Wide-area Software-defined Storage

Jude Christopher Nelson

A Dissertation
Presented to the Faculty
of Princeton University
in Candidacy for the Degree
of Doctor of Philosophy

Recommended for Acceptance
by the Department of
Computer Science
Adviser: Larry Peterson

June 2018
Abstract

The proliferation of commodity cloud services helps developers build wide-area “system-of-systems” applications by harnessing cloud storage, CDNs, and public datasets as reusable building blocks. But to do so, developers must contend with two long-term challenges. First, whenever developers change storage providers, they must work to preserve the application’s expected *storage semantics*, i.e. the rules governing how the application expects the storage provider to handle its reads and writes. Today, changing storage providers is costly, because developers need to patch the application to make it compatible with the new provider’s data consistency model, access controls, replica placement strategies, and so on.

At the same time, users have certain expectations about how their data will be used, which the application must meet. For example, depending on the application, users may expect that their data will be kept private from other users, that their data will be exportable to other applications, that accesses to their data will be logged in an auditable way, and so on. In the limit, each user’s expectations represent an implicit *policy* constraining how their data can be stored. Honoring these policies is difficult for developers who rely on third-party storage providers because the storage provider is often unaware of them.

This thesis addresses these challenges with a new wide-area storage paradigm, called “software-defined storage” (SDS), that runs in-between applications and cloud services. SDS-enabled applications do not host data, but instead let users bring their preferred cloud services to the application. By taking a user-centric approach to hosting data, users are empowered to programmatically specify their policies independent of their applications and select services that will honor them. To support this approach and to tolerate service provider changes, SDS empowers developers to programmatically specify their application’s storage semantics independent of storage providers.
This thesis presents the design principles for SDS, and validates their real-world applicability with two SDS implementations and several non-trivial applications built on top of them. Most of these applications are used in production today. This thesis presents microbenchmarks of the SDS implementations and uses real-world experiences to show how to make the most of SDS.
Acknowledgements

The work presented in this thesis is drawn from two major collaborations. One was with Princeton, the University of Arizona, and the University of North Carolina, and the other was with Blockstack Public Benefit Corporation (PBC).

The first body of work was conducted in the PlanetLab research group, later as part of OpenCloud, and finally as part of a NSF grant shared by Princeton, UA, and UNC. The project that began in Fall 2010 as protocol to turn a commodity content distribution network (CDN) into a write-coherent network cache ultimately evolved into Syndicate, the first wide-area software-defined storage system. I am indebted to my adviser Larry L. Peterson for taking me under his wing and guiding me on the path that led to this thesis, and I am grateful to have been mentored by PlanetLab researchers Sapan Bhatia, Andy Bavier, Mike Wawrzoniak, Marc Fiuczynski, Tony Mack, and Scott Baker—all of whom played a part in helping me navigate graduate school in my earlier years at Princeton.

It takes a lot of engineering work and attention to detail to make a project of Syndicate’s scope operational. During my time with PlanetLab and OpenCloud, I worked with many talented people at Princeton and the University of Arizona who helped see this task through to completion. In particular, I am grateful to Illyoung Choi for helping me get Syndicate to work in production settings. He made Syndicate compatible with Hadoop, he wrote drivers for public datasets and iRODS, he filmed video tutorials for using Syndicate, and he created Docker images and dataset mounting tools that make Syndicate easy to use. He was also instrumental in discovering, reproducing, and gathering logs for countless bugs.

In addition, I am grateful to Zack Williams for creating and running Syndicate’s continuous integration and packaging infrastructure, and I am grateful to Jack L. Pogue III for writing and maintaining the Syndicate test suite and creating manual pages for all of the Syndicate programs. Their efforts significantly improved the
developer experience for hacking on and using Syndicate. I would also like to thank Muneeb Ali, Wathsala Vithanage, and John Whelchel for working on Syndicate with me in the summer of 2013, and I would like to thank Nirav Merchant and Bonnie Hurst for giving us the chance to use Syndicate on real-world scientific workflows. Wathsala Vithanage also deserves credit for helping create an end-to-end encrypted email application on top of Syndicate.

The other body of work in this thesis was conducted with Blockstack, a public benefit corporation started by Muneeb Ali ’17 and Ryan Shea ’12. At Blockstack, I developed the first version of Gaia—a wide-area software-defined storage system for Web applications. A key discovery that made Gaia possible was the invention of a technique called virtualchains, which allow Syndicate and Gaia to leverage an existing cryptocurrency blockchain to implement public-key infrastructure. I have Muneeb and Ryan to thank for helping me overcome my (deep) skepticism of the usefulness of blockchains, and for allowing me to work on Gaia as a collaborative work with Princeton. In addition, I would like to thank Michael J. Freedman for advising the three of us on the design and implementation of this system.

A version of Gaia today sees widespread use in Blockstack’s application ecosystem as the de facto storage system. I am especially thankful to have worked with Blockstack engineers Aaron Blankstein, Larry Salibra, Ken Liao, Jack Zampolin, Chase Wackerfuss, Thomas Osmonson, and Sebastian Dunkel for all the insights and inputs they had in making Gaia into an operational system, and all the effort they put into making this happen. I’m also grateful to all of the Blockstack developers and community members who built and tested real-world applications with Gaia and helped us find bugs and improve the system.

The scope of this thesis ended up being wider than I had initially expected. I would like to thank my thesis committee members Jennifer Rexford, John H. Hartman, Brian W. Kernighan, and Kai Li for their invaluable feedback on helping me shape my
experiences on Syndicate and Gaia into a coherent thesis. I would also like to thank my partner Meghan who helped me stay motivated to keep working on this thesis when I was struggling. Finally, I would like to thank my parents Mark and Monica for instilling within me a lifelong passion for learning and a sense of self-motivation to see it through.

Parts of this thesis were published earlier in the following papers:

I was supported by a Princeton Graduate Fellowship in my first year at Princeton. I was hired by Princeton University for the academic year 2014-2015 to work as a research technician on making Syndicate an operational service for the OpenCloud project. The work on Syndicate was supported by NSF Award 1541318.
For Mark, Monica, Luke, and Meghan
Contents

Abstract ... iii
Acknowledgements .. v
List of Figures .. xiv

1 Introduction ... 1
 1.1 System-of-Systems Approach 2
 1.1.1 Challenges .. 4
 1.1.2 Problem Statement .. 9
 1.2 Wide-area Software-defined Storage 10
 1.3 Contributions ... 14

2 Design Principles .. 16
 2.1 Overview ... 16
 2.1.1 Users ... 16
 2.1.2 Organizations ... 19
 2.1.3 Developers ... 20
 2.1.4 Semantic Tussle Spaces 21
 2.1.5 Trust Tussle Spaces 23
 2.1.6 Design Objectives 25
 2.2 Requirements ... 27
 2.2.1 Service Interface ... 28
2.9.3 Users are External to Applications .. 89
2.9.4 Users Own Data ... 89
2.10 Remarks .. 89

3 Exemplar Systems .. 91

3.1 Gaia: a Key/Value SDS System ... 92
 3.1.1 Motivation .. 93
 3.1.2 Blocks, Manifests, and Volumes .. 96
 3.1.3 Gateways ... 96
 3.1.4 Metadata Service .. 99
 3.1.5 Aggregation Drivers .. 101
 3.1.6 Flow Routing .. 101
 3.1.7 Administration .. 103
 3.1.8 User Scalability ... 105
 3.1.9 Global Relational Databases ... 107

3.2 Syndicate: a SDS File System .. 109
 3.2.1 Motivation .. 109
 3.2.2 Gateway Types .. 111
 3.2.3 Data Flows .. 113
 3.2.4 Data Organization ... 116
 3.2.5 Metadata Service .. 117
 3.2.6 Programming Model ... 118
 3.2.7 Administration ... 124

3.3 Discussion ... 125
3.4 Implementation Details ... 127

4 Applications ... 129

4.1 Serverless Groupware ... 129
4.1 Motivation

4.1.1 Motivation ... 131
4.1.2 Role of SDS .. 131
4.1.3 Design .. 132
4.1.4 Implementation 137
4.1.5 Discussion .. 139

4.2 End-to-End Encrypted Email

4.2.1 Motivation ... 140
4.2.2 Role of SDS .. 143
4.2.3 Design .. 144
4.2.4 Implementation 154
4.2.5 Discussion .. 154

4.3 CDN-accelerated Scientific Data Staging

4.3.1 Motivation ... 156
4.3.2 Challenges ... 157
4.3.3 Role of SDS .. 158
4.3.4 Design .. 159
4.3.5 Implementation 163
4.3.6 Discussion .. 164

4.4 Remarks ... 165

5 Evaluation

5.1 Overview .. 167

5.2 Access Flows .. 169
5.2.1 Overheads in Gaia 169
5.2.2 Overheads in Syndicate 179

5.3 Mutate Flows .. 194
5.3.1 Overheads in Gaia 194
5.3.2 Overheads in Syndicate 201
6 Related Work

6.1 Software-defined Storage in Industry

6.1.1 Virtual Block Devices

6.1.2 Storage System Emulation

6.1.3 Storage Abstraction and Virtualization

6.2 Operating System Storage Principles

6.2.1 Operating System Storage Design

6.2.2 Composable Software Systems

6.3 Secure Code Deployment

6.3.1 Secure Code Deployment

6.3.2 Secure Remote Code Execution

6.4 Software-defined Networking

6.4.1 Control and Data Planes

6.4.2 Ease of Programmability

6.5 Peer-to-peer Storage

6.5.1 Content Discovery

6.5.2 Single-stakeholder Content Discovery

6.5.3 Multi-stakeholder Content Discovery

6.5.4 User Authentication

6.6 User-defined Storage Semantics

6.7 Applications

6.7.1 Encrypted Email

6.7.2 Groupware

6.7.3 Scientific Data Set Staging

7 Conclusion
List of Figures

1.1 Webmail is a system-of-systems wide-area application. In order for Alice to receive an email from Bob, her university’s DNS and SMTP servers must coordinate with the global DNS and SMTP networks, and her university’s identity service and Webmail servers must coordinate to deliver her mail to her Web browser. .. 2

1.2 Software-defined storage acts as an intermediate “narrow waist” layer that preserves application-specific storage semantics on top of commodity cloud services. .. 11

1.3 Overview of the relationship between service drivers, aggregation drivers, and gateways on a read request. The application’s request “read foo” is processed by a sequence of three aggregation driver stages before foo’s data is returned. The SDS system ensures that each stage is executed in the right sequence (preserving semantics), and each organization runs a service driver to loads and stores the necessary data to do so (preserving autonomy). 13

2.1 Logical representation of a wide-area SDS system. The SDS system is a cross-organization intermediate layer that connects services to applications via distinct interfaces. ... 28
2.2 Service and aggregation drivers in an SDS system. Aggregation drivers span multiple organizations and route application reads and writes to one or more service drivers.

2.3 The narrow waist in the SDS data plane. The aggregation driver translates application-level storage requests into operations on manifests and chunks, and service drivers implement simple \textit{create}, \textit{update}, and \textit{delete} operations on chunks using existing service interfaces.

2.4 SDS Metadata Service. The MS resolves names to their current manifests, and allows gateways to update the name/manifest binding. Manifests are stored in the underlying cloud services, and point to the set of blocks that make up the record.

2.5 SDS Gateways. Gateways coordinate with one another across organization boundaries to service read and write requests originating from within their organization. They run a "stage" of the volume-wide aggregation driver, and run zero or more service drivers instances to load and store chunks to service the requests the stage processes.

2.6 Access flow overview. The gateway running the Discover stage identifies the manifest ID(s) for the data requested by the application, and the Acquire stage goes and fetches them with its service driver(s) when given the manifest ID. The pseudocode describes the behavior of the stages.

2.7 Mutate flow overview. The Build stage generates the new manifest and blocks, which are sent to the Push stage to be replicated (as chunks) to the cloud services. Once the chunks are durable, the new manifest ID is sent to the Publish stage where it will be announced to the rest of the system. The pseudocode describes the behavior of the stages.
2.8 Iterative routing for access flows. The Discover gateway routes the application’s request to the Acquire gateway once the Discover stage succeeds, and forwards the chunks’ data back to the application after parsing and validating it.

2.9 Iterative routing for mutate flows. The Build gateway routes the application’s request to the Push gateway to make its chunks durable, and then routes the request to the Publish gateway to announce the new manifest to the system.

2.10 Coordinator fault tolerance. If the coordinator dies while a mutate flow is being executed, a separate gateway can request to become the new coordinator on the MS. This advances the record’s coordinator epoch, such that a subsequent request to Publish will be routed to the new coordinator.
2.11 Gateway and Volume view changes. When a gateway owner advances
their gateway’s epoch, they inform the MS so it NACKs any of its
future requests (by inspecting its in-band epoch number). The gateway
interprets the NACK to reload its configuration and retry the request.
Similarly, when the volume owner advances the volume epoch on the
MS, all gateways’ subsequent requests are NACK’ed until they reload.
Once a gateway reloads, it NACKs requests from other gateways that
have not reloaded to ensure that all gateways and the MS have the
same view of the system configuration when completing a data flow’s
execution. In this figure, gateway 4’s configuration gets changed, and
gateway 4 is told to reload by gateway 3 when it next tries to contact
it. Shortly after, the volume epoch changes, and gateways 4, 3, 2,
and then 1 each discover the change in-band and reload their views
before retrying their requests. Gateway 1 receives a direct hint from
the volume owner. .. 66

2.12 Certificate graph. The volume owner controls user and gateway mem-
bbership in the volume, and decides each gateway’s capabilities and
aggregation driver stages. Other users submit their gateways’ public
keys to the volume owner in order to add their gateways to the vol-
ume. Once added, users can set their gateways’ network addresses and
services drivers without the volume owner’s permission. 70

2.13 Overview of self-sovereign identity systems. A SSI system reads a
blockchain to process its SSI-specific transactions. It replays these
transactions to construct a table of (name, publickey, account) tuples. 75
2.14 Bootstrapping trust in certificate graphs with SSI. Each organization
runs its own SSI database with the same blockchain. In doing so, they
get the current public keys and account information for all users in the
system. This lets each organization independently validate the volume
and gateway configurations.

3.1 Gaia versus traditional Web applications. In traditional Web applica-
tions (left), application clients’ reads and writes are mediated through
a shared application server. In Gaia, reads and writes are processed by
a sequence of one or more Gaia nodes before being loaded and stored
to commodity storage as chunks. Gaia nodes, in turn, run the users’
gateways.

3.2 Application interface to Gaia. Gaia combines the timestamped
key/value writes in each device’s manifest to create a coherent view of
the user’s volume.

3.3 Volume lookups in Gaia. When Alice wants to read Bob’s app data, she
(1) looks up his ID in his SSI database, (2) finds his zone file in Gaia’s
peer network, (3) finds his certificate graphs, (4) finds his public-facing
Gaia node and volumes, and (5) routes access flows through it to access
his volume data.

