long time span supports the government expansion view over the consolidation view. Rebel defection did not increase in areas under greater government control, and in fact they actually went down. As the underlying distribution of rebels was eliminated or dispersed, there were fewer fighters to defect. In contrast, rapid shifts in government control into a previously rebel controlled area opened up a new set of fighters who until then may not have even had the opportunity to defect. Amnesty offers and government offensive operations tap these pockets of potential defectors.
The pattern is not limited to military expansion into a new area. The rollout of the political infrastructure of defection, measured here with the deployment of Chieu Hoi cadres, also has a clear but temporary effect on local rates of defection. A placebo test shows that the Chieu Hoi cadres were associated with increased defections in ways that other proxies for government control do not. There was also good news in terms of the validity of the defection data. While data were surely manipulated in at least some cases, there does not appear to have been a countrywide systematic impulse to invent “defections” to create the appearance of progress. That the pattern of defection mirrors changes in control also provides additional confidence in the item response model used to estimate latent government control.

There are at least four ways in which this research could be extended. The first is to test the above hypothesis at a lower level of aggregation. Using the data that I have collected on defections through the Phoenix selective violence program, it is possible to conduct tests at the village-month level. The second is to bring in the role of economic conditions. Success or failure of the local rice crop has direct effects on the labor market which are hypothesized to have direct effects on participation in rebellion. The third is to directly include information about violent events and military clashes. Currently, theories about rebel participation are often tested using violent events as a proxy for the underlying rebel labor market. The Vietnam data allow me to test the effect of exogenous factors on participation directly which then may or may not have
downstream effects on levels of violence. Finally, data on defection rates of government forces over time provide insight to otherwise of the conflict. The symmetry and asymmetry between rebel and government participation over time can provide important clues about the degree to which recruitment and participation in civil war is a zero-sum contest.
Chapter 4 Hearts, Minds, or Bodies: The Strategy of Selective Violence in Civil War

Abstract

Selective government targeting of civilians in civil wars is often simultaneously described as both effective and incompetent. How can programs that routinely fail to target the right people still generate concern among rebels and induce some civilian cooperation? I develop a model of selective violence where informed targeting based on good intelligence, random targeting based on profiling, and community sharing of information all emerge endogenously. I show that a credible threat of random targeting can induce civilians to provide information which then in turn enables the direct targeting of specific individuals. This mechanism is feasible even in the presence of rebel retaliation and even when the government has lost the “hearts and minds” of the people. Using data on nearly 50,000 government targeted attacks recorded by the Phoenix Program during the latter part of the Vietnam War, I find support for the model’s predictions about the relationship between violence, information, and military control.
4.1 Introduction

Civil wars are particularly dangerous for civilians because they blend traditional law enforcement tasks with military operations and outright repression. Arrests, abductions, and targeted killings make up a substantial share of the human costs of civil war. Combatants selectively target civilians in order to punish collaboration, fill quotas, generate leads, and to deter future transgressions (Huntchinson 1972, 384; Price 1977, 56-58; Goodwin 2006; Kalyvas 2006). These acts of selective targeting are ubiquitous among civil conflicts, including in recent years, with thousands killed and arrested by International Security Assistance Force “capture-or-kill” raids in Afghanistan (van Linschoten and Kuehn 2011), U.S. CIA drone strikes over northwest Pakistan (Johnston and Sarbahi 2012), targeted killings by the Israeli Defense Forces (Jaeger and Paserman 2009), and torture and execution of officials and civilians in the drug violence in Mexico (Molzahn et al. 2012). One puzzling aspect of this violence is that while it is often characterized as corrupt, incompetent, and dangerous, it is simultaneously described as useful for coercing the population and eliminating the enemy.

A major review of selective violence across civil wars concludes that combatants regularly target innocent victims but often still achieve positive results (Kalyvas 2006, 183-192). The Irish Republican Army regularly targeted civilians that were not actually cooperating with police (Hart 1999, 300). In the Greek Civil War many killings were erroneously targeted but had a chilling effect of the civilian population (Kalyvas 2006,
Immediately following the signing of the Geneva Accords in 1954, the government of South Vietnam (GVN) launched a campaign of repression which was an “unparalleled disaster” for the Communist Party of Vietnam (Race 1972, 30-43), but in later periods was described as leading to popular resentment and backlash against the GVN (Race 1972, 71-2; Elliott 2003, 944). U.S. drone strikes over Pakistan rarely correctly target high-level leaders (Bergen and Tiedemann 2011), but appear to still lead to decline in militant attacks (Johnston and Sarbahi 2012). Similarly, cross-national comparisons of targeted assassinations of rebel leadership note many failed attempts but find substantial benefits of selective violence on a number of counterinsurgency metrics (Johnston 2012).

What explains the mixed record of selective violence programs? Why are these programs described as both effective but largely incompetent and corrupt in their operation? How are intelligence-driven attacks and profiling based attacks related to one another? Are they substitute or complementary strategies? To address these questions, I develop a model of how government selective violence programs operate in potentially hostile communities. I generate testable predictions on the relationship between informed and random violence, civilian information sharing, and military control over territory. I proceed to test these hypotheses using new data on government selective violence from the Phoenix Program (Chiến dịch Phượng Hoàng), a major selective targeting program developed during the latter part of the Vietnam War.
The model and data build on our existing understanding of selective violence in three important ways. First, they disaggregate a phenomenon that is typically lumped together as selective violence into two types: informed targeting and random targeting (profiling). When based on good intelligence about specific individuals, selective violence approximates legitimate police investigations (Jeffery 1987; Moyar 2007; Comber 2008). However, selective violence based on no prior or poor intelligence comes closer to police profiling where individuals are targeted because of where they live or because they fit a certain schema (Goodman 1973, Valentine 1990; Gelman et al. 2007; Natapoff 2009). Profiling uses arbitrary methods such as police checkpoints, cordon and search operations, and random arrests, but falls short of the indiscriminate violence of aerial bombing, free fire zones, and terrorism (Hultman 2007; Valentino 2000; Lyall 2009; Kocher et al. 2011). I show how falsely aggregating informed and random targeting can lead to incorrect inferences about the relationship between intelligence and the use of selective violence in civil war.

Second, building on recent research, I consider the incentives civilians have for sharing intelligence with government officials that enables governments to use informed targeting instead of random targeting (Akerlof and Yellen 1994; Kalyvas 2006; Bhavnani et al. 2011). This work rightly argues that civilians will be deterred from sharing information if they fear retaliation by the other side. It does not, however, ask what the costs might be for not sharing that information. Governments do not simply
stop targeting in the absence of intelligence. They switch to more random and arbitrary tactics that generate their own costs. In effect, the community must decide how much information to withhold or share in order to limit the total amount of pain inflicted by both sides of a civil conflict. This insight illustrates how the ability of rebels to hide amongst the civilian population creates not just a problem for the government but a problem for civilians as well.

Combined with the fact that informed violence makes random violence less useful by taking targets out of circulation, this simple tradeoff has some surprising implications. The threat of random violence by the government can induce civilians to provide tips even in rebel areas, where there should be little or no cooperation due to fear of rebel retaliation for sharing information with the government. The government has a credible threat to inflict random violence on a community in a rebel area because each random targeting has a relatively high probability of catching a genuine rebel or rebel supporter. The government can also credibly assure communities that it will not inflict random violence if given information because each rebel caught as a result of good intelligence removes a target from the pool of suspects, thereby reducing the utility of future random violence. However, this does not prevent communities in rebel areas from keeping some information from the government. By selecting a minimal amount of information to share, the communities can limit the net amount of violence they suffer from government random targeting and rebel retaliation for cooperating.
with officials. These tradeoffs can occur entirely out of self-preservation. Concern for human life or the alienation of civilians are not necessary for the government to limit its total amount of violence. Nor is winning the “hearts and minds” of the population a necessary conditions for obtaining civilian collaboration.

The third contribution of this article is to test the model against new data on selective violence during the Vietnam War. I analyze government and rebel targeting for a set of over 3,000 villages tracked quarterly between July 1969 and December 1972. I provide original data from the Phoenix Program, which detail whether attacks were based on informed targeting or random/unintended targeting. I further introduce previously unavailable data from the Hamlet Evaluation System survey, which records how much intelligence on local rebels was available in each village over time.

I find that contrary to existing theories (Kalyvas 2006, Kalyvas and Kocher 2009), government selective violence in Vietnam disproportionately targeted contested and partially rebel-controlled areas where civilians should have been afraid to share information due to the risk of rebel retaliation. Using data on intelligence available in each village from the Hamlet Evaluation System, I find that the government reported knowledge of rebel identities even in contested and rebel-controlled villages. The model accounts for this finding, predicting that random violence should generate high returns in rebel areas and that this violence can translate into at least some begrudging cooperation from civilians. The data support these predictions: (1) Intelligence was
available to government forces even in contested and rebel areas; (2) Both informed and random violence disproportionately target rebel areas; and (3) Communities that provided more information suffered more informed violence but less random violence.

The next section provides a brief literature review. Section 3 develops the model and makes empirically testable predictions. Section 4 provides a historical overview of selective violence against civilians in the Vietnam War and introduces new data from the conflict. Section 5 tests the predictions against data and discusses the results. Section 6 concludes by drawing lessons from the experience in Vietnam toward the efficacy and role of selective violence in modern conflicts.

4.2 Literature

Violence toward civilians varies along at least two dimensions: specificity (Price 1977, 56-58; Goodwin 2006; Kalyvas 2006) and severity (Shultz 1978). Shelling, aerial bombardment, forced relocation, market bombings, mass killing, and other acts typically described as indiscriminate violence are high-severity acts that lie “beyond the norms of violent political agitation that are accepted by a given society” (Thorton 1964, 76; Hunchinson 1972, 384). In contrast, police checkpoints, cordon and search operations, targeted assassinations, reeducation, mass arrests, targeted home

66 Severe and specific violence is used as collective punishment and is intended to alter a community’s behavior through acts such as terrorism, decimation, harassment, and interdiction fire, etc. (Wood 2010, Steele 2009, 422–23; Pape 2003; Hultman 2007; Lyall 2009). Acts that are both severe and directed against populations as opposed to communities involve mass killings, genocide, and depopulation (Valentino et al. 2004; Downes 2007, 2008, 2011; Verwimp 2005; Kocher et al. 2011).
demolitions, kill and capture raids, drone strikes, and other acts typically described as selective violence generally fall within the norms of violence typical of law enforcement or special operations.

Severity describes the means but not the motivations that direct violence toward a particular individual or community. Informed violence sets out to punish an individual or community based on their specific behavior. Executing a warrant for a specific individual who has been denounced as a rebel agent is an example of informed violence. Another example is burning a community’s crops as collective punishment for refusing to pay taxes. In contrast, random violence targets an individual or community not because of their behavior but because of their guilt by association.