3.4 Gaia read/write configurations. Discover and Acquire happen in the
same node in single-reader configurations, but can happen either on
untrusted nodes or on both trusted and untrusted nodes in multi-reader
settings. Mutate flow stages always run within the trusted computing
base, however.

3.5 Syndicate overview. Syndicate offers three types of gateways (UGs,
RGs, and AGs) for interfacing with CDNs, storage providers, and
datasets, respectively. It is targeted towards science labs.
3.6 Reads and writes in Syndicate. Writes are initiated by UGs, which rely on RGs to Push chunks. UGs Publish the files that they coordinate. AGs crawl datasets and Publish them as files, and both RGs and AGs serve UGs chunks as part of their Acquire stages. 114

3.7 Syndicate driver model overview. Each gateway controls how it serializes and deserializes its chunks, but otherwise each type of gateway has a unique driver profile. 120

4.1 Design of serverless groupware with the Gaia SDS system. Alice lists signed certificate graphs in her SSI user account data, as well as the list of her personal devices’ public keys and social proofs. While Alice can write to her storage from her private Gaia nodes, she can make her data available via a public Gaia node as long as her SSI account contains enough social proofs that she is a valid application user. Bob uses this public gateway to discover and read her shared data. 133

4.2 Design of end-to-end encrypted email with Syndicate SDS. Alice can send email from both a personal device and a public terminal; the latter of which gets assigned a temporary session key that expires shortly after being created. Bob’s client detects new mail from Alice via the legacy SMTP network by receiving a signed list of URLs that point to Alice’s chosen storage services. If Alice emails non-users of this system, her UG employs a custom “message gateway” (MG) type to Push the message payload to them while enforcing her custom security policies (such as “store this message in a private shared Dropbox folder that the recipients can access and email them the URL”). 145
4.3 Overview of CDN-accelerated scientific data. The iRODS deployment is private, and accessible only via the AG and RG (which run in trusted networks). Remote UGs leverage the MS and CDN to read cached but fresh data, regardless of the CDN’s caching policies. When UGs write data, they do so via the trusted RG which sends the changes to the proper datasets. All the while, the AG keeps the MS metadata consistent with writes from non-Syndicate iRODS clients by subscribing to a (iRODS-specific) message queue.

5.1 Box-and-whiskers plot of the overall read performance.

5.2 Box-and-whiskers plots of access flow stage performances in Gaia, for file sizes between 64K and 640K in increments of 64K.

5.3 Box-and-whiskers plots of the Acquire stage performance.

5.4 Box-and-whiskers plots of Gaia’s read efficiencies.

5.5 Box-and-whiskers plots of end-to-end access flow performances in Syndicate, for 1K and 10K block sizes.

5.6 Box-and-whiskers plots of access flow stage performances in Syndicate, for file sizes between 10K and 100K and a block size of 1K.

5.7 Box-and-whiskers plots of access flow stage performances in Syndicate, for file sizes between 100K and 1000K and a block size of 10K.

5.8 Box-and-whiskers plots of Syndicate’s Acquire stage performance with 1K blocks.

5.9 Box-and-whiskers plots of Syndicate’s Acquire stage performance with 10K blocks.

5.10 Box-and-whiskers plots of Syndicate’s read efficiencies for 1K blocks.

5.11 Box-and-whiskers plots of Syndicate’s read efficiencies for 10K blocks.

5.12 Box-and-whiskers plot of the overall write performance.
5.13 Box-and-whiskers plots of mutate flow stage performances in Gaia, for file sizes between 64K and 640K in increments of 64K

5.14 Box-and-whiskers plots of Gaia’s write efficiencies.

5.15 Box-and-whiskers plots of mutate flow performances in Syndicate, for file sizes between 10K and 100K and a block size of 1K.

5.16 Box-and-whiskers plots of the Build stage performance, for 1K and 10K blocks.

5.17 Box-and-whiskers plots of the Push stage performance, for 1K and 10K blocks.

5.18 Box-and-whiskers plots of the Publish stage performance, for 1K and 10K blocks.

5.19 Box-and-whiskers plots of the efficiencies of Syndicate writes.
Chapter 1

Introduction

The proliferation of cloud storage, content distribution networks, and public curated datasets poses new challenges and opportunities for hosting data. On the one hand, the availability of professionally-maintained services is a boon to developers, since it lets them offload the operational burden of hosting data. On the other hand, it is difficult to leverage these services over long timescales. Services can appear and disappear, and service operators can unilaterally change their APIs, pricing, and trustworthiness. Over long enough timescales, developers find themselves continuously patching their applications to accommodate new service behaviors.

This thesis presents a novel storage architecture, called wide-area software-defined storage (SDS), that helps developers leverage these commodity services without this constant patching. In SDS, developers specify their desired end-to-end storage semantics independently of both applications and underlying services. The storage semantics define the rules for processing application reads and writes, and reside in an architectural layer “on top” of cloud services but “beneath” applications. This thesis presents SDS as an architecture for implementing storage semantics, and shows how developers can realize the benefits of cloud services without the long-term risks.
1.1 System-of-Systems Approach

Applications built on cloud services are systems-of-systems. A system-of-systems is a process that aggregates the functionality provided by multiple independent networked processes in order to solve a problem that none of them could handle on their own. The most prominent system-of-systems is the Internet, which uses peering agreements and the Border Gateway Protocol [160] to aggregate the routing logic in multiple autonomous networks to provide a global end-to-end packet delivery service.

Networked processes that run in the Internet’s application layer can also be systems-of-systems. For example, university Webmail is a system-of-systems application that aggregates DNS, the world’s SMTP servers, campus-hosted Web servers, and a university-wide identity and authentication system to grant students and faculty access to their email in their Web browsers (Figure 1.1). Application-layer systems can be combined with other application-layer systems to build new application-layer systems.

Figure 1.1: Webmail is a system-of-systems wide-area application. In order for Alice to receive an email from Bob, her university’s DNS and SMTP servers must coordinate with the global DNS and SMTP networks, and her university’s identity service and Webmail servers must coordinate to deliver her mail to her Web browser.
This thesis is concerned with helping developers build system-of-systems applications on top of third-party *cloud storage, content distribution networks* (CDNs), and *curated data-sets*. Cloud storage acts as the read/write storage medium for the application’s state. CDNs help applications overcome high latencies and bandwidth bottlenecks in WAN settings by serving downstream readers cached data. Curated datasets host read-only data on behalf of a set of applications, providing value to each one without requiring them to individually go out and collect data.

These three types of services are of interest because they implement a minimal set of requirements for many more applications and services. For example, the application and service offerings from Google are realized with shared corporate cloud storage (i.e. Megastore [21], Spanner [53], GFS [89]), a shared corporate CDN [94], and multiple shared repositories of user behavioral data that assist in machine-learning tasks like spam fighting, page ranking, voice recognition, and so on. Google’s public application platforms are built with these services as well [92] [93]. The situation is similar for Amazon AWS and Facebook, which use a common core of cloud storage, CDNs, and curated datasets to implement both their applications and higher-level services (like ad placement and logging).

Most applications are not built on top of bespoke datacenters, CDNs, and curated datasets, but instead rely on third-party service offerings. The developer leases service capacity in order to build their applications. For example, a navigation application would host its users’ preferred routes, maps, and historic queries in cloud storage, use a CDN to cache map data in appropriate geographic regions, and use public weather data aggregated by NOAA [142] and crowdsourced road data from OpenStreetMap [152] to determine the best route to take. As another example, a movie streaming service like Netflix [149] would host its users’ streaming history in cloud storage, use a CDN to accelerate the delivery of popular media, and curate the catalog of movies as a shared dataset for its mobile and Web applications.
The growth of these public commodity cloud services and the proliferation of applications using them demonstrates their promise as system-of-systems building blocks. Developers do not have to re-invent existing functionality each time they build a new application. Instead, they can purchase metered service capacity to handle their applications’ needs. This reduces time-to-market, speeds up product iteration, externalizes infrastructure maintenance and costs, and lowers the barrier to entry for building new applications.

The difficulty with this approach is that developers spend lots of time and effort preserving end-to-end storage semantics. This is because an application’s storage semantics depend on the semantics of each cloud service it uses.

To build a correct implementation, developers must account for the semantics of their chosen services in the application’s design. For example, the aforementioned navigation application’s servers must coordinate with downstream CDN servers to ensure that clients read fresh data. As another example, the Web servers in the campus Webmail application must coordinate with the authentication servers to enforce campus-wide access controls. These concerns are not part of the business logic of the applications, but nevertheless must be addressed in order for the application to behave correctly.

1.1.1 Challenges

This thesis addresses the challenges of preserving end-to-end storage semantics in wide-area applications built from third-party cloud services. Three specific pain-points are identified.

First, developers have no control over the services’ semantics. Cloud services can unilaterally change their pricing, feature-set, APIs, semantics, availability, and trustworthiness. Applications that rely on a service can break unexpectedly when the
service changes its behaviors, and in doing so, cost developers unforeseeable amounts of time and money.

Developers agree to this one-way relationship when accepting the service’s terms of service. The terms of service for popular services explicitly state that the operators have the ability to affect unilateral changes. For example, Dropbox unilaterally broke its API from version 1 to version 2 \[76\], and both Twitter and Instagram dropped API endpoints even after non-trivial applications were built to leverage it \[190 \[11\].

The second challenge is that cloud services are heterogeneous, which makes it hard to change both services and end-to-end semantics once the application is deployed. In practice, services that fill similar roles do not always offer the same semantics. For example, a service designed to use Amazon S3 may depend on its sequential consistency, which may prevent the developer from switching to Microsoft OneDrive (which provides eventual consistency \[51\]) even though both services fulfill a cloud storage role.

Without careful planning, the application can become tightly coupled to its services by accidentally relying on undocumented or unacknowledged behavior. This creates high service switching costs, making it difficult for developers to move the application to better offerings or change the application’s semantics later to meet new requirements.

The third challenge is that application users have certain expectations about how their data will be used, and which data they will interact with. The application must meet these expectations in order to be usable. However, a users’ expectations are specific to each application, each datum, and to other users. They can be arbitrarily specific, but some common example include:

- Data privacy. Users may expect that their data will be visible only to people they designate.
• Data non-repudiability. Users may expect that their data or the data they read from other users is non-repudiable and will not be erased by the application.

• Data blocking. Users may expect the application to silently prevent other users’ data from reaching them. This is especially relevant to forums and social media applications, which must contend with online harassment.

• Data portability. Users may expect that they will be able to download their data from the application at some point in the future and use it in another application.

• Access audits. Users may expect that the application will tell them how their data has been used, as well as when and where it was used.

• Ancillary data. Applications generate data from user behavior, and users may expect to be able to read it. For example, Facebook will tell users which third-party advertisers may send them ads.

• Data retention. Users may expect that the application holds on to data they delete for a certain amount of time, so they can un-delete it. For example, Gmail implements a “trash can” abstraction that retains deleted emails for 30 days after they are deleted from the user’s inbox.

• Data amnesia. Users may expect that the data they delete will be erased and forgotten by the application.

• Legal compliance. Users may expect that access to their data will be governed under a particular jurisdiction, i.e. the one that they live in, the one in which their data replicas reside, and so on.

This is not an exhaustive list by any means, but is meant to illustrate the point that developers need to honor their users’ expectations, or risk alienating their users.
and/or suffering legal consequences. This thesis refers to a machine-readable encoding of the user’s expectations for their data in a particular application as the user’s *data-hosting policy*.

Today, applications encode and globally enforce data-hosting policies by means of a “settings page” for users, which gives users some levers to control how their data will be used. For example, most social media applications have an “Account Privacy” page that lets the user control which other users can access which data. As another example, government regulations like GDPR [70] require applications to provide an “export data” page for downloading all of the user’s data, as well as a “delete and forget” page for permanently erasing the data.

In the system-of-systems approach, the application alone cannot be trusted to enforce all data-hosting policies. This is because the data records are stored in third-party service providers that are unaware of the policies, and may do things that violate them. The developers have no recourse if this happens.

The third challenge that developers of system-of-systems applications have to overcome is that *data-hosting policies must be enforced by the user’s organizations while preserving the end-to-end storage semantics*. For the purposes of this thesis, an *organization* is an autonomous set of computers that a user uses to interact with their data in a particular application. Example organizations include a user’s personal devices, a corporation’s workstations, or a lab’s computer cluster.

If a user cannot rely on the application or storage provider to enforce her policy, then she must rely on her organization to do so on her behalf. This means that each organization needs to be free to set and enforce data-hosting policies on their users’ behalf, and developers need to ensure that each policy’s rules are followed without affecting the end-to-end storage semantics. This is true of the example Webmail application, since the campus-hosted servers, the SMTP servers, and the DNS servers
can each decide how they store and serve their message and routing information without affecting the store-and-forward semantics of email.

The difficulty of building cross-organization system-of-systems applications arises from the degree to which organizations are willing to trust other organizations to enforce their users’ policies. This degree of trust falls on a spectrum. At one extreme, users of an organization do not trust other organizations with their policy enforcement at all. The designs of applications at this extreme reflect this by requiring each organization to host their users’ data (including choosing their own compliant storage providers, if any), thus putting them in a position to mediate all accesses to it. The campus Webmail example falls into this extreme, as do most federated applications like IRC [150], XMPP [164], Diaspora [61], and Mastodon [129].

At the other extreme, users fully trust external organizations. The designs of applications at this extreme allow each organization to completely delegate policy enforcement to another organization. Examples include most Web services like Facebook [74], Google Apps [84], and Microsoft Office 365 [135], where each user completely trusts the company running the application to enforce her data policies.

At both extremes, policy enforcement mechanisms are straightforward to develop. When the organization hosts the user’s data, the user instructs their organization on when reads and writes from other organizations are permitted and when they are denied. For example, the campus Webmail application lets university users control read access to their inboxes by requiring passwords, and lets them control write accesses both by requiring passwords to send mail and by allowing users to set spam filter rules that constrain which inbound messages (i.e. “writes” from other users) they will see. At the other extreme when the user completely trusts an external organization to enforce her data-hosting policies, the developer simply provides an “account settings” feature that lets the user control which reads and writes to her data are permitted by other users, and how to authorize them.
However, system-of-systems applications built on cloud services fall in-between these two extremes. In these applications, the data policy enforcement mechanisms are partially deployed in the same organization that hosts the data, but not completely. In these cases, organizations at a minimum trust the cloud services to keep their data available. They may also trust them with additional responsibilities on a case-by-case basis, such as domain-specific access controls or replica placement.

The challenge to developers is to accommodate the whole spectrum of users’ trust relationships with organizations and cloud services. Each organization not only has different user-given data-hosting policies, but also has different degrees of trust in the cloud service and other organizations with respect to enforcing them. This affects the design of these applications such that in the limit, the application must be aware of each trust relationship and each policy that exists. This poses a problem to developers, since developers must provide the appropriate mechanisms for enforcing them while still preserving end-to-end storage semantics.

1.1.2 Problem Statement

Building applications on cloud services forces developers to solve two hard problems in practice.

- **Preserve end-to-end storage semantics.** This is difficult today because developers do not control the services’ storage semantics. The services can change their behavior, the developers can change the services the application uses, and the developers can change the semantics of the application. The consequences are the same in all cases: the developers need to patch the application to accommodate the new semantics.

- **Preserve organizational autonomy.** This is difficult today because applications run across multiple organizations and cannot enforce data-hosting policies
on their own. However, each organization has its own user-given policies that govern what can be done with its users’ data. Ensuring that each organization is free to enforce its users’ policies is hard because neither the developers nor the organizations control the services’ behaviors, and users have varying degrees of trust in each service’s ability to accommodate their policies. Moreover, any mechanisms that organizations employ to enforce their users’ policies must be compatible with the application’s end-to-end storage semantics.

As a result, developers spend a lot of time and effort patching their application just to keep it running, and cannot realistically honor each user’s data-hosting policies. This in turn hurts users, since it limits the extent to which they can safely use the application. Users are put into the awkward position of having to avoid using the application, or put themselves at risk by trusting the application with their data more than they would like. This thesis shows developers how to address both problems in a way that requires minimal additional work once the application is deployed.

1.2 Wide-area Software-defined Storage

To address these problems, this thesis presents a storage architecture that separates storage semantics from both cloud services and applications. The rules for processing reads and writes are placed in a common data-exchange layer in-between applications and the cloud services. A system that implements this layer is called a wide-area software-defined storage (SDS) system (Figure 1.2).

SDS systems preserve end-to-end storage semantics on top of cloud services while respecting organizational autonomy. A SDS system accommodates changes in service semantics by encapsulating service-specific interfacing logic inside a “service driver.” The service driver gives the SDS system a very simple API for loading and storing immutable chunks of data. This isolates a particular service from the rest of the
Figure 1.2: Software-defined storage acts as an intermediate “narrow waist” layer that preserves application-specific storage semantics on top of commodity cloud services. The system and makes its functionality accessible via a common API. Once the SDS system has a driver implementation for a service, any SDS-powered application can use it automatically.

SDS preserves organizations’ autonomy without compromising end-to-end semantics by allowing each user to control the network paths their data takes from the application’s users to the services (and vice versa). Each organization runs its own service driver instances for storing its data, and developers supply an “aggregation driver” that applies the application-specific storage semantics over the services used when processing a read or write.

The aggregation driver is an SDS-specific programming concept that developers use to implement end-to-end storage semantics. Its programming model borrows from both the UNIX shell programming and software-defined network programming paradigms. The developer writes an aggregation driver as a series of composable “stages,” which are evaluated in sequential order by the SDS system to process a
read or write according to the desired semantics. Each organization runs one or more aggregation driver stage instances.

Users apply their data-hosting policies by choosing which organizations’ service drivers and aggregation driver stages will carry out the read or write. The user does this by selecting the routes that a read or write on a piece of data is allowed to take through the set of organizations. In doing so, users choose which organizations process their reads and writes without violating application-specific storage semantics.

SDS systems avoid the problem of service lock-in by means of a “gateway”. Each organization runs their service drivers and aggregation driver stages within SDS gateways they control, and the SDS system uses the user’s policy to route reads and writes to her data through a valid sequence of gateways in order to preserve end-to-end storage semantics. Each gateway implements the storage API of the organization’s choice, and serves as the application’s access point to the SDS system. This allows each organization to choose which APIs are exposed to their users’ applications, and enables each organization to make its own decisions on how other users read and write its users’ data.

The resulting system solves both problems (Figure 1.3). It ensures that all reads and writes pass through the correct sequence of aggregation driver stages, thereby preserving the end-to-end semantics. Each stage loads and stores raw data from the underlying services as needed by invoking its gateway’s service driver(s). Service drivers may take advantage of any service-specific features to load and store data, but are required to expose data to aggregation driver stages as a set of immutable, content-addressed write-once read-many chunks. In doing so, SDS separates application semantics from the semantics of the underlying services while still allowing developers to take advantage of any useful service-specific features they offer.

At the same time, users control which organizations’ aggregation driver stages and service driver instances are utilized to process a given request. Moreover, they
Figure 1.3: Overview of the relationship between service drivers, aggregation drivers, and gateways on a read request. The application’s request “read foo” is processed by a sequence of three aggregation driver stages before foo’s data is returned. The SDS system ensures that each stage is executed in the right sequence (preserving semantics), and each organization runs a service driver to loads and stores the necessary data to do so (preserving autonomy).

can control which gateway instances are selected to process reads and writes. This yields a way to translate a user’s data-hosting expectations into a machine-readable data-hosting policy: they are realized as a set of source routes on each of the user’s data. By translating policy enforcement into a source-routing problem, organizations can automatically preserve its users data-hosting expectations without violating end-to-end storage semantics. The user selects gateways that process their reads and writes in a way that meets their policy’s terms. A detailed description of how service drivers, aggregation drivers, and gateways coordinate to achieve this is presented in Chapter 2.
1.3 Contributions

The architecture put forth in this thesis is informed by two real-world SDS implementations and three sample applications. The implementations were designed to accommodate two sets of real-world use-cases: scientific computing, and “serverless” Web applications (i.e. Web applications that can operate without application-specific servers). The design principles in this thesis were formulated once the implementations were tested and deployed in production settings. This thesis claims the following contributions:

- This thesis presents the design principles of wide-area software-defined storage, framed in terms of prior work and the real-world storage needs of existing applications. Adhering to these design principles reduces the man-hours required to keep applications compatible with existing services while both preserving end-to-end storage semantics and respecting each organization’s data-hosting policies (Chapter 2).

- This thesis presents the design and implementation of two SDS systems: Gaia and Syndicate. Syndicate is a real SDS system being deployed in scientific workflows today, and Gaia is a real SDS system being deployed to build serverless Web applications. This thesis uses Gaia and Syndicate to show how to translate SDS design principles into real systems. (Chapter 3).

- This thesis shows how to build SDS-powered applications. The design and implementation of non-trivial SDS-powered applications that could not have been feasibly built without SDS are presented. Among these are an end-to-end encrypted Webmail client that removes the user from key management, a server-less groupware application that lets users control how their data gets hosted and accessed, and a scientific data-staging application that automatically
makes fresh datasets available from existing data repositories to HPC clusters via commodity CDNs. (Chapter 4).

• This thesis presents microbenchmarks for Gaia and Syndicate. The microbenchmarks show the various overheads of these SDS implementations impose by processing reads and writes by passing them through aggregation and service drivers. The results show that the SDS systems are efficient at processing larger I/O requests, and that developers have many options available to influence end-to-end read and write performance. (Chapter 5).

These contributions support the thesis that developers can both preserve end-to-end storage semantics and respect organizational autonomy when building on cloud services. A properly-designed SDS system achieves this by framing the problem in terms of service drivers and aggregation drivers, which can be written once and reused across applications. In doing so, SDS systems minimize the amount of work required to keep an application running.
Chapter 2

Design Principles

This chapter presents the design principles of SDS using real-world observations of contemporary system-of-systems applications. It describes the components that make up an SDS system and shows how they work together to enforce end-to-end semantics while preserving organizational autonomy.

2.1 Overview

The need for SDS systems is guided by the real-world needs of three sets of stakeholders in wide-area applications today: its users, its organizations, and its developers.

2.1.1 Users

The users are the authoritative origins of all data in the application. Data is produced by users for other users to consume. This is unsurprising at first glance, since the point of having wide-area applications at all is so users can collaborate without having to be physically present (i.e. by communicating data to one another across the Internet). However, the key insight here is that conventional wide-area applications such as Web applications do not treat users as authoritative data origins at the protocol level. At
the protocol level, application servers are the authoritative data origins for all user data.

It is only by *social convention* that users are led to believe and expect that they are the authoritative data origins. This is reflected in how users talk about the data they create—for example, a user would say “my Facebook profile” when referring to the profile data Facebook hosts, instead of the more accurate statement “the downstream replica of my profile data that I stored in Facebook’s servers and expect Facebook’s servers to faithfully share on my behalf.” This thesis argues for enforcing this social convention at the protocol layer (i.e. programmatically, beneath the application) by separating the responsibility for hosting and serving a user’s data from the responsibility of hosting and running application code.

The fact that users assume that they are both the data’s authoritative origins and the data consumers means that users have certain expectations regarding how applications store their data. These expectations can be arbitrarily specific to the data, the application, and the computer(s) through which they read and write it. For example, a user would expect an online tax-filing application to prevent their tax form data from being read by anyone besides themselves and the government, and would expect it to retain copies of their filings for at least three years. As another example, a user would expect a ride-hailing application to be accessible only through their mobile phone, and would expect that their travel history and driver ratings would be inaccessible to the driver.

Data-hosting Policies

Successful applications empower users to convey their expectations to applications and other users in the form of a *data-hosting policy*. The data-hosting policy is a machine-readable description of how the user expects the application and other users to interact with her data. Successful applications provide the means for users to
translate their expectations into data-hosting policies, and enforce the users’ policies on their behalf.

The data-hosting policy can take many forms, depending on the application. For example, a social media application like Facebook allows users to encode some aspects of a data-hosting policy in a privacy settings page. The settings are stored in Facebook, and Facebook (ostensibly) enforces them. As another example, a cloud administration tool like the Google Cloud Console [93] gives its users the ability to define programmatic hooks and scripts for hosting, retaining, and deleting log data.

This thesis is concerned about the enforcement of data-hosting policies. Users need to be able to translate their expectations on data storage into policies that they can enforce without having to rely on applications or storage providers. Today, users have no technical recourse if the application simply decides to ignore their policies; they are instead left with external remediation options like boycotting the application or taking legal action against the developers. Specific to system-of-systems applications, developers are not in a position where they can plausibly enforce a user’s data-hosting policies end-to-end. This is because in order to do so, both the application and the storage providers must recognize and enforce the users’ policies. However, in practice storage providers are not even guaranteed to be aware that the policies exist, since users do not interact with storage providers and do not have a direct business relationship with them.

If users cannot rely on the application or the developer’s chosen storage providers to enforce their data-hosting policies, then they are left with three (non-exclusive) options:

1. Do not use the application. This is not a feasible option for most users.

2. Only use the application if it will store the user’s data on the user’s chosen storage providers, instead of the developer’s. That way, the user can ostensibly select storage providers that will enforce their policies alongside the application.
3. Carry out policy enforcement on a trusted computer or computers independent of the application and storage providers.

This thesis argues for taking the second and third options in system-of-systems application design. Users should be able to select which storage providers host their application-specific data, and choose which computers to trust with enforcing their data-hosting policies. Applications and storage providers should not be in a position to make either decision for the user, unless the user explicitly allows them to do so.

2.1.2 Organizations

An organization is the set of computers that enforce a user’s data hosting policy. Each organization adheres to a single policy, and uses it to constrain how the application and other users are allowed to interact with the user’s data.

The fact that policies are application-specific means that organizational boundaries are also specific to the application, since they pertain to the types of data being loaded and stored in the application. For example:

- A user’s personal devices constitute a single organization in the context of a social media application. This is a single organization because all devices adhere to the same data-hosting policy: they load, manipulate, and store the user’s account and profile data. Organizations do not overlap in this application—a user Alice’s devices are a wholly separate organization from a user Bob’s devices.

- A lab’s workstations constitute a single organization in the context of a Web BLAST [23] deployment. This is a single organization because all workstations adhere to the same access controls: only lab members can access unpublished data, and only lab members and site administrators can access user-specific state like home directories. Workstations additionally retain BLAST computation
results for their users in a shared directory accessible to all lab members, so expensive results can be reused.

- The set of personal and work devices belonging to a team of programmers at a software company constitute a single organization in the context of a shared version control system (VCS). Each programmer can access the VCS from any of their devices, but only the devices belonging to programmers on the same team can commit new changes. Data is never overwritten or deleted—the commit history is preserved forever. Devices outside of the company are forbidden from reading and writing.

Users choose which organization(s) to trust with policy enforcement when they use the application. The organization mediates all of its user’s interactions with their data in order to apply the user’s policy on the data before the data is received by the application or other users.

2.1.3 Developers

The developers create and maintain the application code. They have to keep it running despite any breaking changes in the underlying storage providers, and they have to ensure that each user’s data-hosting policy is enforced.

The fact that developers lack control over the storage infrastructure leads to the problem statement. Developers put users in the position of having to trust third-party infrastructure to adhere to their data-hosting policies (even though the infrastructure is not guaranteed to be aware of this), and developers put themselves in the difficult position of having to trust that their underlying services will not change their storage semantics in a way that breaks the application.

Neither of these positions have proved tenable in practice. User data gets misappropriated by the storage providers through breaches of trust like data leaks or data
loss. Developers find themselves having to patch their applications over and over whenever they change storage providers or the storage providers change their APIs.

This thesis argues that this problem can be solved by creating a data storage protocol layer (i.e. SDS) in-between applications and storage services. It is sufficient for the layer to do the following:

- Treat users as the authoritative origins for all data in a protocol layer beneath the applications. Then, each application and each user can identify which application data originated from which user.

- Identify and enforce organizational boundaries and policies in a protocol layer beneath the applications. Then, organizations can take unilateral action in specifying and enforcing their policies without cooperation from the application.

- Give developers a way to specify their desired end-to-end semantics in a protocol layer beneath the applications, but above the storage services. Then, the developers can adapt the entire ecosystem of applications to changes in a single storage provider with a single patch on the protocol layer, instead of having to patch each application separately.

The design principles for wide-area software-defined storage are rooted in observations of three “tussle spaces” [46]. These are (1) the cloud services that host and serve the raw bytes, (2) the end-to-end storage semantics, and (3) the trust relationships between organizations, their users, and cloud services. A well-designed SDS system helps application developers efficiently accommodate tussles in all three of these domains.

2.1.4 Semantic Tussle Spaces

It may not be obvious that end-to-end storage semantics warrant their own tussle space, distinct from the cloud services and applications. Why not simply design
applications to be portable? Is there a system-of-systems application development methodology that allows applications to be written once, and be made to run on any services with only a small amount of work?

This thesis argues that focusing only on application portability is inefficient—it takes a lot of work to build portable system-of-systems applications with today’s methodologies. Today, the cost of porting \(m \) applications to \(n \) services would require \(O(mn) \) patches. This is true even if developers share their patches, since getting a patch to work with one application can require completely re-writing it to work with another application.