Actionable intelligence serves as a hard constraint on the amount of informed violence that combatants can direct toward civilians. In civil wars fought by irregular forces, the key pieces of intelligence pertain to the identities and location of enemy forces and their supporters. Because rebels hide in or near populated areas, civilians are the most abundant agents for monitoring and providing this kind of intelligence. Counterinsurgency theory and doctrine place significant emphasis on providing public goods and security to civilians in order to elicit information against rebels (Trinquier

67 I thank David Laitin for this framing of the definitional issues of political violence.
68 There are alternative sources, including denunciations by prisoners or defectors, material evidence such as captured documents, confessions by the accused, and paid tips by informants. Principal agent problems make purchasing information particularly difficult in a wartime environment, and according to at least one Phoenix program advisor the flood of paid tips were only sources that were “uniformly inaccurate” (Finlayson 2007).
1964; Army 2007). An increasing number of studies use civilian willingness to provide information as an intervening variable in explaining changes in levels of violence resulting from aid provision (Berman et al. 2010), civilian casualties (Condra et al. 2010), access to communications technology (Shapiro and Nils B. Weidmann 2011), and co-ethnic military sweeps (Lyall 2010). Others have pointed out that police efforts against criminal gangs similarly depend on civilian willingness to provide information against their neighbors (Akerlof and Yellen 1994).

Civilians both volunteer information and provide it under duress. Recent studies point to political motivations (Balcells 2011) and narrow personal gains (Kalyvas 2006) as possible motivations for civilian denunciations. Alternatively, the threat of collective punishment provides a powerful incentive for self-policing and cooperation by communities (Hechter 1988, 153; Lichbach 1998, 215). The degree to which information can be solicited or coerced with violence or repression depends on the ability to couple threats with credible assurances to withhold that violence given a change in behavior (Schelling 1960; Machain et al. 2011).

Coercive approaches to eliciting information have a long track record in civil conflict. Galula describes this strategy, as employed in the Algerian War: “...every villager normally knows who the cell members are...This suggests that the indirect approach could be easier and more certain than the direct one. The procedure would be: 1) To arrest simultaneously a large group of minor suspects. 2) On the basis of their
disclosures, to arrest the cell members” (1964, 91). A more sophisticated version of this procedure, the French Dispositif de Protection Urbaine (DPU) relied on a formal network of Muslims who were responsible for providing names in their given sector, and those named suspects were arrested at night and tortured in order to provide more names for another round of arrests in the morning (Porch 2003, 383). Likewise, in Vietnam, police or military forces would capture and interrogate a large number of relatively unimportant Viet Cong “sympathizers,” from whom they would acquire information about high-level rebel members (Valentine 1990, 287). In Colombia, communities developed institutions specifically designed to limit random violence by investigating suspects for the combatants (Kaplan 2009).

Why would civilians succumb to the pressure of these tactics? More precisely, why do rebels not raise the costs of retaliation to the point necessary to fully deter cooperation? First, the government may have a preponderance of power such that it can threaten greater violence than the rebels can promise in retaliation. Second, the quantity of information required to appease the government might elicit sufficiently few rebel retaliations that the community suffers a net decrease in violence. Third, retaliation is difficult. In Vietnam, Census Grievance Teams and later Rural Development Teams met one-on-one with every resident of a village in order to anonymously collect intelligence on Viet Cong forces (Moyar 2007, 74). This innovation

69 Random violence might also create a space for informed violence by decreasing rebel access to civilians (Lyall 2009, Toft and Zhukov 2012).
was so effective that it became one of the primary means of clandestinely contacting paid agents. Finally, rebels may have few local allies to facilitate retaliation for denunciations against them — or the government may have sufficient local allies to suppress counterdenunciation.\footnote{The III Corps Provincial Reconnaissance Unit (PRU) Director Col. Viet Lang noted that his forces operated effectively in contested and rebel areas using family connections and avoided intelligence coming in from the central government (Moyar 2007, 82).}

The constraints posed by the government’s ability to project threats of random violence and its ability to protect informants from rebel retaliation, suggest that the state’s capacity and territorial control play a strong role in the distribution of violence (Fearon and Laitin 2003). In a study of the Spanish Civil War, Balcells (2010, 2011) examines a conventional civil war in which territorial control was close to absolute, making the risks of retaliation for providing tips low. She finds that civilians were willing to use denunciations to eliminate local political opponents. Kalyvas and Kocher (2009) examine rebel violence in the Vietnam War when the Viet Cong were relatively weak and find that they had limited ability to project targeted assassinations and kidnappings outside of their areas of control.\footnote{I confirm this finding below with new data on Viet Cong violence provided over a longer period.} Kalyvas (2006) examines violence in the Greek Civil War where the actors were near parity and found symmetrical distributions of selective violence, each limited to their own area. Bhavnani et al. (2011) examine a case of an asymmetrical distribution of power in favor of the government and find that
Israeli selective violence was used much more frequently than random violence in areas controlled by the opposition.

In sum, the strategic interaction surrounding selective violence is characterized by: (1) A government interested in finding and eliminating rebels from a larger population; (2) An improvement in targeting capability with the aid of local intelligence over random targeting without information; (3) A threat to communities from both rebel retaliation for providing information and government random violence; (4) The need for both credible threats and promises from the government in order to elicit information; (5) A strong influence of control in shaping the cost of targeting and the potential for retaliation; and (6) A strong influence of control in shaping the returns to random violence for the government. The next section develops a model based on these characteristics and uses it to determine the relationship between informed targeting, random targeting, and the provision of information by communities.

4.3 A Model of Civilian Targeting in Civil War

Consider an interaction between two actors, a community C and a government G. The community contains a subset of the population of size N, normalized to 1, who could reasonably be suspected of being rebels.72 The subset of the population, R, are

72 The pool could either be the entire population of the community or a particular demographic such as military age males.
actually rebels or rebel collaborators, and \(0 \leq R \leq 1\). \(R\) is common knowledge, though only the community knows which suspects are actually rebels.\(^{73}\)

The community makes one decision: the number of rebel identities to reveal to the government, where \(0 \leq I \leq R\). The government makes two decisions: the amount of informed targeting to commit against the community, \(V_i\), and the amount of random targeting to commit against the community \(V_h\). At the most, \(V_i \leq R\), \(V_i \leq I\), and \(V_i + V_h \leq 1\).

In the interaction, the community moves first, selecting a value \(I\) to reveal to the government.\(^{74}\) The government moves second, selecting an amount of informed and random targeting to commit against the community. Finally, outcomes are realized and payoffs are provided.

Define the expected amount of rebels correctly targeted (arrested or killed) by the government as \(\omega(.)\), where

\[
\omega(V_i, V_h, I, R) = P_i \left(\frac{I}{R} \right) V_i + P_h \left(\frac{R - P_i \left(\frac{I}{R} \right) V_i}{1 - V_i} \right) V_h
\]

\(^{73}\) The assumption of a known \(R\) follows from three observations. First, in practice the government knows the rebel organizational structure of a typical village and even used it to estimate the number of rebels based on the number of villages that were out of government control. Second, profiling is a strong component of civil war where some communities are thought to harbor a greater number than others based on their proximity to rebel areas, the number of attacks against military targets, etc. Finally, a system of quotas used in Vietnam in many ways provided the answer of how many rebels there were which security forces then had to produce. An extension could relax this assumption so that \(R\) is an unknown random variable drawn from a known distribution that varies with rebel control.

\(^{74}\) Informed targeting suggests that information was provided prior to the operation or while forces were on location.
Assume $R \neq 0$. The function $\omega(.)$ is twice continuously differentiable, strictly convex, and strictly increasing in $V_l + V_h$. The probability of catching a rebel with information is $P_l \left(\frac{I}{R} \right) \in [0,1]$ where $P_l(0) = 0$, and $P_l(.)$ is both strictly increasing and twice differentiable. Even with full revelation of information by the community, not all rebels may be caught because of poor targeting technology or false denunciations. The probability of catching a rebel with random targeting is $P_h \left(\frac{R - P_l \left(\frac{I}{R} \right) V_l}{1 - V_l} \right) \in [0,1]$ where $P_l(0) = 0$, $P_h \left(\frac{R - P_l \left(\frac{I}{R} \right) V_l}{1 - V_l} \right) \to 1$ as $\frac{R - P_l \left(\frac{I}{R} \right) V_l}{1 - V_l} \to 1$, and $P_h(.)$ is both strictly increasing and twice differentiable. Every real rebel caught with informed targeting decreases the usefulness of random targeting because there is one less rebel available in the suspect population. Further, make the weak assumption that informed violence has a strictly higher probability of catching a real rebel than random violence, $P_l \left(\frac{I}{R} \right) > P_h \left(\frac{R - P_l \left(\frac{I}{R} \right) V_l}{1 - V_l} \right)$ for all I, R, and V_l. Substantively, this means that information can be relatively unhelpful to government forces, but it cannot lead them to worse outcomes than if they had just selected randomly from the population.

There are two key points to the model. Random targeting generates at least some returns as long as there are some rebels but informed targeting always generates greater returns. Second, informed and random targeting are substitutes rather than

75 For the U.S. Military in Iraq or Afghanistan the technology of targeting might be very good such that $P_l \left(\frac{I}{R} \right) \to 1$ as $I \to R$, while for the Uganda People’s Defense Force it could be the case that $P_l \left(\frac{I}{R} \right) \to .5$ as $I \to R$.
complements. Increasing the amount of informed targeting reduces the number of real rebels left in the population thereby decreasing the returns on random targeting.\footnote{One can imagine cases where this would not be true. If the government was very uncertain about rebel presence in a community, R, then tips might bring undue attention on the community that it might not have otherwise received. Here, I consider differences in violence between communities where the government has established clear scores of rebel control and thus where doubt over R is unlikely.}

The expected number of rebels caught under two different information regimes I and a higher I' are plotted in Figure 4.1. In the solution constructed below, the government increases informed violence before random violence, and therefore the effect of increased information is an increase in the number of correctly targeted rebels (shown on the 45 degree slope V_I and V'_I) and a reduction of the returns of randomly targeting the remaining suspects (shown in the difference in slopes between V_h and V'_h).
Figure 4.1: Expected Returns from Government Violence
This figure shows the number of genuine rebels that would be expected to be killed or captured given some information sharing I and a higher level of information sharing I'. The number of genuine rebels killed or captured increases when more information is provided, but the rate of return for additional random searches declines shown here by the change in slopes between V_H and V_H'.

4.3.1 Utilities
The government’s utility is given by

\[U_g(V_i, V_h, I, R) = \omega(V_i, V_h, I, R) - D_g(V_i + V_h) \]

U_g is the government’s utility for committing violence against a community. $\omega(\cdot)$ is the number of genuine rebels expected to be targeted based on prior intelligence V_i and targeting not based on prior intelligence V_h.\(^{77}\)

\(^{77}\) For simplicity, I normalize the utility of eliminating real rebels to just the likelihood of eliminating them (effectively weighted by 1). The results will hold under any monotonic transformation.
$D_g(.)$ is the disutility or cost of each additional act of violence. It is assumed that

$$D_g(0) = 0,$$

that it is strictly convex, and that it is twice differentiable.\(^78\) The cost for both types of violence are assumed to be the same.\(^79\)

The government gains utility in the first term from the number of genuine rebels it expects to target and suffers a disutility for each additional act of violence it commits.