It is unlikely that this situation will improve on its own, since developers are incentivized to ship code that works today as opposed to code that is portable to unspecified systems at unspecified times in the future. Moreover, the business models of cloud services depend on customers continuously paying for the service, which removes the incentive to help make applications portable to their competitors. Even if portability was a desirable and achievable design goal from the get-go, getting \(m \) applications to adopt a new service’s behavior would still at best require \(O(m) \) man-hours, since each application would need to be modified.

SDS reframes the problem of portability as a problem with isolating both the individual service’s semantics and the desired end-to-end storage semantics from the application. By treating the set of application end-to-end semantics as their own tussle space, SDS frees the developer from having to port the application to each service. Instead, a developer simply ports the service to the SDS system, and the SDS system overlays the desired end-to-end semantics “on top” of them. Then, all current and future SDS applications would be able to use the service without modification. The amount of work to port \(m \) applications to \(n \) services with a SDS system is reduced to \(O(m + n) \).
2.1.5 Trust Tussle Spaces

Trust relationships are not static, and system-of-systems applications need a way to accommodate changes in trust. However, the application needs a way to do so without compromising any organization’s autonomy. The two approaches to managing trust relationships today—federations and open-membership architectures—do not fully accommodate trust tussles. They either sacrifice organizational autonomy (federations) or sacrifice the flexibility needed to accommodate new trust models (open-membership architectures).

In federations, each organization promises to adhere to a “common ground” data-hosting policy that allows them to interoperate. This way, users that trust one organization can trust other member organizations and their users to preserve their policies. For example, the operators of a set of organizations may agree to use a single-sign-on (SSO) system to authorize computers from different organizations to access sensitive data. As another example, a set of organizations may agree to use a common data format and API for sharing data with one another (such as putting their data servers behind an API endpoint that emulates a widely-used storage provider like Amazon S3).

While federations help organizations accommodate tussles in trust relationships, they impose high and unfair coordination costs that impinge on one or more organizations’ decision-making. The problem is that organization administrators must regularly coordinate to adapt to changing trust relationships (imposing a high cost), and do so in a way that favors certain organizations over others (removing fairness). For example, federations governed by in-person meetings exclude individuals who cannot travel easily or live in different timezones. As another example, federations whose coordination occurs in English penalizes non-English-speaking participants. The unfairness of the coordination cost distribution is fundamentally a social problem, and is beyond the scope of this thesis to address.
Open-membership architectures attempt to accommodate tussles in trust relationships in a more fair way by embedding all of the coordination logic to do so in the application protocol itself. The rationale is that this reduces the need for organization administrators to coordinate out-of-band. Instead, the act of participating in the system gives each organization the ability to set its own policies for interacting with other nodes. Examples systems that follow this architecture include peer-to-peer file sharing (like BitTorrent [49], Shark [13], and Vanish [88]) and cryptocurrencies (like Bitcoin [169] and Ethereum [203]). In both examples, peers have the power to unilaterally choose which other peers to contact, and unilaterally decide which messages to send and receive from other peers. For example, BitTorrent allows users to whitelist other peers when sharing a file to ensure that it only reaches the desired users.

The difficulty with the open-membership approach to accommodating trust tussles is that it makes it difficult to upgrade the application beyond the scope of the protocol. This makes it hard to accommodate new types of trust relationships. For example, the BitTorrent protocol does not provide a mechanism for helping users identify peers who will continue to seed their files, even if the user is willing to compensate the peers for doing so. A user who wants to identify and pay peers to seed their files cannot use BitTorrent alone—they must use some out-of-band mechanism to find, select, and compensate seeders. In order to accommodate this use-case in-band, the BitTorrent protocol would need to be upgraded.

The requirement that trust management be performed in-band in the application protocol means that developers forgo the ability to significantly change the protocol once deployed. Attempting to introduce a backwards-incompatible change to the application is tantamount to creating a whole new application. For example, the Bitcoin Cash cryptocurrency [29] split off from the Bitcoin cryptocurrency due to a disagreement in the system’s block size (a one-line code change) after over two years of infighting.
The SDS approach to accommodating tussles in trust relationships is to leverage an open-membership system to *bootstrap* trust between users and organizations (Section 2.8.2). Users and organizations leverage the open-membership system to exchange public keys, and establish end-to-end confidential and authenticated communication channels. This lets users and organizations establish trust relationships unilaterally while avoiding the high-overhead coordination problems of a federation (i.e. in order to preserve organizational autonomy). It also helps developers avoid getting locked into an un-upgradeable platform, since the nature of the trust relationships is decoupled from the open-membership system used to establish them.

2.1.6 Design Objectives

Applications not only need to work with existing cloud services, but also with any *future* cloud services that may be developed after the application is built and deployed. The developer must be able to use any services they want, with minimal switching costs. This leads to the first design objective for a SDS system:

Objective 1: *Once developed, an application must be able to use any current or future cloud service to host data without changing its end-to-end storage semantics.*

At the same time, a developer may want to stop using a storage system that was previously in use. The data must nevertheless remain accessible under the terms of the data-hosting policies of the user(s) that wrote it.

For example, the application developer may discover that the business logic needs stronger consistency guarantees than the cloud services can offer. The developer cannot simply move to a different service on a whim, since all of the data is hosted on the current services. At the same time, the developer cannot be expected to rewrite the application to keep using it with its weak consistency model.
This leads to the second design objective for a SDS system:

Objective 2: *Once chosen to host data, a cloud service must remain usable by the application regardless of any future changes to the application’s end-to-end storage semantics.*

All the while, the trust relationships between users and their chosen cloud services determine how applications are permitted to interact with each user’s data. If users’ organizations can communicate securely, it can be shown that users only need to trust cloud services with keeping their data available. Other policies can be enforced in software outside of the services (Section 2.5).

However, this leaves open the question of how users establish trust in one another in the first place. They must establish trust relationships *outside* of the application, since they need their organizations to trust one another before any cross-organization data interactions can occur. The developer cannot expect organizations to read or write data from untrusted services or organizations, since this infringes on their autonomy.

This leads to the third SDS design objective:

Objective 3: *Users and their organizations must be able to establish trust in one another independent of the applications and cloud services that host user data.*

If this objective is met, then it becomes possible for organizations to securely identify with whom they will share data. Once they can do this, each organization’s users can programmatically define non-trivial data-hosting policies for the organization to enforce.
Organizations do not need the application developer to be aware of their trust relationships. Organizations only need the developer to ensure that their programmatic data-hosting policies (which encompass their trust relationships) get enforced.

Identifying and authenticating other organizations and their users is the first step to implementing policy-enforcement mechanisms. The second step is to ensure that the organization can unilaterally designate which organization(s) can be trusted to run them. Once these preconditions are met, then it is up to the SDS system to ensure that the right policy enforcement mechanisms are invoked by the right organizations during a read or write.

This leads to the final SDS design objective:

Objective 4: An organization’s data-hosting policies must be enforced independently of applications and cloud services.

The remainder of this chapter shows how these objectives sculpt the design space for SDS systems. It concludes by distilling the design space into a set of design principles for SDS system design and implementation.

2.2 Requirements

At a high-level, a SDS system is a logical “hub” between applications and services that spans multiple organizations (Figure 2.1). The hub takes reads and writes from the application, processes them according to application-defined semantics and user policies, and loads and stores the resulting data to the underlying storage systems.

It necessarily offers two interfaces: a *service interface* through which it interacts with services on the applications’ behalf, and an *application interface* through which applications interact with data and define their desired storage semantics.
2.2.1 Service Interface

Fundamentally, a storage service can be read-only, read/write, or write-only. CDNs and public datasets are read-only storage services, and cloud storage is a read/write storage service. Write-only services are of little concern to the users of system-of-systems applications, since they do not provide a way to interact with the data once written.

This means SDS systems concern themselves with read-only and read/write services. Cloud services can be further distinguished by whether or not they can host authoritative replicas of user data—that is, replicas that the user explicitly places and designates as originating from themselves. Public datasets and cloud storage are capable of hosting authoritative replicas. However, CDNs are not—they can only host copies of authoritative replicas.

The user can leverage any combination of services to host their data. However, the application developer cannot be expected to anticipate every possible combination. The SDS system must instead provide some way to automatically “aggregate”
the user’s services, so applications can read and write user data regardless of their configuration.

Aggregating services is not trivial, since different services that fulfill similar roles can have different semantics. Depending what combination of services, the configuration can have different end-to-end semantics than individual services provide. For example, a user that uses a CDN to read copies of data from cloud storage will observe weaker data consistency than had she simply read directly from cloud storage.

What this means is that the SDS system needs a minimum viable model for each kind of service. The more minimal the model is, the more diverse the set of supported storage systems can be. In order to help aggregate services for the application, the SDS system must take all necessary steps to make each of the user’s services conform to the model.

For cloud storage, the minimum viable model must account for the fact that different cloud storage providers have different consistency models. Fortunately, every cloud storage provider in existence promises that if the user writes data once, they and other users will eventually be able to read it. This implies that the SDS system can safely assume that cloud storage is at least a write-once read-many medium. Even if it supports multiple writes to the same record (most do), no assumptions can be safely made about how readers will observe these writes.

Regarding datasets, data can be removed from a dataset by the provider, in which case eventually all subsequent reads will fail. Data can be added to a dataset, and eventually all subsequent reads to the new data will succeed. Users cannot modify the dataset, since they do not have write access to the dataset provider’s servers. Therefore, the minimum viable model is that datasets are a read-only medium to users.

Using CDNs poses a challenge to applications because their usage alters the end-to-end consistency guarantees of the application. Writes to upstream authoritative
replicas may not be immediately reflected in the CDN’s replicas. Moreover, the user cannot control the CDN’s schedule of cache evictions—the CDN can cache data as long as it wants. However, the minimum viable model for cloud storage means that the SDS system can “trick” the CDN into fetching and serving fresh data. This is possible because when the application executes a logical write to an existing record, the SDS will create a new authoritative data replica in cloud storage. A subsequent read on that data through the CDN will result in a cache miss, since as far as the CDN can tell it has been asked to fetch new data (instead of a modification to an existing record). This means that the minimum viable model for CDNs is that CDNs are a write-through cache for users.

These minimum viable models suggest an aggregation strategy for the SDS system:

- **Treat all cloud storage as a write-once read-many medium.** The SDS system must make it so that the user’s set of cloud storage services will appear to the application as a single write-once read-many storage medium. The SDS system must ensure that a given record is written no more than once, and the SDS system must handle the details of routing the application’s reads and writes to the correct underlying storage system.

- **Treat all datasets as read-only medium.** The SDS system must make it so that all of the user’s datasets appear to the application as a single read-only storage medium. The SDS system must route the application’s reads to the correct dataset.

- **Treat CDNs as a write-through cache.** The SDS system must make it so that the set of the user’s CDNs appear as a write-coherent cache. A write from the application must always be considered “fresh” by the CDN, regardless of its caching policy.
Figure 2.2: Service and aggregation drivers in an SDS system. Aggregation drivers span multiple organizations and route application reads and writes to one or more service drivers.

To interact with services and aggregate them on behalf of applications, the SDS system would realize these models by means of a service driver. Logically speaking, service drivers run at the service-facing “bottom” of the SDS “hub” (Figure 2.2). They handle only the data meant to be hosted on the service. The SDS system may instantiate multiple copies of the service drivers in order to handle higher load or keep applications isolated from one another.

2.2.2 Application Interface

Developers need to be able to preserve their application’s end-to-end storage semantics across an aggregation of services in a multi-user setting. When an application reads or writes, the SDS system must use the developer’s prescribed rules to handle it. The SDS service will handle reads by translating an application-level read into requests for data from its service drivers, and it will handle writes by translating the application-given write request and write data into requests to store data via its service drivers.
Since each user chooses their own service providers, the only opportunity to apply end-to-end semantics is in this application-to-service-driver translation step.

What kinds of semantics should a SDS system support? Since storage semantics are application-specific, the SDS system must support arbitrary rule sets supplied by the developer. This implies that SDS systems must be programmable—the developer must be able to give the SDS system a program that is evaluated on each read and write to carry out the sequence of steps to transform application-given requests into requests to service drivers. To enable this, SDS offers a separate type of driver called an “aggregation driver.”

Since each application has its own storage semantics, there is one aggregation driver per application. Logically speaking, it runs at the “top” of the SDS “hub” (Figure 2.2) and mediates all requests between users and service drivers. Note that this thesis does not distinguish between users and the application clients they run.

The aggregation driver is executed to handle each read and write. Since reads and writes to a particular piece of data are subject to a particular data-hosting policy, the SDS system executes reads and writes in terms of which user issues the interaction, which operation is requested, which data record is affected, and which network host is originating the request (the network host being indicative of which organization originated the request).

The high-level idea behind having two driver classes is that once a service has an appropriate service driver, it can be “plugged into” the SDS system such that existing aggregation drivers can use it immediately. An aggregation driver implements the application’s desired end-to-end storage semantics by translating application-level requests into requests understood by the service driver. These requests are issued such that their execution by service drivers delivers the desired end-to-end behavior. This reframes the costs of porting applications to services:
• For the cost of writing only the application-specific aggregation drivers, a new application can be made compatible with all existing and future services with no modification.

• For the cost of writing only the service-specific SDS driver, a new service can be made compatible with all existing and future applications.

In other words, the cost of porting \(m \) applications to \(n \) services can be reduced from \(O(mn) \) to \(O(m + n) \).

To realize this cost savings, many applications will share an SDS system. Aggregation and service drivers will be decoupled from the applications—they will be developed independently of one another, and independently of the application itself. Both types of drivers can be re-used by new applications.

2.2.3 Data and Control Planes

This thesis intentionally uses the term “routing” to describe the act of translating an application-given read or write from the wide-area (i.e. a user’s client) into requests to service providers. This is because one facet of processing reads and writes is that the SDS system needs to ensure that the user’s data-hosting policies are enforced when they execute. As argued earlier, the user cannot rely solely on the storage providers to do this, nor can the user rely solely on the application.

The user must instead be able to unilaterally choose which organizations will process their reads and writes, since only the user is in a position to determine which organizations will enforce their data-hosting policies. When a user reads or writes, the request and associated data must pass through the user’s trusted organizations. This way, the organizations mediate the reads and writes, and apply the user’s policies to constrain how their data will be processed. For example, a user may require that the photos they share in an SDS-powered photo-sharing application pass through their
personal server en route to cloud storage, where they will be encrypted before being stored. As another example, a user may require other users to pay to read the content they produce.

Trusting organizations to enforce data-hosting policies introduces a routing concern that SDS systems must fulfill. Reads and writes to a user’s data must be routed through the sequence of organizations that the user trusts, before reaching the storage providers (on write) or other users (on read).

What this means for SDS systems is that they must empower the user to determine which routes the reads and writes to their data are allowed to take. Users must be able to early-bind their routing decisions to their data, since their routing decisions must continue to apply to their data long after they create it. The SDS system must execute a source routing protocol when processing reads and writes to a user’s data, since the SDS system must honor the user’s routing decisions instead of making routing decisions on its own (i.e. in order to ensure that the user’s data-hosting policy is enforced by the right organizations).

The fact that the SDS system is concerned with both sharing data between users and applying user-given routing decisions on how the data is delivered implies that SDS systems have both a control plane and a data plane. The data plane’s job is to ensure all-to-all connectivity between users and services. The SDS data plane handles two distinct responsibilities. First, it moves the raw bytes between users and services, but without concerning itself with application-specific semantics or user-specific hosting policies. It does so via the service drivers, and handles tasks such as on-the-wire data formatting, data serialization and deserialization, data transmission, and so on.

The other data plane responsibility is to maintain an inventory of the set of records, the set of organizations, and the set of services that a SDS user can ostensibly interact with. Users rely on this service to make source routing decisions and discover available
data. This is implemented by a SDS data plane subsystem called the metadata service (Section 2.3.1).

The control plane implements each application’s storage semantics and user-given policies by acting as a governor for the data plane. It runs an application’s aggregation driver to mediate all users’ interactions with the data plane (including the data inventory in the metadata service) in such a way that users decide which network paths reads and writes take without affecting the end-to-end storage semantics the driver enforces.

Because each user expects to share data with other users (subject to some policy), the data plane is effectively shared by all applications and all services, and must implement a common data-sharing interface via a fully-connected bidirectional communication graph. Every node in an SDS-powered application must be able to send and receive data-plane messages to every other node, since ostensibly each user must be able to share data with each other user (whether or not they actually do so in the application is another matter). The control-plane defines the behavior of the system insofar as what messages get sent while processing application I/O, and how they are transformed and routed to and from the underlying services and other users.

2.3 Data Plane

User data can be arbitrarily large. However, data gets cached in CDNs, and large singular records can cause cache thrashing. To contend with this, the SDS data plane organizes data into units called chunks. Chunks form the basis of all data within SDS, and constitute a “data plane narrow waist” between a multitude of service drivers below and a multitude of aggregation drivers above. Chunks have the following properties in SDS:

- Every piece of data in SDS is made of one or more chunks.
- Each chunk is immutable.
- Each chunk has a globally-unique identifier.

In order to achieve all-to-all data availability, the data plane must ensure that each chunk belonging to a particular application is addressable and ostensibly resolvable by every user connected to it. If the aggregation driver logic allows it, each user can potentially resolve and download chunks created by each other user. As will be shown, the aggregation driver and the users’ trust relationships with each other constrain which users resolve which data.

![Diagram](image)

Figure 2.3: The narrow waist in the SDS data plane. The aggregation driver translates application-level storage requests into operations on manifests and chunks, and service drivers implement simple `create`, `update`, and `delete` operations on chunks using existing service interfaces.

At the service driver level, the SDS system provides operations to `create`, `read`, and `delete` chunks. Service drivers execute the requisite protocols and data transformations to marshal chunks back and forth to their respective services. CDN and dataset service drivers only implement `read`, while cloud storage drivers implement all three.
The data the application stores for a user can take any structure, but at the end of the day the application will store user data as a set of one or more named sequences of bytes (called records in this thesis). Since records can be arbitrarily large and must be able to be resolved by any user, SDS systems must implement an addressing scheme that resolves a record identifier to its sequence of chunks.

The minimally viable way to address records is to introduce one layer of indirection—the data plane identifies which chunks belong to the same record, in addition to identifying each chunk. At a layer above the service drivers but beneath aggregation drivers, SDS groups chunks that belong to the same record by using two specialized chunk types: a block and a manifest. A block is simply a data container with a known length. A manifest identifies a sequence of blocks, and in doing so represents the entire record. Together, blocks and manifests constitute the “narrow waist” of an SDS system’s data plane (Figure 2.3), since they serve as the common interchange format for a user’s data. This construction is similar to the inode and block construction seen in conventional filesystem designs that is used to represent a user’s files.

This record model is minimally viable because blocks and manifests provide just enough information define a set of generic operations for manipulating application data, in a way that does not mandate a particular data representation or access interface and is consistent with the minimum viable model for cloud storage, CDNs, and datasets. Specifically, the block-and-manifest construction allows the SDS system to define data-plane operations on application data in terms of the chunks that make them up:

- **Reading data.** To read a piece of application data, a SDS node locates its manifest, fetches it, and then fetches the blocks listed within it.

- **Creating data.** To write a new piece of data, a SDS node replicates its set of chunks and a manifest that contains them.
• **Updating data.** Modifying an existing piece of application data is done by creating blocks with the modified data, creating a new manifest with the “latest” sequence of blocks, and deleting blocks that contain overwritten data.

• **Deleting data.** Deleting the data is done by deleting its manifest and blocks. Subsequent reads on the manifest and blocks will fail.

These operations are what allow the SDS system to implement end-to-end guarantees with higher-level aggregation drivers without having to interface directly with services. Data plane clients (i.e. aggregation drivers) translate data operations into one or more of these operations.

A key advantage of this protocol is that it gives service drivers insight as to whether or not a chunk is a block or a manifest, as well as insight on which record is being processed. Developers are encouraged to exploit this information in practice to implement service drivers to transparently carry out both chunk-level and application data-level optimizations like de-duplication, compression, batch-writes, defragmentation, and so on. Users are encouraged to exploit this in practice because a stream of chunks passing through an organization can be recognized as belonging to a particular application record, which allows the organization to apply the correct policy on the request to read or write it.

2.3.1 Data Discovery and Indexing

Manifests provide a way to resolve a record’s data, but application endpoints still need a way to find users’ records’ manifests. This requires the SDS system to build and maintain a global chunk inventory so other users can discover manifests (and thus records). Because manifest are chunks and are accessible under write-once read-many semantics, the SDS system must ensure that any time a user creates, updates, or deletes data, a new manifest will be created for the record and it will
have a globally unique identifier. This grants each record snapshot consistency—each manifest uniquely identifies the state of a record in-between writes.

In order to read a record, a reader first needs to discover the record’s “current” manifest identifier, where the notion of “current” is defined by the application’s storage semantics (i.e. by the aggregation driver). Once it knows it, the reader, must then resolve the identifier to the manifest, and then resolve each block it needs from the manifest to the block data. Since both manifests and blocks are chunks, and since chunks have globally-unique identifiers that any application endpoint can resolve to chunk data, a SDS system must provide a system-wide discovery service that maps chunk identifiers to the set of organization hosts and service providers that can serve its data. This service is called the metadata service.

Figure 2.4: SDS Metadata Service. The MS resolves names to their current manifests, and allows gateways to update the name/manifest binding. Manifests are stored in the underlying cloud services, and point to the set of blocks that make up the record.

The Metadata Service (MS) helps users discover the availability of new records and new chunks. It also helps users announce the existence of chunks they create, and identify which organizations and services that can serve a chunk (Figure 2.4). There only needs to be one MS per SDS instance, and applications can share the MS.
as part of sharing the SDS deployment (i.e. the MS can be designed in a way such that it can be multiplexed across applications).

To resolve reads, the MS must implement at least two indexes: an index over the set of manifests, and an index over the set of organization hosts and services that can serve blocks. Then, once a reader has obtained the manifest, it can decode the manifest to find the block IDs and resolve them to their data by using the host and services index.

Since there can be multiple users in system-of-systems applications that write to the same records, a key ease-of-programming feature the MS must provide developers is an immutable record identifier for each manifest. This means that the MS’s manifest index must be realized as a naming system—it binds an immutable name to a record’s manifest identifier. Once users learn the record’s name, they must be able to resolve it to the “current” manifest identifier. In both Syndicate and Gaia, the record name may be an arbitrary string, but other designs are possible (such as a DID [58]).

Name Consistency

The consistency model of the MS’s name/manifest identifier mappings determines the *default* consistency model for the user’s data. In Syndicate, for example, the MS offers per-name sequential consistency. Once a writer successfully updates the manifest identifier for a name, all subsequent reads on the name will return the new identifier.

In order to support a wide array of application storage semantics, a SDS system must allow applications to realize different consistency models by allowing the developer to programmatically determine precisely when to update the manifest identifier and precisely when to resolve a name to a manifest identifier as part of an on-going write or read. This is enabled through the aggregate driver programming model, described in Section 2.5.
Service Discovery

The other responsibility of the MS is to provide an index over the set of organization hosts and storage services that can resolve chunks. This index must also be visible system-wide in order for application endpoints to query organizations and services for chunks.

Unlike the record name index, the consistency model of the service index must be atomic and linearized with respect to reads and writes. All reads and writes must occur under the same system-wide view of this index, and once an index view-change executes, all subsequent reads and writes execute in the new view. Put another way, each read and write belongs to exactly one view, and there is at most one view in the system at any point in time.

Preserving this index’s consistency model is necessary to ensure that the user’s data-hosting policies are preserved when the service providers or organizations change. These changes can happen when the user changes which storage provider(s) host replicas of their data, and can change when the user’s trust relationships with other organizations change. The protocols are described in detail in Section 2.6.

Metadata Policy Enforcement

Due to the roles the MS plays in a SDS system, it is important to consider which organization or organizations run it. The design of the MS must not infringe on each organization’s autonomy—both it and the underlying infrastructure running it must respect all data hosting policies.

This requirement allows for two possible MS designs. On the one hand, the MS can be designed to be distributed across each organization such that each organization controls the service discovery and naming for its data and services. In this design, organizational autonomy is preserved because each organization mediates all access
to its metadata and service discovery information. This is the design strategy taken by Gaia’s MS.

On the other hand, the MS can be designed such that each organization places no more trust in its ability to enforce data hosting policies than it already does in its chosen cloud services. In other words, the MS could run in an external cloud service, and would only be trusted with data availability. This is the design strategy taken by Syndicate’s MS.

2.4 Control Plane

The control plane governs the data plane in two ways: it applies the application-given rules for processing reads and writes as their data moves between users and storage providers (i.e. preserving storage semantics), and it allows each organization to choose which other organizations are trusted to execute these rules, based on their users’ policies (i.e. preserving organizational autonomy). The control plane handles these two concerns by deploying the application’s service and aggregation drivers across the organizations that use the application, and by allowing users to select the routes reads and writes take through the drivers.

The aggregation driver has so far been characterized a program running in the SDS’s logical “hub” that mediates all interactions with the application’s data. The aggregation driver is on the read and write paths for all of its application’s endpoints, including both “front-end” processes on users’ computers and “back-end” processes running on application servers.

It is tempting to use this logical model as the aggregation driver design by running it within a developer-chosen organization, such as a cloud computing provider. This is the approach taken to implementing storage semantics today in most Web applications—the logic that takes user-initiated reads and writes and translates them
into reads and writes to underlying storage is addressed via the application’s server-side processes. However, since users cannot trust application servers or storage provider servers with enforcing their data-hosting policies, this approach must be avoided in SDS system designs.

The consequence for the SDS control plane design space is that the control plane’s execution is necessarily distributed across the set of organizations. This implies a distributed aggregation driver model, where each organization runs one or more service driver instances and one or more aggregation driver instances which coordinate to execute reads and writes. The key to preserving both storage semantics and organizational autonomy is to allow users to select which instances will be used to process their data: users choose which instances to trust with read and write processing, and the SDS system ensures that their choices yield a driver execution trace compatible with the end-to-end storage semantics.

To achieve this, all SDS systems provide two logical control-plane constructs: the volume and the gateway. Using these two constructs, the control plane realizes the following properties:

- **Scalability.** The control plane can service a scalable number of concurrent requests by distributing them across the users’ organizations.

- **Multiplexability.** The SDS system can be shared across many applications, organizations, and users. Each application is given the illusion that it is the only application interacting with the system (i.e. applications to not interact via SDS).

- **User-determined Source Routing.** Users decide which driver instances process their reads and writes for each record they create. In doing so, the system recognizes users as the authoritative sources for their data at the protocol level, instead of by social convention.
• **Driver Agility.** Drivers can be replaced and changed at runtime without affecting ongoing reads and writes. Each user can change which drivers are used to service reads and writes to their data.

• **Fault Tolerance.** Using the user’s source-routes for their data, the SDS system can recover from driver fail-stop conditions by routing reads and writes to other driver instances that are permitted by the user’s source-routes. In doing so, the user defines how the system handles faults when processing requests to their data.

2.4.1 Volumes

A *volume* is a logical collection of application data that is accessed through a fixed set of service and aggregation driver instances. Each driver instance runs within a gateway (described in the next section), and has a network address that allows users to send it read and write requests.

Volumes allow the SDS system to be multiplexed across users, applications, and organizations. Each record belongs to exactly one volume, and each running driver instance belongs to exactly one volume.

A volume has a designated “owner” user that has the power to unilaterally add and remove records and driver instances on-the-fly. Volumes can nevertheless be shared across users, applications and organizations.

Volumes bind their owner’s data-hosting policy to their records. This is achieved by ensuring that the volume owner has the power both to add and remove service and aggregation driver instances at runtime, as well as both add and remove users who can send them requests. Organizations run instances of driver implementations, and the SDS system executes a view-change protocol (Section 2.6) to ensure that (1) all of the volume’s users know which driver instances to contact, and (2) all of the volume’s driver instances know which users are allowed to read and/or write to them.
This arrangement means that the volume owner has direct control over their trust relationships with other organizations and their users. The application only provides a view of the volume data, and has no say in which organizations and users the volume owner trusts.

The volume owner only allows a service or aggregation driver instance to process reads and writes to volume records if she trusts the organization running the driver to faithfully execute its code. Similarly, the volume owner only allows a user to interact with her volume’s driver instances if she trusts the user. The SDS system design may provide her with additional access control mechanisms to constrain how other users interact with her drivers (and thus the volume data).

For example, a lab’s PI may want to store lab data to Amazon S3 and retain an access log for all requests for a year. She does so by instantiating a service driver for loading and storing chunks to S3, and an aggregation driver that accepts reads and writes, logs them, and forwards them to the S3 service driver. She needs all reads and writes to pass through the aggregation driver, so the log will be maintained.

In this example, the service driver instance includes the PI’s sensitive S3 credentials. To keep them secret (and avoid log bypasses), she runs the service driver instance within the lab network on a host that only she can log into. She creates a volume and binds it to her service and aggregation drivers, and grants her collaborators access to the volume so they can store their data in S3. Her collaborators read and write via the aggregation driver instance in her volume, thereby both backing up their data and preserving an access log. The PI can add or remove collaborators at will, and the SDS system ensures that the driver instances will be informed as to which users are permitted to interact with them.
2.4.2 Gateways

Interacting with data in SDS volumes requires deploying, discovering, and authenticating to service and aggregation driver instances. These drivers, in turn, translate application-level requests into requests for chunks (via the aggregation driver) and load and store chunks to the volume owner’s chosen storage providers (via the service driver). Facilitating this process is the responsibility of the SDS system’s gateways.