The community’s utility is given by

$$U_c = -\alpha V_i - V_h - P_c(R)I$$

U_c is the utility of a representative community member resulting from violence and sharing information with the government.

α is a positive or negative constant representing the community’s affinity to those targeted with names provided to the government (potentially rebels or innocent persons).\(^80\)

V_i is the number of suspects targeted based on names provided by the community.

\(^78\) The assumption of escalating cost for each additional civilian targeted is consistent with the manpower requirements in Vietnam. Small Special Forces units could target specific individuals and medium sized police or militia forces were required for questioning and detaining a large number of people, while an entire division could be required for a large cordon and search missions that resulted in the destruction and relocation of an entire village. Further, legal and detention resources were a major constraint in Vietnam (Lewy 1980, 288-9).

\(^79\) Relaxing this assumption changes Lemma 1 below such that the government prefers informed to random violence only when the difference in the marginal gains to informed violence are proportional to the difference in costs of random violence. This is unlikely to hold only when informed violence is not particularly useful in general, where the technology of informed violence is very poor, or when the population is almost exclusively made up of rebels. I propose this as a constraint/scope condition below.

\(^80\) Downes (2007) finds evidence in the Second Anglo-Boer War that selective violence is insufficient to induce collaboration when civilian loyalties are inflexible.
V_h is the number of suspects targeted randomly without community information.

$P_c(.)$ is a function representing the probability of rebel retaliation for an act of information sharing.\(^{81}\) It is differentiable and strictly increasing in the share of rebels in the population $\frac{R}{N}.^{82}\)

I is the amount of information shared with the government and falls between 0 and R.

The community suffers disutility from two sources, government violence and rebel retaliation, for sharing information. Rebel control in a community is represented in two places, the share of rebels to the suspect population R and the rebel’s technology of retaliation in that community $P_c(.)$.

4.3.2 Equilibrium

The solution will be a subgame perfect Nash equilibrium in pure strategies, solved through backwards induction starting first at the government’s selection of violence given a level of community-provided information.

The Government’s Best Response

The government selects nonnegative levels of targeting $V_i \leq I$ and $V_h \leq 1 - V_i$ to maximize utility,

$$\max_{0 \leq V_i \leq I; 0 \leq V_h \leq 1 - V_i} U_g(V_i, V_h, I, R) = \omega(V_i, V_h, I, R) - D_g(V_i + V_h)$$

\(^{81}\) Retaliation could come either from rebels upset at losing one of their own, or from a counter-denunciation by the friends of the innocent victim.

\(^{82}\) To see how the shape might vary, consider varying technologies for monitoring and retaliation. Anonymizing tips was made possible through mass interviews, anonymous drop points, etc.
An interior solution for \(V_i^*, V_h^* \) equates the marginal benefit of an additional targeting to the marginal cost of that targeting. A single optima is guaranteed by the strict convexity of \(\omega(.) \) and \(D_g(.) \). The following lemma that governments will always prefer to shift indiscriminate targeting to informed targeting when information is available guarantees that optima is achieved through a unique pair of \(V_i^* \) and \(V_h^* \). The intuition is that informed violence provides greater returns but costs the same as random violence.

Lemma 1: The government will never choose to allocate resources to indiscriminate targeting, \(V_h \), when there are still targets available with specific information, \(I \). See Appendix A.3 for a formal proof.

Substituting in the function for the expected number of rebels captured and taking the derivatives with respect \(V_i \) and \(V_h \) provide the following first order conditions,

\[
0 = \frac{\partial U_g}{\partial V_i} = P_i \left(\frac{1}{R} \right) + P_h \left(\frac{R - P_i \left(\frac{1}{R} \right)}{1 - V_i} \right) \frac{R - P_i \left(\frac{1}{R} \right)}{(1 - V_i)^2} \times V_h - D_g'(V_i + V_h)
\]

\[
0 = \frac{\partial U_g}{\partial V_h} = P_h \left(\frac{R - P_i \left(\frac{1}{R} \right)}{1 - V_i} \right) - D_g'(V_i + V_h)
\]

\(V_i \leq R \) and \(V_i \leq I \)

146
Using Lemma 1, there are two conditions either $V_i < I$ and $V_h = 0$ or $V_i = I$ and $V_h \geq 0$. In the first case, substituting into the first order conditions ensures that the following is true.

$$p_i \left(\frac{I}{R} \right) = D_g'(V_i^*)$$

In the second case, substituting into the first order conditions ensures that the following is true.

$$D_g'(I + V_h^*) = p_h \left(\frac{R - p_i \left(\frac{I}{R} \right) I}{1 - I} \right)$$

We can quickly verify whether the community falls under the first case by comparing the derivative of the cost function at I to the marginal returns for more violence. When the rate of change in the cost function is at or above marginal return for informed targeting, the optimum is guaranteed to only include informed violence, $p_i \left(\frac{I}{R} \right) \leq D_g'(I)$. When the rate of change in the cost function is below this and above or equal to the marginal gains from any random targeting, then the optimal allocation is to use all of the informed violence possible, $p_i \left(\frac{I}{R} \right) > D_g'(I) \geq p_h \left(\frac{R - p_i \left(\frac{I}{R} \right) I}{1 - I} \right)$. When the rate of change in the cost function is below the marginal gains of even random targeting, then the optimum includes at least some random violence, $D_g'(I) < p_h \left(\frac{R - p_i \left(\frac{I}{R} \right) I}{1 - I} \right)$.

There are two corner solutions as well. One occurs when the cost of violence is so high that no targeting is ever worthwhile, \(D'_g(0) > \left(\frac{R - p_i \left(\frac{1}{R} \right) I}{1 - I} \right) \). The other is when the costs are so low that there is no reason not to target the entire community regardless of \(I \), \(D'_g(N) < 1 \). That the government's cost lie between these extremes is the targeting constraint, and I assume that it holds throughout.

How do \(V_i^* \) and \(V_h^* \) vary with \(I \)? By Lemma 1, \(V_i^* \) is weakly increasing in \(I \), and \(V_h^* \) is weakly decreasing in \(I \). Interestingly the effect of \(I \) on the total level of targeting is ambiguous. The basic intuition is that when the community provides information it creates a tradeoff. Call the mix of informed and random targeting for a given level of total targeting, the governments portfolio of targeting. On the one hand, it allows more informed targeting than there could have been otherwise. On the other hand, the increase in informed violence makes random violence less useful, so it can drive down random targeting. Information then should shift the portfolio of targeting toward informed and away from random, and the net total amount of targeting could go up or down.
The Community’s Best Response

Information sharing affects the community’s utility in two ways, through the
amount of violence selected by the government and through the degree of retaliation by
the rebel group. The community selects a nonnegative level of information to share
\(l \leq R \) that maximizes

\[
\max_{0 \leq l \leq R} U_C(V_i, V_h, l, R, p(\cdot)) = -\alpha V_i - V_h - P_c(R)l
\]

Given the targeting constraint holds, the first order condition given the government’s
\(V_i^* \) and \(V_h^* \) is

\[
0 = \frac{\partial U_C}{\partial l} = -\alpha \frac{\partial V_i^*}{\partial l} - \frac{\partial V_h^*}{\partial l} - P_c(R)
\]

An interior solution equates the marginal losses from rebel retaliation and affection
toward the denounced to the marginal gains from less government violence,
\(-\frac{\partial V_i^*}{\partial l} = P_c(R) + \alpha \frac{\partial V_i^*}{\partial l} \).

How does the optimal \(l \) vary with \(V_i^* \) and \(V_h^* \)? Anticipating the portfolio of
targeting that the government will use given a level of information, the community
selects \(l \) so as to shape that portfolio to best suit its preferences. Three interesting cases
merit consideration. In the first case, the community suffers no rebel retaliation and has
no additional affinity or hatred of the denounced victims, \(\alpha = 1 \) and \(P_c(\cdot) = 0 \). The
community selects the minimum \(l \) that makes the government indifferent between
using informed targeting and switching to additional random targeting, \(D_g'(l) \geq \)
Interestingly, the number of denounced victims falls short of the number of real rebels since the community is providing just enough information to appease the government. In the second case, the community has affinity toward the victims or faces positive risk of retaliation by the rebel group, \(\alpha > 1 \) or \(P_c(.) > 0 \). Here, the community is willing to absorb some government random targeting and provides even less information. In a third case, the community dislikes the potential victims \(\alpha < 1 \), and provides as much information against them as is practicable given rebel retaliation.

There are values of the parameters for which cooperation is never in the community’s interest. The cost of targeting for the government might be so high that it would do no random targeting at all in the absence of information, \(D'(0) \geq P_h(R - 0) \). There might be so many rebels that every random targeting guarantees a real rebel, \(R = 1 \), so that providing information has no positive effect. For at least some cooperation then, \(D'(0) < P_h(R - 0) \) and \(R < 1 \), which is the targeting constraint constructed above. The extreme case when both \(R \) and the cost of targeting are high is exactly when we see combatants use technological substitutions like aerial bombardment and free fire zones, tactics which are typically referred to as indiscriminate violence.

4.3.3 Comparative Statistics and Hypotheses

When looking at conflict data, how should informed violence, random violence, and the flow of information from the community, \(V_i^*, V_h^* \) and \(I^* \), co-vary? How should
they vary with the government’s influence over territory, \(D_g(.) \) and the presence of and influence over territory by rebels, \(R \) and \(P_c(.) \)? How should they vary with the community’s affinity toward the victims, \(a \)?

Community Provision of Information

Information influences the government’s optimal level of violence in two places, the hard constraint that \(V_i \leq l \) and the probability of catching a genuine rebel with informed violence \(P_i \left(\frac{l}{r} \right) \). Following from Lemma 1, informed and random violence are substitutes such that more information drives up informed violence and drives down random violence. Because the total amount of violence is driven by other factors such as the cost of violence and rebel presence, the model suggests that information provision will have an ambiguous effect on the total amount of violence. Instead, more information shifts the portfolio of violence toward informed and away from random. I cast this prediction as Hypothesis 1.

Hypothesis 1: The share of informed to total government violence will be higher in communities that provide more information, all else being equal.

Government’s Cost of Targeting

Consider the effect of a decrease in the marginal cost of violence function for the government, \(D'(V_i + V_h) < 0 \). Holding \(l \) constant, lower costs drive up all types of government violence. The effects appear graphically in Figure 4.2. Three progressively
less expensive cost functions D_1, D_2 and D_3 shift the optimal total amount of violence higher from V_1^* to $V_2^* = I$, and V_3^*.

![Government's Best Response given Different Cost Functions](image)

Figure 4.2: Government’s Best Response given Differing Costs
This figure shows how the government’s best response varies across three hypothetical cost functions. $D_1, D_2,$ and D_3 represent progressively lower costs per targeting for the government. Where they intersect are the government’s optimal level of violence V^*, or in the case of D_2 where they never intersect the optimum level of violence is just I.

Allowing I to respond as in Figure 4.3 shows that lowering the government’s cost from D_1 to D_2 always increases the information provided by the community. This is true when the community faces no threat of rebel retaliation or affinity toward the victims $U_{c,1}$ and when it faces either $U_{c,2}$. The intuition is that lowering the government’s cost increases the level of expected random violence. This in turn shifts the community’s optimal amount of information sharing from $I_{1,1}^*$ over to $I_{1,2}^*$ and from $I_{2,1}^*$ to $I_{2,2}^*$. Notice that the shift is much smaller for the community which suffers
retaliation and loss from affinity toward victims than it does for the community that
does not. I cast these predictions as Hypothesis 2A and 2B.

Hypothesis 2A: Government informed targeting, random targeting, and total targeting should be higher in communities with greater government control, all else being equal.

Hypothesis 2B: Provision of information should be higher in communities with greater government control, all else being equal.
Figure 4.3: The Community’s Best Response
This figure shows how the community’s best response varies with varying affinity, risk of rebel retaliation, and government cost. \(P_h(R) \) is the baseline return to the government for randomly targeting when no information is provided. The derivatives of \(D_1 \) and \(D_2 \) represent two progressively less expensive cost functions. Where \(D_1 \) and \(D_2 \) intersect the baseline return is the level of random violence the government would set in equilibrium. The derivatives of \(U_{c,1} \) and \(U_{c,2} \) represent two communities where sharing is progressively more painful (because of affinity to the victims). Where the derivatives of \(U_{c,1} \) and \(U_{c,2} \) intersect the derivatives of the government’s cost \(D_1 \) and \(D_2 \) will be the optimal level of information sharing for the community. When it is more costly to the community to share information (because of say high affinity to the targets) their optimal level of information sharing drops.

Rebel Control in a Community

Rebel control over a community has multiple countervailing effects on patterns of government violence. Rebel control is represented in the model in two places, the number of rebels \(R \) and the technology used in rebel retaliation for cooperating with the government \(P_c(\cdot) \) which is also increasing in \(R \). Consider the effect of an increase in the marginal cost of rebel retaliatory violence, \(P_c'(\cdot) > 0 \). In Figure 4.3 above, the effect would be to shift from a baseline utility curve for the community \(U_{c,1} \) to a lower one \(U_{c,1} \)
where it is less beneficial to provide information. Information provision will decline, resulting in a shift in the portfolio of violence from informed targeting to random targeting. Ceteris paribus, the total amount of violence, would also weakly decrease since some violence that information made affordable is now converted to less worthwhile random targeting.

However, increasing the number of rebels in the population R, also increases the marginal returns for random violence because every chance encounter has a higher probability of finding a genuine rebel. Thus random targeting should be increasing with rebel control. Surprisingly, this should also drive up informed violence because a community’s incentives for cooperating with the government depend on the credible threat of random violence. The more rebels per capita, the more credible a threat of abuse the government can hold over the community’s head when soliciting information. The net effect then is an increase in both informed and random targeting, but a shift in portfolio toward informed and away from random. I cast these predictions as hypothesis 3A and 3B.

Hypothesis 3A: Government informed targeting, random targeting, and total targeting should be higher in communities with greater rebel control, all else being equal.
Hypothesis 3B: Provision of information should be lower in communities with greater rebel control, all else being equal.

Affinity

Finally, communities have a wide range of motivations to denounce or protect certain individuals that the model captures as a measure of affinity, α. A strong affinity for the victims $\alpha > 1$ drives down the amount of information shared with the government and a strong dislike $\alpha < 1$ drives up the amount of information shared. An implication is that when comparing communities, there will be a drop in intelligence in one community and a windfall in another due to affinity even when conditioning on rebel control and government control. This result suggests that measures of popular attitudes and affiliation are important for predicting patterns of selective targeting or at a minimum we should include community level fixed effects in an empirical model.

4.4 The Empirical Setting: Violence toward Civilians in the Vietnam War

In a country of just 17 million people, estimates put the number of total civilian casualties in the Vietnam War at two hundred thousand at the lowest and as high as one million (Hirschman et al. 1995). The Communist Party of South Vietnam distributed a broad list of 15 groups that rebels might target that included government

83 Civilians lived primarily in one of about 30,000 hamlets, organized into about 3,000 villages, which were inside 237 political districts, inside 44 provinces. The country was further divided into 4 Corps Tactical Areas by the U.S. military.
administrators, popular local leaders, persons who collaborated with the government, and family members of the above (Pike 1970, 30-31). The government in return targeted members of the rebel organization commonly referred to as the Viet Cong Infrastructure (VCI), which was either an overt cadre that openly performed governmental and support functions or a covert cadre that clandestinely worked for the rebel forces while blending into the population.84 The government compiled a large list of political positions controlled by the Viet Cong and assigned them A, B, and C letter scores representing their priority to the targeting program. Government figures show that between 15,000 and 22,000 Viet Cong suspects were captured or killed annually from when the program became fully operational in 1968 to when it was mostly disbanded in 1972. In the same period, a substantial share of aerial bombardment and artillery shelling was targeted toward populated areas that were considered to be under rebel control (Thayer 1985, Kocher et al. 2011).

The Vietnam War is a uniquely transparent case due to the availability of extensive sources of information on violence toward civilians during the war. Rebel violence toward civilians is detailed in interviews with civilians (Pohle 1969; Leites 1969), interviews with captured rebel combatants (Davison 1972; Hunt 1974, 2009), captured rebel documents (Hosmer 1970), province histories (Race 1972; Bergerud 1993; }

84 Overt cadre were referred to as “illegal” because they did not have government issued identification whereas covert cadre were “legal” because they did have government issued identification and could pass openly through checkpoints.
Incumbent selective violence is described in personal accounts by American intelligence officers (Herrington 1987; DeForest and Chanoff 1991), interviews with former participants (Andradé 1990; Valentine 2000; Moyar 2007), declassified primary documents, and the actual database of suspects used by the Phoenix Program (Kalyvas and Kocher 2007).

4.4.1 Dependent Variable- Selective Targeting

I have compiled the details of 47,404 government killings and arrests committed with the support of or documented by the Phoenix Program between July 1969 and December 1972. Of those, 8,617 were recovered from archived printouts of “Monthly Neutralization Reports” from the Viet Cong Infrastructure Neutralization System from July 1969 to June 1970.85 Another 38,787 are detailed in the archived electronic copy of the National Police Infrastructure Analysis System (NPIASS).86 Each act is georeferenced to the nearest village. Temporal resolution varies between the two systems, but I aggregate the unit of analysis to the village-quarter. Total violence $V_{k,t}$ is

86 For a description of the data see National Archives and Records Administration, “Reference Copy of Technical Documentation for National Police Infrastructure Analysis Subsystem (NPIASS) I & II Master Files,” 2008, Records of the Joint Commands, RG 349. The genesis of the database is described by McChristian (1994), and for a recent analysis see Kalyvas and Kocher (2007).
measured by the sum of killings and arrests committed in that village-quarter. Both systems record whether the victim was specifically targeted by the operation $V_{I,k,t}$ or if they were identified concurrently or following the operation $V_{h,k,t}$.

About a third of Phoenix targeting were operations launched based on prior information, 15,313 versus 32,803.

The model speaks primarily to government selective violence, where costs for targeting may be relatively low thanks to greater manpower, superior technology, and the availability of highly mobile units. However, for comparison I include rebel selective violence recorded at the level of individual attacks by the Terrorist Incident Reporting System (TIRSA). TIRSA records whether an act was selective or general in nature, the means used, the target, and the number of casualties inflicted. I use the original coding of selective and general, with the minor change that general acts against public officials with only one or two casualties were probably selective acts because of the target and the close proximity of the violence, which I recode accordingly. The data show that between July 1969 and December 1972, the Viet Cong selectively killed or

87 NIPASS records whether the victim was a “Specific Target” or “Non-specific target.” VCINS records whether the victim was a “Specific target,” “General target,” “Cordon and Search,” “Main Force Sweep,” or “Other.”

88 Random violence (profiling) took many forms, including cordon and sweep operations and road blocks. In operation Barking Sands, the 25th Infantry Division temporarily detained over 35,000 people over a seventh month period in Hua Nghai and Binh Duong Provinces (Bergerud 1993, 166). In the cordon and search operation Cedar Falls, 106 villagers were arrested out of six thousand over a one month period (Schell 1967).

89 The data are documented in National Archives and Record Administration (NARA), Reference Copy of Technical Documentation for Accessioned Electronic Records The Terrorist Incident Reporting System (TIRSA) October 1967-February 1973, RG330, Records of the Office of the Secretary of Defense.
abducted at least 5,623 civilians and government administrators. The distribution of both government and rebel selective violence over time is plotted below in Figure 4.4.

Figure 4.4: Government and Rebel Selective Violence July 1969-December 1972
This figure shows the total number of civilians killed and captured/abducted over time. The dip in government targeting in the first and second quarter of 1970 is the result of missingness; only data for IV Corps is available for this period.

4.4.2 Independent Variables- Territorial Control and Intelligence

How to correctly map the distribution of military and political infrastructure to territorial control is a problem that both sides struggled with throughout the war (Hunt 1974, 15; Blood 2005, 62-63; Adams and Hackworth 1998, 55). A reasonable approach was developed in the form of the Hamlet Evaluation System (HES), which is discussed in much greater detail in Chapter 3. HES assigned each of over 12,000 hamlets and over 2,500 villages aggregate security scores based on the answers to over 60 questions and
was updated monthly using a weighted Bayesian procedure (Kalyvas and Kocher 2009b, 17). In each case, answers were provided by American District Senior Advisors along with their South Vietnamese military counterparts. For simplicity, in this chapter I follow Kalyvas and Kocher (2009) and use aggregate Bayesian measures used in the original HES survey. Chapter 3 develops more refined measures based on an item response model, but the original HES aggregations are more than sufficient to illustrate and test the model proposed here.

The first aggregate measure, *Control*, takes into account the presence of both government and rebel forces and roughly categorizes a village into fully government control, partial government control, fully contested, partially rebel controlled, and fully rebel controlled. To measure *Government Control*, I use a constituent aggregation of questions pertaining only to the presence of government military forces. The measure includes questions on the government forces in or nearby the village, availability of outside fire support, and the ability for government personnel to safely travel. To

90 A full discussion of the controversies surrounding data collection and generation in the Vietnam War are beyond the scope of this article. For a representative critique of the first HES system see Tunney (1969), and for a supportive external validity check of HES see Pool et al. (1968). For a modern critique of the misuse of metrics in Vietnam see Daddis (2011).