A *gateway* is a SDS process that runs an instance of a service and/or aggregation driver (Figure 2.5). Gateways implement common network protocols for both authenticating and processing read and write requests in SDS. A gateway belongs to exactly one volume, and every gateway in the volume has the most-recent view of the volume’s users, their organizations’ hosts, and other gateways in the same volume. In other words, each gateway knows about its volume owner’s current trust relationships.

![Figure 2.5: SDS Gateways. Gateways coordinate with one another across organization boundaries to service read and write requests originating from within their organization. They run a “stage” of the volume-wide aggregation driver, and run zero or more service drivers instances to load and store chunks to service the requests the stage processes.](image-url)
Gateways work together to process reads and writes from the volume’s users. They marshal chunks between services and application endpoints via service drivers, and they determine how application requests and responses are processed via aggregation drivers. In doing so, gateways implement the backbone of the SDS control plane.

SDS systems are expected to support many gateway implementations. In the limit, each user must be able to run their own gateway implementation, so long as it correctly implements the SDS system’s control-plane interface (i.e. the network protocol for communicating with other gateways and the MS). This is because the gateway is an agent of the user, and binds the user to an organization at the protocol level. Application clients interact with the user’s gateway via a well-defined storage API, such as a filesystem mount, a SQL database, or a HTTP RESTful endpoint. The gateway handles requests to these APIs using its locally-running drivers, and by communicating with other gateways belonging to other trusted users and organizations.

The SDS system addresses gateways in terms of \((user, volume, network-address)\) triples. Gateways each maintain an up-to-date view of the set of all other gateway addresses in the volume (Section 2.6), thereby allowing them to forward read and write requests to one another in order to invoke each other’s service driver or aggregation driver instances.

User Policies

A user’s trusted gateways mediate her reads and writes, and are thus well-positioned to enforce her data-hosting policies. A user’s application client issues reads and writes to these gateways, and each gateway decides what to do with the request before forwarding it along to its aggregation driver instance (or another gateway). Since gateways are arbitrary programs, the user’s organization can run whatever gateway
implementation she needs in order to process her data according to her (arbitrarily-specific) data-hosting policy.

Gateways may invoke other gateways’ service or aggregation drivers. For example, a shared volume in a lab may only have a single service driver instance that can replicate data to Amazon S3. The other gateways in the volume are aware of which gateways run which drivers through their view of the volume’s configuration, and can route accordingly. (Section 2.6).

Because the user ultimately trusts the host that runs her gateway, she can proactively program her gateway to make choices on which other gateways and services should be contacted when reading or writing a particular record. Crucially, she can do this independent of any application. For example, a user could create a volume for storing photos. She would run a gateway on her mobile phone that saves all the photos it takes by forwarding them to a cloud-hosted gateway in the same volume that mirrors photos to both her Instagram account and to her Dropbox account. Then, any SDS-powered photo-sharing application she uses on her phone is bound by this policy her gateway enforces with no additional effort by the developer.

Advanced user policies may constrain where different aspects of the application-given storage semantics are allowed to run. For example, the aforementioned photo-sharing volume could be given an aggregation driver that encrypted photos before replicating them, such that only certain users could see them. The logic to do this cannot be run on other users’ gateways, since otherwise they could decrypt any photo.

Advanced user policies have a non-trivial influence on the space of permissible aggregation driver models, whereby the SDS system must be aware of the program structure of the aggregation driver in order to ensure that the user can choose which organizations run which aspects. This is described in detail in Section 2.5.
Supporting Multiple Applications

Beyond policy enforcement, the other reason SDS systems must support many different gateway implementations is that different applications expect different storage interfaces. This is particularly true for legacy applications, which already expect a particular storage interface such as a filesystem, SQL database, or a key/value store.

To process application-level reads and writes, gateways present application clients with one of a set of high-level data access interfaces. The gateway implementation translates requests to this interface into requests to the volume’s aggregation driver. Once the gateway receives the application request, it translates it into an aggregation driver request. Depending on the aggregation driver implementation, the gateway may coordinate with other gateways running in other organizations (but in the same volume) to execute the driver program, thereby preserving the end-to-end storage semantics. Internally, a gateways’ aggregation driver instance loads and stores chunks from storage providers via co-located service drivers.

2.5 End-to-End Storage Semantics

The SDS gateway is a necessary control plane component for handling both trivial and non-trivial storage semantics. With trivial storage semantics, each gateway acts as a storage service proxy—each gateway can be trusted to faithfully execute all of the semantics rules regardless of where it runs. In this simple case, each gateway runs a full copy of the aggregation driver and a full copy of all of the volume’s service drivers. The user simply selects a gateway that she trusts, and issues her reads and writes to it. The gateway would execute each request according to the application’s storage semantics (implemented by the aggregation driver), and load and store the requested chunks via the cloud services (addressed by the service drivers).
Most real-world applications have *non-trivial storage semantics*. In these applications, different aspects of the storage-processing rules must run in different organizations. This is because not all organizations are created equal in the eyes of the volume owner—some organizations can be trusted with certain responsibilities while others cannot. For example, a scientific data volume that uses an aggregation driver to log accesses must run the logging aspect of the driver on a host that the volume owner trusts to carry this task out. The volume owner cannot trust any other user’s hosts to do this, since otherwise the user could instruct their host to simply omit the log data.

To accommodate non-trivial storage semantics, the aggregation driver itself must run as a distributed program, where different pieces of the program run in different gateways (i.e. different organizations) and/or are run by different users. The SDS aggregation driver model necessarily reasons about aggregation drivers in terms of stages.

A *stage* is a well-defined continuation in the aggregation driver. An aggregation driver is composed of all of its stages. When the aggregation driver’s stages execute sequentially in the same request context, they implement the end-to-end storage semantics.

Stages can be thought of as programs in a UNIX pipeline. The SDS system defines the interfaces between stages and the invariants that must hold before and after the stage is executed, but gives the developer free reign to decide how each stage is implemented. Each stage runs in a separate gateway, allowing the aggregation driver implementation to span multiple organizations.

By realizing the aggregation driver as a set of composable stages, SDS realizes the following properties:

- **Cross-organization storage semantics.** The aggregation driver code can be split up into distinct stages that can be assigned to different organizations’
computers. This allows the volume owner to keep sensitive storage processing confined to trustworthy hosts, requiring other hosts in the volume’s organizations to route their requests through them.

- **Code Reusability.** Since stages have well-defined interfaces and pre/post conditions on their execution, they can be built in isolation and reused in different contexts. This potentially reduces the amount of work a developer must do to implement the end-to-end storage semantics for a new application, since previously-written stages can be reused. For example, a stage that encrypts writes and decrypts reads that pass through it using a key given by the gateway’s owner could be used to achieve data confidentiality in file storage applications, in photo-sharing applications, and social media applications (assuming that readers have a way to share the key). As another example, a stage that queries a payment processor to allow or deny reads to a record based on the reader’s financial standing with the user that wrote the record could be used to implement content subscription services.

- **Familiar programming.** Since the SDS system already handles passing flow control from one stage to another automatically as part of processing a read or a write, the developer is not required to reason about the set of organizations running the application or the trust relationships between them. Instead, the developer simply publishes the set of driver stages. The organizations deploy stages for their users, and users select which stages to use to process their data based on their trust relationships with each other and other organizations. The SDS system composes the stages back together as a network path, subject to the data-hosting policy of the record being read or written.

Regarding the familiar programming property, consider an application that allows users to create videos and sell subscriptions to their content. The aggregation driver
would ensure that only readers who pay the video creator can see the videos. To do this, the aggregation driver would first determine whether or not the reader has paid to access the video creator’s content, and if so, would share a key with the reader so the reader’s gateway could decrypt the video(s) the reader paid for. The only things the developer would need to do to achieve this would be to create a payment processor stage and an encryption/decryption stage. The video creator’s organization would run a payment processor stage for the creator’s videos, and each reader’s organization would run an encryption/decryption stage. The SDS system would ensure that reads get routed to the right video creator’s payment processor stage, and would ensure that video streams are processed only by the reader’s gateway. This frees the developer from having to reason about trust relationships between users and organizations; the developer only needs to ensure that logical read path from cloud storage through the payment stage and the encryption/decryption stage to the reader’s client works correctly.

The SDS system handles application-level reads and writes by setting up and executing data flows. A data flow is the pipeline-like assemblage of gateways that run aggregation driver stages to fulfill the request. The gateways in a data flow execute all of the stages of the aggregation driver in sequential order in response to a particular read or write request, thereby processing the read or write according to the end-to-end semantics.

SDS defines two types of data flow: an access flow, and a mutation flow. Access flows fulfill read requests and do not alter data. On the data plane, they only load existing manifests and blocks. Mutation flows fulfill write requests, and alter the state of data in the system by producing new manifests and blocks. The distinction between these two types of flows is necessary in order to help the SDS system reason about when it is safe to execute them (Section 2.6).
The SDS system handles requests by evaluating the aggregation driver’s stages in the context of an application-given \((user, operation, record, chunks)\) context. The \(user\) is a SDS system-wide unique identifier of the user who issued the request, \(operation\) is either \texttt{access} (for access flow) or \texttt{mutate} (for mutation flow), \(record\) is the name of the record being read or written (i.e. on the MS), and \(chunks\) is the set of zero or more chunks to be processed (one of which must be a manifest if the set is non-empty).

2.5.1 Access Flows

The SDS system translates an application’s read request into one or more access flows. Access flows do not take \(chunks\) as input. Instead, they return blocks corresponding to the application read. The \(user\) and \(record\) fields are used to look up which blocks to query, and to carry out any data policy enforcement in the driver code.

![Access flow overview](image)

Figure 2.6: Access flow overview. The gateway running the Discover stage identifies the manifest ID(s) for the data requested by the application, and the Acquire stage goes and fetches them with its service driver(s) when given the manifest ID. The pseudocode describes the behavior of the stages.
Reading data in an SDS system occurs in three steps: resolve the record’s name to its “current” manifest ID, resolve the manifest ID to the manifest, and then service the read by using the manifest to generate block IDs and resolve them to block data.

In SDS, an access flow can be realized in two logical stages (Figure 2.6). They are:

- **Discover.** This stage gives the driver a chance to find the manifest identifier for the record. It executes after the application issues the read request, but before the processing gateway contacts any other gateways.

- **Acquire.** This stage takes the manifest identifier from the Discover stage and outputs the requested blocks. The logic in this stage must fetch and decode the requested blocks and serve them to the reader.

The Acquire stage combines the act of fetching the manifest and fetching the blocks, because both the manifest structure and the algorithm for using it to find block IDs are both well-defined and universal across applications. The right way to load the manifest and block chunks, however, is application-specific and subject to the application’s storage semantics.

The two stages in an access flow accommodate a wide variety of consistency models and cooperative caching models. An aggregation driver that implements strong consistency could use the Discover stage as a chance to coordinate with other gateways, for example. As another example, an aggregation driver that cached manifest records across gateways could use the Discover stage to find them, thereby avoiding a potentially-expensive query to the MS.

The access flow stage implementations are idempotent. In correct implementations, no chunks will be created, and no chunks will be deleted during their execution.
2.5.2 Mutate Flows

An application’s write request will be translated into one or more mutate flows. Mutate flows take one or more chunks as input. The flow will return either True or False to indicate whether or not the request was carried out successfully.

Figure 2.7: Mutate flow overview. The Build stage generates the new manifest and blocks, which are sent to the Push stage to be replicated (as chunks) to the cloud services. Once the chunks are durable, the new manifest ID is sent to the Publish stage where it will be announced to the rest of the system. The pseudocode describes the behavior of the stages.

There are three steps to writing data in a SDS system. The writer must generate the new manifest, replicate the new manifest and blocks, and update each gateway’s view of the record name index so that subsequent Discover stages will find the new manifest ID. These are realized as three stages in a mutate flow (Figure 2.7):

- **Build.** This stage acquires the necessary data from the application to begin the write. At the end of this stage, the driver constructs a new manifest and set of blocks that encode the changes to the data.

- **Push.** In this stage, the driver replicates the new blocks and manifest.
• **Publish.** This stage takes the new manifest identifier and makes it discoverable to all subsequent access flows. A subsequent Discover on the given *record* will succeed after a successful Publish to the same *record*.

Like with access flows, the Build and Push stages in a mutate flow give writers a chance to execute a wide variety of consistency protocols (some of which require two communication rounds). Also, like Discover and Acquire, the semantics of the SDS cloud storage driver model ensure that Build and Push stages are idempotent by default. Service and aggregation drivers must be designed to expect that Build and Push may be called multiple times in a mutate flow in order to tolerate faults (Section 2.5.5).

The Publish stage is distinct from the first two stages in that it is not concerned with replicating data. While the Build and Push stages are concerned with replicating chunks, the Publish stage instead determines which chunks represent the authoritative state of the record. The Publish stage is used for enforcing users’ data-hosting policies. As long as users can choose which gateways are allowed to Publish their writes, users are able to control how correct applications view their data regardless of which application reads and writes to it, and regardless of how the data is hosted and replicated.

2.5.3 Flow Routing

When considering the execution of the aggregation driver, the common requirement in evaluating driver code on the given (*user, operation, record, chunks*) input is that the output of one stage is given to the next stage as input. For access flows, this means the output of the Acquire stage is the input to the Discover stage. For mutate flows, the output of the Build stage is the input to the Push stage, and the output of the Push stage is the input to the Publish stage. The *user, operation, and record* inputs are a read-only part of the aggregation driver’s evaluation context—they are
bound variables in all stages in a flow, and always have the same values across the flow’s execution.

Figure 2.8: Iterative routing for access flows. The Discover gateway routes the application’s request to the Acquire gateway once the Discover stage succeeds, and forwards the chunks’ data back to the application after parsing and validating it.

Figure 2.9: Iterative routing for mutate flows. The Build gateway routes the application’s request to the Push gateway to make its chunks durable, and then routes the request to the Publish gateway to announce the new manifest to the system.
There are two approaches to evaluating the aggregation driver across a set of gateways: the iterative approach, and the recursive approach. In the iterative approach, one gateway invokes stages in other gateways as remote procedure calls, and maintains all of the intermediate state for flow execution in local memory. For access flows, the gateway that runs the Discover stage retains the state (Figure 2.8), and for mutate flows, the gateway that runs the Build stage retains the state (Figure 2.9). In doing so, these gateways decide which other gateways are involved in processing the flow.

In the recursive approach, a gateway passes control of the flow’s execution to the gateway running the next stage. It passes along all intermediate state as a continuation so that the next gateway can evaluate the stage on the given request. Each gateway in the flow makes its own “next-hop” decision on which gateway to forward the request.