91 In addition to substantially streamlining the discussion of the evidence, using the original measures provides access to a number of observations for which the original questions and responses are not available.

92 The aggregation is known as VMOD6B and is a population weighted aggregation of hamlet and village level questions. Kalyvas and Kocher (2009b) describe the qualitative interpretation of each category in terms of the Hamlet Evaluation System score for a similar aggregation. See Kalyvas (2006, 421) for a more thorough account of territorial control and Samson (1970) for the five zone scheme’s applicability to the Vietnam case. Chapter 2 examines this measure in much greater detail.

93 The aggregate HES measure is called VMOD1D.
measure RebelControl, I use a constituent aggregation of questions pertaining to the presence of rebel military forces. The measure includes questions on whether rebel forces physically occupy the hamlet, make the area around the hamlet unsafe for travel, are able to tax or recruit, and the estimated size of guerrilla and main force units in the area. The constituent questions for both aggregations appear in Appendix A.4 and A.5. As expected, the two measures are negatively correlated (-0.61), but there is considerable overlap. The distribution of each type of control and the joint distribution of GovernmentControl and RebelControl appear below in Figure 4.5. Of particular interest in a conflict such as Vietnam is the fractured nature territorial control; rebel pockets directly border government pockets of control throughout the country as shown in Figure 4.6.

94 The aggregate HES measure is called VMOD1A.
Figure 4.5: Control Disaggregated into Rebel and Government Control
This figure shows the distribution of total control and two disaggregated constituents of government control and rebel control. Measures are based on Bayesian village level aggregations from the HES70/71 system, VMOD6B for total control, VMOD1D for government control, and VMOD1A for rebel control. To maintain comparison to the existing literature, the order is reversed from an earlier chapter; Full Government=1; Partial Government=2, Mixed=3, Partial Rebel Control=4; and Full Rebel Control=5. The disaggregations of government control and rebel control increase in number so that 1 is least control and 5 is most.
This figure shows estimates of control from Oct. 1970 based on the Bayesian village level aggregation from HES70/71 VMOD6B.
To measure the availability of intelligence in a community, I use two Hamlet Evaluation Survey quarterly questions that ask the District Senior Advisor to rate the portion of rebel identities known to friendly intelligence personnel. The first, which I refer to as *IntelligenceVCI*, asks, “Are the identities of members of the enemy infrastructure for this village known to friendly intelligence personnel?” The second, *IntelligenceGuerrillas*, asks, “Are the identities of the members of the enemy village guerrilla unit known to friendly intelligence personnel?” The answer to both is an ordered response: “No”; “one”; “Yes, a few (less than 10%)”; “Yes, some (10%-40%)”; “Yes, many (41%-90%)”; “Yes, all or nearly all”; and “No enemy infrastructure [village guerilla unit] exists for this village.” I create dummy variables *NoVCI* and *NoGuerillas* indicating the complete absence of rebels (and thus no intelligence to have). I further create a composite index *TotalIntelligence* where

\[
TotalIntelligence = \frac{IntelligenceGuerrillas \times IntelligenceVCI}{25}
\]

which is normalized to take a value between 0 and 1. The composite is necessary and useful due to the similarity between concepts represented in the individual questions. This is reflected in their high correlation (0.831). Correlation calculated by excluding responses of no rebels present. Figure 4.7 shows the levels of *TotalIntelligence*.
Figure 4.7: Availability of Intelligence and Territorial Control
This figure shows the distribution of access to intelligence over villages under different levels of control. Control is based on the Bayesian village level HES70/71 aggregation VMOD6B. Total Intelligence is the combination of two village level questions on knowledge of local persons belonging to the rebel ranks, and is normalized here to fall between 0 and 1. The dark line represents a fitted normal distribution. Even in partially and fully rebel controlled areas, District Senior Advisors reported at least some knowledge of the identities of local rebels.

4.4.3 Control Variables

The existing empirical and theoretical literature on sub-national violence, including work specific to Vietnam, suggest a number of relevant control variables. Kongsgård (2010) shows that attacks against military targets were more prevalent near populated areas, and Kocher (2004) shows that in Vietnam urban areas were much more likely to be under government control. Therefore, I include the village’s log population and whether the village contains at least one hamlet that is urban. Common
demographic traits such as ethnicity and religion can help solve the collective action problems inherent to organizing rebellion, so I include whether the hamlet is primarily of the majority ethnicity, Vietnamese, or the major religion, Buddhist (Lichbach 1995; Popkin 1979; Kalyvas and Kocher 2007). I include a dummy variable for whether the primary occupation of the village is farming because resource extraction is thought to influence propensity for violence, and at one point 80 to 90 percent of rebel finances were obtained from rice taxes (McChristian 1994, 167).

4.5 Results

4.5.1 Violence over Aggregate Territorial Control

According to the theory of selective violence proposed by Kalyvas (2006) and applied to the Vietnam War by Kalyvas and Kocher (2009), each side’s selective violence should peak in their own area of partial control and enemy areas should be relatively absent of such violence. The prediction depends on the argument that violence ought to only be directed towards places where civilians are willing to provide information, and they are only willing to do so when protected from the retaliatory violence by the opponent. There is strong evidence that civilians in Vietnam weighed their security situation carefully when considering whether to cooperate with the government, but the overall suggested pattern does not match contemporaneous accounts.
Civilians in rebel areas were disproportionately targeted for arrest and assassination by government forces. Based on interviews with South Vietnamese legislators and policy makers, Goodman (1973, 227) finds, “One of the major sources of ‘Viet Cong Suspects’ are military operations that move into a Viet Cong area and pick up all the civilians they encounter. This method is called the ‘snatch’ and on official reports the suspect is ‘linked’ to the Viet Cong because he was found in an insecure area.” An American military Phoenix Program advisor similarly reports that “The touchables are generally those living in VC havens and low level legals. If they are neutralized no one really cares. They have no money, political power, or religious influence. They are non-influential entities. They are touchable - neutralizable.”

Contested areas were sometimes particularly dangerous. When the city of Hue fell to Viet Cong forces during the Tet Offensive, it experienced a purge of 2,500 to 3,500 civilians based on precompiled lists provided by local informants. It then experienced another purge by government forces liberating the city based on names compiled by the CIA’s base chief (Prados 2009, 240).

Were contested and rebel areas relatively free of government random or informed targeting? I interpret this in a regression framework where government violence is represented by V (indexed by i or h when specifically applying to informed

or random targeting), communities are indexed by k, and time periods by t. Define V_r to be the ratio of informed violence to all violence, $V_r = \frac{v_i}{v_i + v_h}$. I estimate violence as a function of an aggregate measure of territorial control which roughly divides communities into five zones: (1) Full Government Control, (2) Partial Government Control, (3) Mixed, (4) Partial Rebel Control, and (5) Full Rebel Control. I break each zone into dummy variables with full government control as the base category. I further include controls for population, urbanity, administrative center, ethnicity, religion, and occupation, along with district and quarter fixed effects. Throughout, I use ordinary least squares with errors clustered by village.

$$V_{k,t} = \beta_0 + \beta_1 PartialGov_{k,t} + \beta_2 Mixed_{k,t} + \beta_3 PartialReb_{k,t} + \beta_4 FullRebel_{k,t} + \Psi_q Controls + \gamma_k + \epsilon_{k,t}$$

The results in Table 1, which are displayed graphically in Figure 4.8, show that violence disproportionately targeted mixed and rebel areas, with a sharp drop off in fully rebel controlled areas. Informed violence is distributed rather uniformly across contested, partially rebel-controlled, and fully rebel-controlled areas. Government random violence actually peaks in rebel areas of partial control, but across models both fully contested and rebel controlled areas are statistically indistinguishable from one another. Importantly, the more prevalent areas of government and partial government control are underrepresented in violence overall. In the final two columns, I include Viet Cong selective violence as a base of a comparison. Rebel violence peaks in fully
contested and partially rebel controlled areas. The distribution is remarkably flat but consistent with the view that in the later part of the war the Viet Cong were limited in their ability to project violence into government-controlled areas.

Figure 4.8: Distribution of Selective Targeting over Territorial Control
This figure shows parameter estimates for number of attacks in each zone of control relative to full government control, as presented in Table 4.1. The unit of observation is the village-quarter and zones of control are (1) Full Government, (2) Partial Government, (3) Mixed, (4) Partial Rebel, and (5) Full Rebel. Whiskers are 95% confidence intervals from robust standard errors clustered on village. It shows that mixed and partially rebel controlled areas are disproportionately targeted by each type of violence by both sides.
Table 4.1: Violence and Aggregate Control

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gov Total</td>
<td>Gov Total</td>
<td>Gov Informed</td>
<td>Gov Random</td>
<td>Rebel Total</td>
<td>Rebel Total</td>
</tr>
<tr>
<td>Partial Government Control</td>
<td>0.472***</td>
<td>0.390***</td>
<td>0.152***</td>
<td>0.294***</td>
<td>0.115***</td>
<td>0.0638***</td>
</tr>
<tr>
<td></td>
<td>(0.0477)</td>
<td>(0.0505)</td>
<td>(0.0240)</td>
<td>(0.0488)</td>
<td>(0.00881)</td>
<td>(0.0122)</td>
</tr>
<tr>
<td>Mixed Control</td>
<td>0.814***</td>
<td>0.867***</td>
<td>0.308***</td>
<td>0.711***</td>
<td>0.189***</td>
<td>0.133***</td>
</tr>
<tr>
<td></td>
<td>(0.0684)</td>
<td>(0.0763)</td>
<td>(0.0322)</td>
<td>(0.0742)</td>
<td>(0.0134)</td>
<td>(0.0179)</td>
</tr>
<tr>
<td>Partial Rebel Control</td>
<td>0.811***</td>
<td>1.013***</td>
<td>0.308***</td>
<td>0.932***</td>
<td>0.166***</td>
<td>0.135***</td>
</tr>
<tr>
<td></td>
<td>(0.0823)</td>
<td>(0.0939)</td>
<td>(0.0408)</td>
<td>(0.0889)</td>
<td>(0.0153)</td>
<td>(0.0214)</td>
</tr>
<tr>
<td>Full Rebel Control</td>
<td>0.00429</td>
<td>0.777***</td>
<td>0.311***</td>
<td>0.725***</td>
<td>-0.0131</td>
<td>0.0477</td>
</tr>
<tr>
<td></td>
<td>(0.0721)</td>
<td>(0.107)</td>
<td>(0.0429)</td>
<td>(0.107)</td>
<td>(0.00809)</td>
<td>(0.0190)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.636***</td>
<td>-1.218***</td>
<td>-0.400***</td>
<td>-1.268***</td>
<td>0.0614***</td>
<td>-0.299***</td>
</tr>
<tr>
<td></td>
<td>(0.0443)</td>
<td>(0.149)</td>
<td>(0.0669)</td>
<td>(0.142)</td>
<td>(0.00623)</td>
<td>(0.0297)</td>
</tr>
</tbody>
</table>