Both approaches can be used to realize user-determined source routing of data flows. In the iterative approach, the user’s gateway chooses which other gateway(s) execute the next stage in the aggregation driver. In the recursive approach, the set of gateways in organizations the user trusts decide which other trusted gateways execute the stages. In both cases, only the organizations the user trusts process the read and write.

When considering ease of implementation and security, the iterative approach to flow routing is the preferable approach. This is because the intermediate state between stages is derived from the data, and thus subject to the user’s data hosting policies. That is, the user expects that any intermediate representation or metadata for her records that gets generated during a read and write will be handled with the same care as her records themselves. In the iterative approach, this intermediate state resides only on the gateway that originates the read or write request (i.e. a gateway running within the user’s own organization). In the recursive approach,
this intermediate state resides on many gateways, and while even though they are all trusted, this approach exposes the user to a higher risk of policy violations since there are more points of failure.

Both Syndicate and Gaia implement iterative routing strategies.

2.5.4 Flow Coordination

On the data plane, any gateway can potentially host and serve chunks depending on which service drivers it runs. Since SDS systems span multiple organizations, a key responsibility of a SDS system is to help organizations preserve their users’ ownership over their data. Specifically, the user that creates a record must be able to decide which replica of each record is authoritative.

To fulfill this requirement, the Publish stage must be privileged. The volume owner decides which gateways are allowed to Publish data (i.e. create, update, or delete them), and the user that creates a record decides which subset of these gateways can Publish it. In addition, the volume owner may control on a per-record basis which gateways may run Publish stages on existing data. This is because a Publish execution determines both whether or not a Build and Push succeed, and whether or not Discover and Acquire stages observe the effects of their execution. By deciding which gateways can Publish their records, user decided which replicas of the record is authoritative in the event that readers observe more than one conflicting replica.

The set of gateways that can Publish a record are called the coordinator gateways for that record. The set of coordinators for a record can change over time, such as to change policies or survive gateway failures. The SDS system’s MS and gateways maintain a consistent view of the coordinator gateways in the same volume (discussed in Section 2.6) in order to help other gateways route and authenticate Published data accordingly.
2.5.5 Flow Error-Handling

When executing a flow, stages run synchronously and sequentially. If a stage fails, then all subsequent stages do not execute and the stage that had sent the input to the failed stage is notified of the failure. This gives the aggregation driver the ability to handle these errors in application-specific ways, such as by automatically retrying the operation, back-propagating the error to the application, undoing any actions of already-executed stages, and so on.

If the coordinators for a record fail, then no writes will complete since no gateway can run a Publish stage. To tolerate these failures, the SDS system allows other gateways to become the coordinator automatically. The volume owner supplies the SDS system with a whitelist of gateways that may be the coordinator for a particular record. By executing a coordinator view change (Section 2.6), the SDS system (1) picks a new coordinator from this whitelist to replace a failed coordinator, and (2) allows the newly-selected coordinator to select a different coordinator at the request of its aggregation driver. This allows the system to tolerate sudden coordinator failures. The SDS system’s design may provide system-specific mechanisms for determining how new coordinators are chosen.

2.5.6 Flow Implementation

If a driver does not implement a stage, the SDS system must prescribe a no-op behavior. For example, the no-op behavior in Syndicate for the Discover stage is simply to query the MS for the manifest identifier and the set of gateways that can serve it. The no-op behavior for the Acquire stage is simply to query the MS-indicated gateways for the requested chunks in random order.

The designs of all but the Publish stages must be idempotent. They should not have externally-visible side-effects, but may have their own internal side-effects. The reason for this requirement is that these stages can be re-tried or executed multiple
times to recover from faults. This is because fault tolerance is governed in part by
the user’s data-hosting policy—a user may allow a failed flow to be re-tried using a
different set of gateways that is not guaranteed to be disjoint from the set of gateways
that partially processed the failed flow.

The SDS system design space permits any stage to run on any gateway. In ap-
plications that have trivial storage semantics, all stages would run on all gateways,
and each user’s gateway fully implements and executes the storage semantics by run-
ning all stages locally on reads and writes. In non-trivial storage semantics, a user’s
gateway invokes different stages on different gateways through one of the two afore-
mentioned routing strategies. As long as all gateways in the volume have a consistent,
fresh view of the set of users, organizations, and other gateways, they will be able
to handle non-trivial storage semantics correctly (Section 2.6). Since each user can
run her own gateway implementation, users ensure that only trusted organizations
process reads and writes because the gateway implementation selects which other
gateways in the volume process her access and mutate flows.

2.6 View Changes

In a running SDS system, a volume is not static. At any given point in time, the
volume owner may need to adjust a running system to accommodate changes in the
cloud services used, the end-to-end semantics in force, or the trust relationships with
other organizations. In SDS, this translates to taking one or more of the following
actions:

- Add and remove gateways to a volume.
- Add or modify service and aggregation drivers.
- Add or remove SDS users.
• Change which gateways are coordinators for a given record. In addition to the volume owner, users need the power to change the coordinator for records they own.

Modifying any of these aspects of the volume’s configuration requires executing a view change. View changes are infrequent with respect to the number of data flows executed, but they occur regularly as part of the mundane operation of the SDS system.

The challenge is to execute view changes while also ensuring that data flows continue to work correctly while they are being carried out. A key insight that SDS systems exploit is that most view changes have only “localized” consequences: changing a record’s coordinators or changing a gateway’s drivers and volume membership only affect the gateways that interact with it in the first place. In other words, the SDS system can ensure that a data flow executes successfully simply by guaranteeing that all participating gateways (and the MS) agree on the latest view of the system configuration at the time of the flow’s execution. Gateways and the MS can late-bind on the view.

2.6.1 Coordinator Changes

The SDS system needs to ensure that a writer gateway can reach at least one coordinator for a record. To do so, the MS keeps track of a record’s coordinator epochs. Within a coordinator epoch, the set of coordinators for the record is fixed. The epoch changes atomically to reflect the addition or removal of one or more gateways from a record’s coordinator set.

A new coordinator epoch for a record can begin in one of three ways:

• An authorized gateway successfully requests to become the coordinator.
• The record’s owner or volume owner explicitly sets a coordinator.

• The volume owner adds or removes a gateway from the record’s coordinator set.

The first case can happen automatically when a Publish-capable gateway that is also authorized to be a coordinator detects that it cannot contact the current coordinator (Figure 2.10). It reacts to this by requesting that the MS start a new coordinator epoch for the record, with itself listed as a coordinator for other gateways to contact.

The second and third cases can happen when either the record’s owner or the volume owner intervenes in the running system. This can happen as part of routine system maintenance, such as when adding or removing servers or changing policies.

Figure 2.10: Coordinator fault tolerance. If the coordinator dies while a mutate flow is being executed, a separate gateway can request to become the new coordinator on the MS. This advances the record’s coordinator epoch, such that a subsequent request to Publish will be routed to the new coordinator.

The Publish-capable gateway does not need to know about every current coordinator for a record. It just needs to know about at least one current coordinator. This means that the gateway can use an optimistic algorithm for invoking a Publish:
(1) look up the current set of coordinators on the MS, (2) try each coordinator in sequence until one succeeds, and (3) re-try the whole process if none succeed (i.e. none are reachable or none are currently coordinators). Eventually, the writer will reach a current coordinator, even if the coordinators for the record change intermittently. The SDS system design space permits other algorithms—the aggregation driver can choose other coordinators via the Publish stage.

Similarly, there exists an optimistic algorithm by which a gateway can request to become a coordinator. It (1) looks up the current set of coordinators, (2) requests a new epoch by proving its knowledge of the current epoch to the MS and proposing a new epoch with itself listed as a gateway, and (3) retrying if the epoch changed before it could complete step (2). This works because as long as an epoch change is atomic, the new gateway will either become a coordinator or will discover a new coordinator that became available.

The SDS systems in this thesis both use these optimistic algorithms by default, because they minimize the amount of required inter-gateway coordination as long as there is a manageable amount of contention. Starting a new coordinator epoch only requires the new coordinator to communicate with the MS, and not with other gateways directly. The other gateways learn about the new epoch through in-band gossiping amongst each other and the MS. That is, they learn about the new epoch the next time they talk to the MS, or the next time they talk to a gateway that knows about it.

Under high contention, multiple coordinator gateway candidates would continuously request to become the coordinator of a record, and writer gateways trying to get the coordinator(s) to Publish their new record data data would be delayed in doing so until they could reach the current coordinator (or they themselves become the coordinator). However, the contention would only affect writes to that specific record, and would only arise in pathological situations where writers are partitioned from
the current coordinator, causing them to each try to become the new coordinator. Using an in-band signaling approach to notify gateways of coordinator changes helps avoid high contention, since it maximizes the chances that a writer gateway learns the coordinator before it attempts to write. This is because the writer can learn the current coordinator from any gateway that reads or writes the affected record (as well as the MS).

The SDS system does not need to concern itself with serializing coordinator changes for different data. This is because the applications that require multiple coordinators to acknowledge a write (e.g. to enforce cross-record write serialization) can do so on their own by implementing the Publish stage to proceed only if it can reach a quorum of the other required coordinators. Moreover, the SDS design is allowed to constrict the size of the coordinator set for a record to simplify the implementation. For example, in Syndicate and Gaia, at most one gateway may be a record’s coordinator at any given time—the act of changing a record’s coordinator removes the old coordinator and adds the requesting gateway as the new one.

2.6.2 Gateway and Volume View Changes

The volume owner will need to change one or more gateways’ configurations in order to realize changes in cloud services or trust relationships. In addition, the volume owner will need to change the volume’s service and aggregation drivers to do things like fix bugs, improve performance, and deal with changes in service APIs.

The SDS system must keep track of gateway configuration and volume configuration epochs to do so. During a gateway epoch, the gateway’s service driver state, network address, and aggregation driver stages are fixed. During a volume epoch, the aggregation driver code, the set of gateways in the volume, and the system-specific user ID and user capabilities of the user that runs each gateway (user IDs must be
globally unique, but the nature of the ID and capabilities are specific to the SDS system’s design).

It should never be possible for two gateways to execute a flow together if they do not agree on each other’s gateway and volume epochs. Agreement on the volume epochs is required to ensure that all gateways process data with the same version of the aggregation driver code. Agreement on gateway epochs is required to ensure that each gateway in the flow knows the capabilities and user IDs of the other gateways, i.e. in order for the user’s gateway to be aware of the current trust relationships between users and organizations prior to executing the flow.

Figure 2.11: Gateway and Volume view changes. When a gateway owner advances their gateway’s epoch, they inform the MS so it NACKs any of its future requests (by inspecting its in-band epoch number). The gateway interprets the NACK to reload its configuration and retry the request. Similarly, when the volume owner advances the volume epoch on the MS, all gateways’ subsequent requests are NACK’ed until they reload. Once a gateway reloads, it NACKs requests from other gateways that have not reloaded to ensure that all gateways and the MS have the same view of the system configuration when completing a data flow’s execution. In this figure, gateway 4’s configuration gets changed, and gateway 4 is told to reload by gateway 3 when it next tries to contact it. Shortly after, the volume epoch changes, and gateways 4, 3, 2, and then 1 each discover the change in-band and reload their views before retrying their requests. Gateway 1 receives a direct hint from the volume owner.
The SDS system enforces these safety properties by having the gateways and MS send their last-seen volume epoch number in-band on their control-plane messages, and by having gateways send their current configuration epoch number in-band. If a gateway detects that it has a stale view, it will NACK messages from other gateways until it refreshes its volume and gateway views (Figure 2.11). The requesting gateways simply re-try the flow with exponential back-off until the view is refreshed.

A gateway’s user can modify the service drivers and network address of their gateway. This allows the gateway owner to move their gateway to different hosts within their organization, and allows the gateway owner to control how other gateways access back-end services she pays for.

When the gateway’s owner modifies the gateway’s state, she sends a message to both the MS and the gateway to instruct it to upgrade its view. The gateway will inform other gateways that contact it that their views are now stale, through the aforementioned in-band signaling. The user contacts the MS to ensure that the gateway will subsequently instantiate itself from the latest view should it restart after the view change.

The aggregation driver logic and each gateway’s user ID and capabilities can only be set by the volume owner. This allows the volume owner to control both end-to-end storage semantics and trust relationships with other organizations. That is, the volume owner needs to be able to control where sensitive aggregation driver stages execute if she can only trust specific users and organizations to do so.

Changing these configuration fields is done by starting a new volume epoch. To start a new volume epoch, the volume owner broadcasts a view-change message to all gateways and to the MS, so any subsequent data flow execution will require the gateways to first process and load the new aggregation driver code, gateway memberships, and gateway capabilities.
The division of state views into gateway and volume views with different epochs allows gateway owners to handle “localized” network address changes or service provider changes that do not affect the system’s behavior for other organizations. Because the volume owner controls the aggregation driver code, and because the code can query the configuration of each gateway, the volume owner can encode cross-organizational data-hosting policies in the driver stages by having them decide what to do with chunks based on which gateways are running the previous or subsequent stage.

For example, a lab PI may require that the gateways that store chunks to the lab’s NFS server only take chunks from gateways running within the lab’s LAN. Other lab participants can change their gateways’ network addresses, can direct their gateways to store chunks to their personal cloud storage accounts, but they will only be able to execute mutate flows if they remain within the LAN.

2.7 Security

Gateways and the MS communicate across organizational boundaries, and thus over untrusted wide-area networks. At a minimum, a SDS system must be able to keep working in the presence of external adversaries that could forge, corrupt, or replay messages. If it can do this, then volume and gateway owners can securely execute view changes and data flows.

2.7.1 Threat Model

At a minimum, every SDS system has two security goals: ensure that cloud services cannot silently tamper with data, and ensure that networks cannot silently replay or corrupt messages. Users choose which organizations to trust, so SDS system designs do not need to assume that users interact with untrustworthy organizations. The
adversaries do not control gateways or the MS, but instead try to get gateways to accept corrupt or stale chunks and messages.

In SDS systems, the MS and gateways are assumed to exhibit fail-stop behavior. While a gateway is online and is a member of a volume, both the gateway owner and the volume owner may assume that its service driver correctly processes chunks requests and its aggregation driver stage correctly processes data flows. This is because the gateway’s owner already trusts the computers in her organization to behave correctly, and the volume owner already trusts the organizations to run its aggregation driver.

The networks within each organization and between organizations are unreliable and untrustworthy. Messages can be arbitrarily delayed, dropped, duplicated, or corrupted.

As mentioned earlier, the MS is designed to either give each organization unilateral control over mediating requests to its users’ record metadata, or it is structured such that organizations only need to trust it with keeping metadata available. In both cases, while it is online, the MS is assumed to reply to requests for metadata with the latest data and with the latest epoch information. It does not equivocate about its state or epochs.