N 34444 33978 33978 33978 34444 33978
R² 0.014 0.194 0.119 0.173 0.017 0.120
Unit Fixed Effects N District District District N District
Time Fixed Effects N Quarter Quarter Quarter N Quarter
Controls N Y Y Y N Y

Standard errors in parentheses. Model Specification: Ordinary Least Square. Errors: Clustered on Village. Additional Controls: Log Population, Urban Center, Administrative Center, Ethnicity, Religion, Occupation. p < 0.05, ** p < 0.01, *** p < 0.001
4.5.2 Violence and Information

How does violence vary with the information provided by communities? Below, I estimate violence as a function of an aggregate composite of the two HES measures of available information in each village. The comparative statics indicate that the relationship is contingent on the proportion of rebels to the population, community affinity to the victims, cost of government targeting, and the probability of rebel retaliation. As a first cut, I include a village fixed effect γ_k which partially captures these unobserved factors. A quarter fixed effect, η_t, captures countrywide shifts in strategy, capabilities, and measurement over the period. I further include a dummy indicator for whether the village is in the extreme of rebel control as indicated by the aggregate measure of territorial control or in the extreme of government control as indicated by “no VCI” or “no guerrillas” by the HES intelligence questions. I also include the log of village population and a dummy for whether the population is recorded as dropping to zero.

$$V_{k,t} = \beta_0 + \beta_1 \text{TotalIntelligence}_{k,t} + \beta_2 \text{VCControlled} + \beta_3 \text{NoVCI} + \beta_4 \text{NoGuerillas} + \beta_4 \text{LogPopulation} + \beta_5 \text{ZeroPopulation} + \gamma_k + \eta_t + \epsilon_{k,t}$$

The results appear in Table 2. Hypothesis 1 predicts that holding all else constant, more information should be associated with more informed violence and less random violence, and thus an increase in the share of informed violence to all violence. Columns 2-4 confirm this prediction. A shift from no intelligence to full knowledge of
rebel identities is associated with an increase in about 18 more informed attacks per village-quarter and a drop of about 19 random attacks per village quarter. Similarly, more intelligence leads to a statistically significant increase in the share of informed violence to total violence. This suggests that not only does government violence increase with greater intelligence, but the portfolio also shifts internally. A conjecture but not a prediction of the model is that, controlling for all else, the relationship between total violence and information should be ambiguous. Column 1 shows that in this sample, intelligence does not predict within-village levels of total violence over time. This is keenly important for studies where only the outcome, an attack, is observed but not the process leading the government launching the attack. If all we had available were aggregate data, we would conclude better access to intelligence, or other proxies such as popular support, are unrelated to the government’s use of selective targeting.

97 The negative coefficient on TotalIntelligence for random violence just misses significance at the 0.1 level in an OLS specification but becomes highly significant with other specifications such as negative binomial.
<table>
<thead>
<tr>
<th></th>
<th>(1) Gov. Total</th>
<th>(2) Gov. Informed</th>
<th>(3) Gov. Random</th>
<th>(4) Gov. Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Intelligence</td>
<td>-0.0523</td>
<td>0.158*</td>
<td>-0.192</td>
<td>0.132**</td>
</tr>
<tr>
<td></td>
<td>(0.137)</td>
<td>(0.0678)</td>
<td>(0.122)</td>
<td>(0.0389)</td>
</tr>
<tr>
<td>Fully VC Controlled</td>
<td>-0.587*</td>
<td>-0.173*</td>
<td>-0.412*</td>
<td>-0.138***</td>
</tr>
<tr>
<td></td>
<td>(0.230)</td>
<td>(0.0834)</td>
<td>(0.207)</td>
<td>(0.0388)</td>
</tr>
<tr>
<td>No VCI</td>
<td>0.0583</td>
<td>-0.0503</td>
<td>0.100</td>
<td>-0.0866</td>
</tr>
<tr>
<td></td>
<td>(0.0679)</td>
<td>(0.0392)</td>
<td>(0.0606)</td>
<td>(0.0486)</td>
</tr>
<tr>
<td>No Guerrillas</td>
<td>-0.0778</td>
<td>-0.0518</td>
<td>-0.0462</td>
<td>-0.0165</td>
</tr>
<tr>
<td></td>
<td>(0.0673)</td>
<td>(0.0340)</td>
<td>(0.0584)</td>
<td>(0.0305)</td>
</tr>
<tr>
<td>No Population</td>
<td>-0.211</td>
<td>-0.554**</td>
<td>0.298</td>
<td>-0.119</td>
</tr>
<tr>
<td></td>
<td>(0.402)</td>
<td>(0.173)</td>
<td>(0.353)</td>
<td>(0.125)</td>
</tr>
<tr>
<td>Log Population</td>
<td>-0.0312</td>
<td>-0.0678**</td>
<td>0.0317</td>
<td>-0.0144</td>
</tr>
<tr>
<td></td>
<td>(0.0579)</td>
<td>(0.0259)</td>
<td>(0.0498)</td>
<td>(0.0166)</td>
</tr>
<tr>
<td>Constant</td>
<td>1.745***</td>
<td>1.031***</td>
<td>0.670</td>
<td>0.428***</td>
</tr>
<tr>
<td></td>
<td>(0.490)</td>
<td>(0.219)</td>
<td>(0.420)</td>
<td>(0.142)</td>
</tr>
<tr>
<td>N</td>
<td>23384</td>
<td>23384</td>
<td>23384</td>
<td>8554</td>
</tr>
<tr>
<td>R^2</td>
<td>0.051</td>
<td>0.039</td>
<td>0.029</td>
<td>0.041</td>
</tr>
<tr>
<td>Unit Fixed Effects</td>
<td>Village</td>
<td>Village</td>
<td>Village</td>
<td>Village</td>
</tr>
<tr>
<td>Time Fixed Effects</td>
<td>Quarter</td>
<td>Quarter</td>
<td>Quarter</td>
<td>Quarter</td>
</tr>
<tr>
<td>Controls N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

Standard errors in parentheses. Model Specification: Ordinary Least Square. Errors: Clustered on Village. $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$
4.5.3 Violence, Government Control, and Rebel Control

Hypothesis 2A predicts that reducing the government’s costs leads to an increase in all types of violence. Likewise, Hypothesis 3A predicts that increasing rebel control will increase all kinds of government violence. Modifying the within-village specification above, I include a five-category measure of GovernmentControl as a proxy for the government costs of projecting violence against a community and a five category measure of RebelControl to proxy for rebel presence in an area and ability to retaliate against civilians. The results in Table 3 find moderate support for these hypotheses. In column 1, conditional on rebel control and shifts into or out of the extremes of rebel control and government control, an increase in government control is associated with an increase in total government violence. The effect is not statistically significant for either informed or random violence alone, columns 2 and 3. When village fixed effects are dropped the relationship reverses. More rebel control strongly predicts each type of government violence, and more government control strongly predicts lower levels of each type of violence. This is to be expected given the strong negative correlation between the two measures and suggests the need to develop measures of government costs which are not mechanically related to the presence of rebel forces.
Table 4.3: Violence and Disaggregated Control

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rebel Control</td>
<td>0.000227</td>
<td>(0.0419)</td>
<td></td>
<td>0.554***</td>
<td>(0.0411)</td>
<td>0.397***</td>
</tr>
<tr>
<td>Gov. Control</td>
<td>0.0914*</td>
<td>(0.0461)</td>
<td></td>
<td>-0.164***</td>
<td>(0.0433)</td>
<td>-0.0765*</td>
</tr>
<tr>
<td>Total Intelligence</td>
<td>-0.0819</td>
<td>(0.141)</td>
<td></td>
<td>0.607***</td>
<td>(0.128)</td>
<td>0.350***</td>
</tr>
<tr>
<td>Fully VC Controlled</td>
<td>-0.460</td>
<td>(0.262)</td>
<td></td>
<td>-0.883***</td>
<td>(0.172)</td>
<td>-0.463**</td>
</tr>
<tr>
<td>No VCI</td>
<td>0.0675</td>
<td>(0.0685)</td>
<td></td>
<td>-0.362***</td>
<td>(0.0714)</td>
<td>-0.200***</td>
</tr>
<tr>
<td>No Guerrillas</td>
<td>-0.0728</td>
<td>(0.0675)</td>
<td></td>
<td>-0.628***</td>
<td>(0.0794)</td>
<td>-0.482***</td>
</tr>
<tr>
<td>No Population</td>
<td>-0.318</td>
<td>(0.413)</td>
<td></td>
<td>1.977***</td>
<td>(0.312)</td>
<td>1.421***</td>
</tr>
<tr>
<td>Log Population</td>
<td>-0.0482</td>
<td>(0.0580)</td>
<td></td>
<td>0.400***</td>
<td>(0.0308)</td>
<td>0.274***</td>
</tr>
<tr>
<td>Constant</td>
<td>1.563**</td>
<td>(0.538)</td>
<td></td>
<td>-2.826***</td>
<td>(0.309)</td>
<td>-2.204***</td>
</tr>
</tbody>
</table>

N: 23201
R²: 0.051
Unit Fixed Effects: Village
Time Fixed Effects: Quarter
Controls: N N N Y Y Y

* p < 0.05, ** p < 0.01, *** p < 0.001
4.5.4 Access to Information as a Moderating Variable

Hypothesis 2B predicts that RebelControl has a direct positive effect on informed violence by creating targets, but that it has a negative indirect effect on the amount of information shared by the community through affinity and risk of rebel retaliation. Similarly, Hypothesis 3B predicts that GovernmentControl will have both a positive direct effect by lowering cost and a positive indirect effect by increasing provision of information. I test that prediction in a causal mediation framework where TotalIntelligence serves as a mediator for informed violence.

Figure 4.9: Relationships between Control, Intelligence, and Informed Targeting

The procedure is to estimate two equations, one for the mediator as a function of control and other variables and one for violence as a function of the mediator, RebelControl, and other variables (Imai et al. 2010, 2011).98 Here, I discuss only the more interesting case of RebelControl.

\[TotalIntelligence_{k,t} = \beta_{0,1} + B_{2,1}GovControl_{k,t} + \beta_{3,1}RebelControl + \Psi_{q,1}Controls + \epsilon_{k,t,1} \]

98 Estimates were generated using the R package mediation version 4.0.1.
\[V_{i,k,t} = \beta_{0,2} + \beta_{1,2} \text{TotalIntelligence}_{k,t} + B_{2,2} \text{GovControl}_{k,t} + \beta_{3,2} \text{RebelControl} + \Psi_{q,2} \text{Controls} + \epsilon_{k,t,2} \]

The results presented in Table 4 support the hypotheses. Rebel control has a positive and statistically significant direct effect on levels of informed targeting. It also, however, has a negative and statistically significant indirect effect on informed targeting through its reduction in the amount of intelligence available. The model argues that this results from a simple strategic interaction. An increased number of rebel combatants means more targets for the government, and more rebels per capita means greater returns to random targeting for the government. Those same rebels, however, also provide disincentives to share information in the form of retaliation or community affinity toward the targets. Increasing rebel control over an area will then have countervailing effects. The total effect is ambiguous; it depends on the level of affinity, the technology of retaliation, and the government’s cost for targeting in rebel areas. In Vietnam, the total effect was positive, with more targets swamping the effect of reduced information. This is almost surely because of the government’s endowment of military and police capabilities that allowed it to continuously probe rebel areas. In another conflict where the government faces parity with the rebel group, the total effect could very well be negative or zero.
Table 4.4: Rebel Control and the Mediating Effect of Reduced Intelligence

<table>
<thead>
<tr>
<th>Effect</th>
<th>Effect Through Changes in Total Intelligence</th>
<th>[95% CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rebel Control Mediation Effect</td>
<td>-0.007843</td>
<td>-0.010759</td>
</tr>
<tr>
<td>Rebel Control Direct Effect</td>
<td>0.1355</td>
<td>0.1100</td>
</tr>
<tr>
<td>Rebel Control Total Effect</td>
<td>0.1277</td>
<td>0.1031</td>
</tr>
<tr>
<td>Proportion of Total Effect via Mediation</td>
<td>0.06125</td>
<td>-0.09204</td>
</tr>
</tbody>
</table>

N 23,014

Notes: Confidence Intervals Based on Nonparametric Bootstrap.

4.6 Conclusion

Together, the model and evidence provides a plausible answer to several puzzles about selective violence. First, why do selective violence programs appear to work despite including relatively high levels of ineffective targeting? The model suggests that informed and random targeting are important strategic complements to one another. Even if random targeting is not particularly useful and has a very low rate of return, it can nonetheless induce a community to provide useful intelligence when they might not have cooperated otherwise. A similar logic may explain findings for positive effects of indiscriminate violence in general. This observation does not mean that selective violence programs are not corrupt, incompetent, or highly political. Rather, it means there is also a strategic rationale for violent coercion of which one of the byproducts is the kind of cooperation that enables more restrained methods.
Second, why do civilians ever cooperate when there are risks of retaliation by the other side? In short, the rebels are not the only ones threatening violence. If providing some names reduces the amount of government harassment by more than the amount of rebel retaliatory harassment, then it can be a worthwhile trade for a community.

Finally, why do governments appear to have occasional success in rebel areas, sometimes even without the cooperation of local civilians? Assuming that the area is not so remote or dangerous that no government forces can randomly target there, rebel areas provide a particularly high rate of return for random targeting. The government has a very credible threat of mass arrests in the absence of information, thereby inducing community cooperation.

What do these findings imply for our understanding of the Vietnam War? The Phoenix Program did not primarily concentrate on civilians that were easier to reach militarily. This, in addition to the fact that most of the incumbent’s indiscriminate violence targeted rebel controlled areas, suggest that the strategy in the later years of the Vietnam War was one of harassment and population displacement in rebel areas. This puts selective violence back into the context of the overall strategic goals of military campaigns rather than a solely locally generated process. Having established the general pattern of selective violence in Vietnam, future work should directly address the question of whether selective violence actually works as a long term counterinsurgency strategy. The Vietnam data make it possible to investigate whether
selective violence reduces overall rebel effectiveness or whether it exacerbates conflict by generating new grievances.
Appendix A

A.1 HAMLA Questions and Answers

<table>
<thead>
<tr>
<th>Table A.1: HAMLA Questions and Answers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Answer E/5</td>
</tr>
<tr>
<td>MLAC1: VC Village Guerrilla Unit</td>
</tr>
<tr>
<td>MLAC2: VC External Forces</td>
</tr>
<tr>
<td>PLAC1: VC Hamlet Infrastructure</td>
</tr>
<tr>
<td>PLAC2: VC Village Infrastructure</td>
</tr>
<tr>
<td>-------------------------------------</td>
</tr>
<tr>
<td>SECU1: Hamlet Defense Plan and Organization</td>
</tr>
<tr>
<td>SECU2: Friendly External Force Assistance</td>
</tr>
<tr>
<td>SECU3: Internal Security Activities</td>
</tr>
</tbody>
</table>
ADPL1: GVN Governmental Management

| Arranged non-resident GVN officials | Some local participation in hamlet management; GVN officials usually present but only in daytime. | Managerial groups resident, mostly local; appointed or elected, usually present at night. | Complete managerial group fully resident includes elected hamlet chief; fully functioning but with some external support, such as RD team or other GVN workers. | Effective elected hamlet governing body; elected village council; all officials in hamlet and village resident. |

ADPL2: GVN Response to Popular Aspirations

| No consideration by local officials to popular aspirations. No census activity or grievance program. | Occasional response by local officials to popular aspirations. Census grievance program may have been started in hamlet or village. | Some individual grievances being resolved; in hamlet or village initial census grievance survey completed. | More GVN actions being taken to meet people’s grievances and aspirations in hamlet or village. | Substantial evidence of GVN efforts to meet aspirations. Resident GVN grievance representative in RD hamlet or village. |

GVNTAX: GVN Taxes Area

| Unknown | No | Yes |

NOVCTAX: Viet Cong Do Not Tax Area

| Unknown | No | Yes |

XPROB17: Safety of US Advisor Access - Surface

| Unknown | Access unfeasible. | Not feasible except by accompanying an operation. | Special security arrangements necessary. | No special security arrangements necessary but weapons must be carried. | Weapons not necessary. |

XPROB18: Safety of US Advisor Access - Airstrip

| Unknown | Access unfeasible. | Not feasible except by accompanying an operation. | Special security arrangements necessary. | No special security arrangements necessary but weapons must be carried. | Weapons not necessary. |
A.2 HES70/71 Questions and Answers

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer 0</th>
<th>Answer 1</th>
<th>Answer 2</th>
<th>Answer 3</th>
<th>Answer 4</th>
<th>Answer 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMA1: Did any US advisory personnel visit this hamlet during the month?</td>
<td>No, frequent visits of short duration only</td>
<td>Yes, frequent visits of short duration only</td>
<td>Yes, at least one extended visit (one hour or more)</td>
<td>Yes, frequent extended visits</td>
<td>Yes, US advisory personnel resident in the hamlet</td>
<td></td>
</tr>
<tr>
<td>HMA2: Did the GVN district chief visit this hamlet during the month?</td>
<td>No, frequent visits of short duration only</td>
<td>Yes, frequent visits of short duration only</td>
<td>Yes, at least one extended visit (one hour or more)</td>
<td>Yes, frequent extended visits</td>
<td>Yes, district chief resident in the hamlet</td>
<td></td>
</tr>
<tr>
<td>HMB4: Were armed enemy military forces present in inhabited areas of this hamlet during the month?</td>
<td>Yes, regularly</td>
<td>Yes, once</td>
<td>No</td>
<td>No, none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMB8: Were any enemy propaganda meetings held or was printed propaganda distributed in this hamlet during the month?</td>
<td>Yes, more than once</td>
<td>Yes, once</td>
<td>No</td>
<td>No, none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HQB1: Which of the following most closely reflects the status of the enemy infrastructure in this hamlet?</td>
<td>The primary authority in the hamlet at night, but most operate covertly in the day and generally at night</td>
<td>The primary authority in the hamlet at night, but most operate covertly in the day and generally at night</td>
<td>Regular covert activity, sporadic covert activity, little or no overt infrastructure</td>
<td>Sporadic covert activity, little or no overt infrastructure</td>
<td>No known or suspected infrastructure</td>
<td>No known or suspected infrastructure</td>
</tr>
<tr>
<td>HQB2: Does the enemy collect taxes from hamlet households (in cash or in kind?)</td>
<td>Yes, regularly and sporadically</td>
<td>Yes, regularly and sporadically</td>
<td>No</td>
<td>No, none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HQB3: Do any hamlet households have a member or members who participated, by coercion or otherwise in enemy-organized non-military group activities (public meetings, demonstrations, work gangs, etc.) during the past quarter?</td>
<td>Yes, all or nearly all (41%-90%)</td>
<td>Yes, some (10%-40%)</td>
<td>Yes, a few (less than 10%)</td>
<td>No, none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HQC2: During daylight hours, do friendly local security forces conduct necessary security operations along approaches to this hamlet? (e.g., patrols, ambushes, listening posts, checkpoints, etc.)</td>
<td>No, but marginal</td>
<td>Yes, adequate</td>
<td>Not needed (no enemy threat)</td>
<td>Not needed (no enemy threat)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HQC3</td>
<td>During hours of darkness, do friendly local security forces conduct necessary security operations along approaches to this hamlet? (e.g., patrols, ambushes, listening posts, checkpoints, etc.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Yes, but marginal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes, adequate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not needed (no enemy threat)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| HQC4: Are any hamlet households located in areas where enemy agents, recruiters, tax collectors, and other cadre move about with relative freedom during hours of darkness? |
|------------------|--|
| Yes, all or nearly all | Yes, many (41-90%) |
| Yes, many (41-90%) | Yes, some (10%-40%) |
| Yes, a few (less than 10%) | No, none |

| HQC5: Are any hamlet households located in areas where GVN administrative personnel are unable to move about with relative freedom during daylight hours? |
|------------------|--|
| No, none | Yes, a few (less than 10%) |
| Yes, some (10%-40%) | Yes, many (41-90%) |
| Yes, all or nearly all | Yes, all or nearly all |

| HQC6: Do any hamlet households have a member or members active in the PSDF? |
|------------------|--|
| No, none | Yes, a few (less than 10%) |
| Yes, some (10%-40%) | Yes, many (41-90%) |
| Yes, all or nearly all | Yes, all or nearly all |

| HQC7: How active is the PSDF in this hamlet? |
|------------------|--|
| None organized | Organized, but inactive |
| Training and drills only | Organized non-military activity only |
| Standing armed guard in the hamlet | Armed patrols and guard within the hamlet |

| HQC8: Do local residents who are prime VC targets (members of PSDF, RDC, local government officials, young males, etc.) sleep in their homes at night? |
|------------------|--|
| No, more than 90% travel to more secure areas at night | No, 51%-90% travel to more secure areas at night |
| No, 10%-50% travel to more secure areas at night | No, a few (less than 10%) travel to more secure areas at night |
| No, a few (less than 10%) travel to more secure areas at night | Yes (less than 10%) sleep in defensive works within the hamlet |

| HQD2: During daylight hours, do GVN authorities enforce the laws in this hamlet? |
|------------------|--|
| No | Yes, but marginal |
| Yes, adequate | |

<p>	HQD3: During hours of darkness, do GVN authorities enforce the law in this hamlet?
No	Yes, but marginal
Yes, adequate	
<table>
<thead>
<tr>
<th>HQD4: How often are National Police or NPFF present in the hamlet?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Never</td>
</tr>
<tr>
<td>--------</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HQE1: Is there a GVN hamlet chief for this hamlet?</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HQE2: Is the GVN hamlet chief regularly present in this hamlet?</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HQE4: How often does the GVN village chief visit this hamlet?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Never</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HQF1: Do any hamlet households have a member or members in enemy service?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes, all or nearly all (41%-90%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HQF2: Do any hamlet households have a member or members in GVN civil or military service?</th>
</tr>
</thead>
<tbody>
<tr>
<td>No, none (less than 10%)</td>
</tr>
</tbody>
</table>
A.3 Example Conditional Probability Tables from HES70/71

Table A.3: Friendly Military Presence (Level 1 Model Computation)

<table>
<thead>
<tr>
<th>Step</th>
<th>Question</th>
<th>Initial assumption:</th>
<th>vs.</th>
<th>Final rating for Friendly Military Presence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Initial assumption:</td>
<td>A=B=C=D=E</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Step 2</td>
<td>Question 1: Friendly ground night reaction time more than four hours</td>
<td>C vs. 2D</td>
<td>D</td>
<td>C</td>
</tr>
<tr>
<td>Step 3</td>
<td>Question 2: Less than 40% of households subject to enemy cadre at night</td>
<td>C vs. D</td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>Step 4</td>
<td>Question 3: GVN officials able to freely move about during day</td>
<td>2C vs. D</td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>Step 5</td>
<td>Question 4: Friendly local conduct daytime security operations</td>
<td>10C vs. D</td>
<td></td>
<td>C</td>
</tr>
<tr>
<td>Step 6</td>
<td>Final rating for Friendly Military Presence</td>
<td></td>
<td></td>
<td>C</td>
</tr>
</tbody>
</table>

Source: Hamlet Evaluation System (HES) Command Manual, 1 Sep 1971

Table A.4: Friendly Military Presence (Conditional Probabilities)

<table>
<thead>
<tr>
<th>Question: During the hours of darkness, what is the probable reaction time of the nearest friendly ground reaction force, if called on by local security forces?</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. No reaction support available</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>40</td>
<td>75</td>
</tr>
<tr>
<td>2. More than four hours</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>30</td>
<td>15</td>
</tr>
<tr>
<td>3. Two to four hours</td>
<td>20</td>
<td>25</td>
<td>25</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>4. Less than two hours</td>
<td>75</td>
<td>65</td>
<td>50</td>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>

Source: Hamlet Evaluation System (HES) Command Manual, 1 Sep 1971
A.3 Proof of Lemma 1

Lemma 1: The government will never choose to allocate resources to indiscriminate targeting, V_h, when there are still targets available with specific information, I.

Proof: Assume it was not the case and there is an equilibrium strategy where $V^*_l < I$ and $V^*_h > 0$, and $I - V^*_l = V^*_h$. The cost of both types of violence are the same by assumption, so there are two possibilities. First, the probability of correctly targeting an insurgent with the additional random violence is greater than the cost of that additional random violence. In that case, $p_l(\cdot) > p_h(\cdot)$ by assumption which means that additional violence would provide an even higher expected utility if diverted to informed violence. Thus, this is not an equilibrium strategy for the government. The second possibility is that the probability of correctly targeting an insurgent with random violence is lower than the cost of that additional random violence. In that case, the government would be better off not committing that additional random violence, and again this is not an equilibrium strategy. Having exhausted the cases, the proof is complete.
A.4 HES70/71 Questions for the Government Control MOD1D

Table A.5: Questions Aggregate Measure of Government Control MOD1D

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer 0</th>
<th>Answer 1</th>
<th>Answer 2</th>
<th>Answer 3</th>
<th>Answer 4</th>
<th>Answer 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMD7: Did a significant number of households (more than 10%) move out of the hamlet during the month?</td>
<td>No</td>
<td>Yes, primarily due to a lack of security</td>
<td>Yes, primarily for reasons other than lack of security</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VQC1: Is there a GVN or US/FWMAF military base of company size or larger within or adjacent to this village? (Exclude all RF/PF).</td>
<td>No</td>
<td>Yes, GVN only</td>
<td>Yes, US/FWMAF</td>
<td>Yes, both GVN and US/FWMAF units, either of company size or larger</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VQC2: During daylight hours what is the probable reaction time of the nearest friendly ground reaction force if called upon for assistance by local security forces in this village?</td>
<td>No reaction support available</td>
<td>More than four hours</td>
<td>2-4 hours</td>
<td>Less than two hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VQC3: During hours of darkness what is the probable reaction time of the nearest friendly ground reaction force if called upon for assistance by local security forces in this village?</td>
<td>No reaction support available</td>
<td>More than four hours</td>
<td>2-4 hours</td>
<td>Less than two hours</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VQC4: Can the village security force expect a reasonable degree of fire support (i.e. air, artillery, helicopter gunships, etc.) if the need arises?</td>
<td>No</td>
<td>Occasionally</td>
<td>Nearly always</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VQC5: Has a plan for village security been formulated to coordinate the activities of the local security forces present in this village?</td>
<td>No</td>
<td>Yes, but plan is not followed</td>
<td>Yes, plan is followed, but it works poorly</td>
<td>Yes, plan is followed, and works well</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VQC6: Does the village chief have operational control over Popular Forces units assigned the mission of providing security for the people of this village?</td>
<td>No, no control Popular Forces</td>
<td>Yes, partial</td>
<td>Yes, complete</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
HQC1: Which of the following is primarily responsible for conducting military security operations, patrols, ambushes, listening posts, etc., in the immediate vicinity of this hamlet? (If more than one, select the force making the largest contribution.)

<table>
<thead>
<tr>
<th>No friendly security forces present</th>
<th>Peoples Self-Defense Force (PSDF)</th>
<th>National Police (NP)</th>
<th>National Police Field Force (NPFF)</th>
<th>4 Pop</th>
<th>5 Reg</th>
<th>6 CIDG</th>
<th>7 ARV N/US/FW/MAF</th>
</tr>
</thead>
</table>

HQC2: During daylight hours, do friendly local security forces conduct necessary security operations along approaches to this hamlet? (e.g. patrols, ambushes, listening posts, checkpoints, etc.)

<table>
<thead>
<tr>
<th>No</th>
<th>Yes, but marginal</th>
<th>Yes, adequate</th>
<th>Not needed (no enemy threat)</th>
</tr>
</thead>
</table>

HQC3: During hours of darkness, do friendly local security forces conduct necessary security operations along approaches to this hamlet? (e.g. patrols, ambushes, listening posts, checkpoints, etc.)

<table>
<thead>
<tr>
<th>No</th>
<th>Yes, but marginal</th>
<th>Yes, adequate</th>
<th>Not needed (no enemy threat)</th>
</tr>
</thead>
</table>

HQC5: Are any hamlet households located in areas where GVN administrative personnel are unable to move about with relative freedom during daylight hours?

<table>
<thead>
<tr>
<th>No, none</th>
<th>Yes, a few (less than 10%)</th>
<th>Yes, some (10%-40%)</th>
<th>Yes, many (41%-90%)</th>
<th>Yes, all or nearly all</th>
</tr>
</thead>
</table>

HQE2: Is the GVN hamlet chief regularly present in this hamlet?

<table>
<thead>
<tr>
<th>No</th>
<th>No, irregularly present</th>
<th>Yes, regularly, but only by day</th>
<th>Yes, regularly, day and night</th>
</tr>
</thead>
</table>
Table A.6: Questions Included in Aggregate Measure of Rebel Control MOD1A

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer 0</th>
<th>Answer 1</th>
<th>Answer 2</th>
<th>Answer 3</th>
<th>Answer 4</th>
<th>Answer 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMB2: During the month, was the main surface route leading from this</td>
<td>No</td>
<td>Yes, but regular enemy harassment or</td>
<td>Yes, sporadic enemy harassment or</td>
<td>Yes, no enemy harassment or taxation</td>
<td>Yes, no enemy harassment or taxation</td>
<td>Yes, no enemy harassment or taxation</td>
</tr>
<tr>
<td>village to the province capital open during daylight hours?</td>
<td></td>
<td>taxation</td>
<td>taxation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMB1: Do enemy forces physically control this hamlet?</td>
<td>No</td>
<td>Yes</td>
<td>Yes, defensive works have been constructed by enemy forces to establish a “combat hamlet”</td>
<td>Yes, a few (less than 10%)</td>
<td>No, none</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HQC4: Are any hamlet households located in areas where enemy agents,</td>
<td>Yes, all or nearly all</td>
<td>Yes, many (41-90%)</td>
<td>Yes, some (10-40%)</td>
<td>Yes, a few (less than 10%)</td>
<td>No, none</td>
<td></td>
</tr>
<tr>
<td>recruiters, tax collectors, and other cadre move about with relative</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>freedom during hours of darkness?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VQB2: What is the estimated size of the village guerilla unit regularly</td>
<td>None</td>
<td>Less than a squad</td>
<td>About a squad</td>
<td>About a platoon</td>
<td>More than a platoon</td>
<td></td>
</tr>
<tr>
<td>present in this village? (Do not include local or main force units.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VQB3: What is the estimated size of the largest enemy main or local</td>
<td>None</td>
<td>Less than a platoon</td>
<td>About a platoon</td>
<td>About a company</td>
<td>A battalion</td>
<td></td>
</tr>
<tr>
<td>force unit regularly present in this village or adjacent villages?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VQB4: Are there areas in or adjacent to this village which enemy forces</td>
<td>No</td>
<td>Yes, temporary havens</td>
<td>Yes, small base areas</td>
<td>Yes, major base areas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>use as assembly areas for operations against friendly activities in this</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>general area?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A.6 Overlap of Government and Rebel Selective Targeting

Figure A.1: Overlap of Government and Rebel Selective Targeting
This figure shows that about 11% of observations with rebel selective violence also have government informed violence, and about 25% have some rebel selective violence.
A.7 Intelligence Report based on Civilian Denunciation

References

Bates, Douglas, and Deepayan Sarkar. 2007. “lme4: Linear mixed-effects models using S4 classes.” In R package version.,

---. 2011. “‘Hearts, Minds’ & Development: Recent Research Challenges the Model.”

Political Analysis.

Cordesman, Anthony H. 2012. The need to refocus Afghan metrics and narratives on key local areas and population centers. Center for Strategic & International Studies.

Kongsgård, Håvard Wahl. 2010. “Geography matters, but people are the key; The location of Viet Cong initiated incidents.” Master’s Thesis. Norwegian University of Science and Technology.

http://www.brookings.edu/about/centers/saban/iraq-index (August 18, 2012).

Master’s Thesis. Marine Corps Command and Staff College.