To ensure that gateways and the MS only accept fresh, authentic messages from one another, a SDS system must implement a public-key infrastructure (PKI) within its control plane. The PKI system ensures that each gateway has an up-to-date view of the public keys of each other gateway it interacts with. To prevent untrustworthy networks from interfering with the control plane, ensuring that each gateway has a fresh public key is a precondition of executing a data flow.

The SDS system itself is not concerned with keeping data confidential, since this can be handled by the aggregation driver itself. Instead, the SDS system exposes
each gateway’s and each user’s public keys to each aggregation driver stage, so the developers can address confidentiality on their own.

2.7.2 Certificate Graphs

It is important to understand that maintaining the PKI cannot be outsourced. This is because it should never be possible for two gateways to communicate unless they first agree on each other’s public keys. Otherwise, an external adversary with a compromised gateway private key would have a window of time in which it can impersonate a gateway whose key has recently been changed. This means that the SDS system needs to ensure that public key changes occur \textit{atomically} with respect to data flows. This requires the SDS system to be aware of public key changes, and must implement a public key exchange protocol internally as part of processing view changes.

![Certificate Graph Diagram]

Figure 2.12: Certificate graph. The volume owner controls user and gateway membership in the volume, and decides each gateway’s capabilities and aggregation driver stages. Other users submit their gateways’ public keys to the volume owner in order to add their gateways to the volume. Once added, users can set their gateways’ network addresses and services drivers without the volume owner’s permission.
The state of the SDS system’s users, gateways, trust relationships, and drivers is encoded in a data structure called a certificate graph (Figure 2.12). If all of the gateways running a data flow have the same view of the certificate graph as the MS, then they will be able to authenticate chunks and messages sent back and forth from one another and read and publish signed manifest identifiers.

The certificate graph encodes the relationships between users and the gateways they own, between volumes and gateways, and between the volume owner and the volume. The volume owner encodes the current volume view by creating a versioned certificate that lists the set of gateways in the volume, the public keys of the users that owns them, and their capabilities within the volume. This list is used to control membership and access privileges in the volume epoch. Each gateway certificate contains a reference to the gateway’s entry in this list, as well as the gateway’s public key, network address, and list of driver executables (identified by their cryptographic hashes). Each user signs their gateways’ certificates in order to prove that they own them.

Gateways examine the certificate graph to establish secure connections to other gateways. By trusting the volume owner’s public key, a gateway can be certain that it will only connect to gateways in the same volume. By trusting a specific user’s public key, a gateway can determine the user’s gateways’ network addresses and service driver implementation. By trusting a gateway’s public key, another gateway handling a read can be certain that the data it receives from is authentic regardless of how intermediate networks and CDNs handle the data in transit.

Decoupling users from gateways in the certificate graph gives aggregation drivers a mechanism for reasoning about organizations. In particular, user certificates have an “account scratch area” into which a user can write hints to the application to prove membership to one or more organizations. This is useful to applications because deciding which stages to run data flows depends on the trust the application puts
into the users running their gateways. By exposing user identity information to the
driver, SDS enables the gateway owner to make domain-specific decisions on how she
routes requests between organizations. This, in turn, enables users to specify and
enforce their data-hosting policies, since it gives them the ability programmatically
convey their expectations regarding how their data ought to be handled. For example,
a user can specify a “use onion routing” hint into their account scratch area, which
compliant gateways would detect and honor by transmitting the user’s reads and
writes using an onion routing scheme (such as through the Tor \[189\] network).

The aforementioned in-band volume and gateway epochs are signed and verified
using the certificate graph. The volume epoch number must be signed by the volume
owner, and a gateway’s epoch number must be signed by the gateway. This way, only
users within a volume (including the volume owner) can trigger view changes—users
can only change their gateways’ configurations, whereas volume owners can change
user and gateway membership and capabilities in the volume.

2.8 Bootstrapping Trust

Once gateways have a fresh, authentic view of the certificate graph, they can partici-
pate in data flows and execute view changes securely. But before they can do so, they
need to bootstrap trust in the volume owner and the set of users that run gateways
in it.

Bootstrapping trust in nodes is a common operational challenge in distributed
systems, and is exacerbated in SDS by the fact that node-to-node trust will span
multiple organizations. The difficulty is that each organization has its own vetting
criteria which it enforces upon its volume owners (i.e. as part of its users’ data-hosting
policies). Other organizations must be aware of the criteria in order to determine
whether or not to trust its users. For example, Alice’s lab may not trust users in
Bob’s lab if Bob’s lab allows anyone on the Internet to submit a new user public key and receive gateways in Bob’s lab’s volumes. For Alice, writing data to Bob’s volumes may result in her data being leaked to an unknown number of people. As such, Alice would not allow Bob or Bob’s users to have gateways in her volumes.

2.8.1 Federated Approaches

How do system-of-systems applications bootstrap trust in one another’s users today? The standard approach that honors each organization’s policies is to organize organizations into a federation. The federation members choose common criteria, and specify organization-specific criteria when appropriate. This is the approach taken by Internet2 [110] with InCommon [109], as well as global systems like PlanetLab [43].

Limitations

The downside of using federations to bootstrap trust is that using federations compels organizations to agree on a specific trust-bootstrapping service to use, such as a shared certificate authority or a shared single-sign-on endpoint. If the service is maintained in-house by the federation members, then the service imposes a standing cost on all organizations to keep it running. If it is outsourced to a third party in a way that is still somehow consistent with all members’ data-hosting policies, then the service becomes a portability pain-point since the provider can change its terms of service. In both cases, having an identity service to bootstrap trust between federation members imposes a high and potentially uneven coordination cost on the federation’s organizations. They have to agree on which service to use, and then continuously coordinate out-of-band to admit new organizations and remove others.

Can the coordination costs of federation be avoided while preserving each organization’s autonomy to enforce its users’ data-hosting policies? This thesis argues that SDS systems need to leverage a novel type of trust- bootstrapping system called
a *self-sovereign identity* (SSI) system. SSI systems allow users to independently and unilaterally discover one another and make their own decisions on how much to trust their respective organizations. This removes the high coordination costs while preserving organizational autonomy.

2.8.2 Self-Sovereign Identity

In a *self-sovereign identity* (SSI) system, there exists a global, totally-ordered independently-auditable write log that records user account creations, key rotations, updates to identifying information, and revocations. SSI systems pair user identifiers with one or more public keys such that *only the owner of the private keys can change the keys or change the associated user identity information* (Figure 2.13).

The distinguishing feature of SSI systems is that each *user* (not organization) is treated as an autonomous entity. Each user runs their own SSI server (or chooses one to trust), and the SSI server independently calculates the same write-log as all other SSI servers. In doing so, it calculates the public keys of all users as well as any associated public information a user replicates in the SSI system.

SSI and Blockchains

SSI systems implement their write logs on top of one or more public proof-of-work (PoW) blockchains [169]. Blockchains are replicated append-only write logs that operate in a *decentralized* fashion. They use a leader-election protocol that does not assume that the set of would-be leaders can be enumerated. Once elected, a leader can append one or more writes to the log.

Candidate leaders execute a protocol called *mining* whereby they race each other to solve an energy-intensive puzzle that, when solved, creates a ticket (a “proof of work”) that can be used to replicate the write in the peer network. Each correct peer accepts the write if the written data is valid and the proof-of-work shows that the
Figure 2.13: Overview of self-sovereign identity systems. A SSI system reads a blockchain to process its SSI-specific transactions. It replays these transactions to construct a table of \((\text{name}, \text{publickey}, \text{account})\) tuples.

The number of cycles spent solving the puzzle is sufficiently large. The puzzle’s minimum difficulty is adjusted dynamically based on how quickly or slowly proofs of work are created over a given time interval. The adjustments made by the peer network are deterministic, and are made such that the blockchain grows at a linear rate over time (no matter how many leaders participate in mining, and no matter how easy or difficult the proof-of-work puzzle becomes).

Since candidate leaders (and by extension, all peers) are non-enumerable, anyone can issue a well-formed write to a blockchain (a transaction), and anyone can append a new block to the blockchain (i.e. a bundle of transactions) as long as the consensus rules are followed. Each peer maintains a full replica of the blockchain, and will only accept well-formed blocks with sufficient proof of work. Peers will ignore blocks generated by leaders that produce invalid blocks or blocks that do not have sufficient proofs of work.

PoW blockchains have a built-in incentive mechanism to encourage leaders to mine and widely replicate non-empty blocks. The act of creating a block creates a certain
amount of “tokens” that must be spent to pay for future transactions. The consensus rules of most PoW blockchains ensure that the write log incorporates a ledger of all token expenditures, which peers use to ensure that tokens cannot be spent more than once. Users include a small amount of tokens with each transaction they send, called a “transaction fee,” that is used to pay the leader for incorporating their transaction into the next block.

In principal, leaders are incentivized to mine non-empty blocks and replicate them widely because they can sell the tokens they accumulate. Correct peers will decide that a leader created a particular block and received its new tokens and transaction fees only if the leader can send them the block before any other leader. Leaders are incentivized to include as many transactions in their blocks as possible, because they get to keep the transaction fees as well as the tokens generated in the act of creating the block.

Determining the incentive compatibility of block-mining and block-replication strategies is still an active area of research [177] [143] [55] [116]. However, if peers can assume that all newly-mined blocks are broadcasted to all peers significantly faster than they are mined, then they can conclude that the blockchain makes forward progress so long as less than 25% of the leaders’ aggregate compute power is malicious [73]. Peers can further conclude that the blockchain write order is stable as long as less than 50% of the leader’s aggregate compute power is malicious [169]. In practice, leaders are encouraged to be honest for reasons outside the scope of the protocol as well—for example, attacking the blockchain lowers the worth of the tokens, which financially incentivizes honest leaders to identify and punish malicious leaders through non-technical means.

SSI systems such as Blockstack [7] [6] [8] are implemented by embedding a sequence of specially-crafted transactions in an existing PoW blockchain. These transactions encode a fork*-consistent [122] database log. The transactions are well-
formed, valid transactions with respect to the blockchain’s protocol, but they embed additional information that SSI nodes reading the blockchain are able to interpret as SSI database operations. This concept is called a virtualchain \[147\].

When the SSI node replays the database log (i.e. by scanning the blockchain), it generates a mapping between user identifiers, public keys, and identity credentials. Any two SSI nodes that view the same blockchain and follow the same rules for identifying and processing the specially-crafted transactions that encode SSI database log entries will independently calculate the same identity database.

This design point is crucial to understanding why SSI systems are more suitable for identity and authentication in SDS than federated identity systems. This thesis argues that federated designs are inadequate because they impose high, uneven communication overheads between users and organizations and may require them to use third-party services. SSI systems have neither of these problems due to four properties they exhibit:

1. **Permissionless writes.** Any peer can append a well-formed transaction to a public PoW blockchain. By extension, any organization can register its users’ public keys.

2. **Consensus-driven Evolution.** Users, organizations, and developers do not need to worry about blockchain or SSI API changes or changes to its consensus rules, transaction formats, and so on (collectively, its log storage semantics). This is because in practice it is exceedingly difficult to convince a large public PoW blockchain’s peers to all agree to upgrade to an incompatible protocol, and because organizations can safely refuse to upgrade without losing access to the SSI system. Global upgrades can only occur through overwhelming consensus on the parts of the greater SSI user community.
3. **Write-log inimitability.** The constant leader-election race in PoW blockchains has the side-effect of making it very expensive to create multiple instances of the same blockchain. This makes it difficult to attack a SSI system, since an attacker needs to accumulate more compute power than all of the honest leaders to do so.

4. **Write-log censorship resistance.** Each SSI node includes a blockchain peer, so all SSI nodes have full replicas of all of the views of the blockchain and all of the users’ public keys and identity state. As long as a SDS gateway can contact one trusted SSI node, it can authenticate its volume certificate graph.

The following sections describe how these properties enable the creation of a SSI system, and how they make the SSI system suitable for helping SDS users exchange public keys without having to agree to trust a specific third party.

Permissionless Writes

A public PoW blockchain is *permissionless*, meaning anyone in the world can submit a well-formed transaction and have it incorporated into the blockchain as long as the sender follows the blockchain’s consensus rules. SSI systems leverage this property to allow any anyone in the world to register a user account simply by sending the right sequence of transactions that, when interpreted by the SSI system, will cause the user account to be created in each SSI server’s database. While individual SSI endpoints may opt to ignore user accounts (e.g. ones that do not conform to their security standards or are known to be owned by malicious agents), the SSI system itself cannot mask the existence of the user account if the blockchain peers accept the transactions that encode it.

This is a boon to SDS users and organizations, since it means that there are no organizationally-imposed barriers to setting up volumes and their certificate graphs.
A volume owner and a set of users can bootstrap trust in one another without needing to set up and operate a cross-organizational system of their own. They simply need to agree to use the same SSI system, which reduces to agreeing on reading the same blockchain and using the same rules for interpreting its transactions as a database log. There is no central point of failure, no trusted third party, and no inter-organization coordination required for admission control. Each organization and each user makes its own decisions on how much to trust other users.

Consensus-driven Evolution

The second crucial property SSI systems offer is resistance to protocol changes. A wide distribution of blockchain peers means that upgrading the consensus rules of the SSI system’s blockchain, even through legitimate channels such as a software upgrade, incurs a very high technical cost and a very high coordination cost. The technical cost is due to fact that an SSI server bootstraps itself by fetching and replaying the write log. In order to ensure that multiple SSI servers independently reach the same state from the same write log, they must each implement the same audit logic. This means that the code itself is “append-only”: the audit code cannot be removed from the codebase without breaking the SSI server’s ability to calculate the current state of user accounts. This encourages developers to avoid making breaking changes—each breaking change can only increase code complexity, and deploying breaking changes risks causing the network of SSI servers to split and disagree on the current state of user accounts.

The high coordination cost of changing the SSI system’s blockchain interpretation rules comes from the fact that this would require each SSI peer to upgrade to the new rules, assuming they even agree with them at all. This is a consequence of the fact that a SSI system follows an open-membership architecture. Unless the SSI operators want the write log to “fork” into two or more mutually-conflicting write
logs, all operators must upgrade to the same version of the software at the same
time. To avoid a fork, SSI operators to first come to overwhelming agreement on
what the new features should be, and coordinate a flag day to carry out the upgrade.
If agreement cannot be reached, the fork*-consistency of the SSI log guarantess that
disagreeing SSI peers will be partitioned into their own fork-sets, and will not be
able to communicate with one another. Each organization can freely choose which
fork-set rules to use in this case, and because fork-sets are easy to programmatically
distinguish, organizations cannot deceive users about which fork-set their SSI nodes
follow.

While it may seem counter-intuitive for the high organizational and technical
barriers to be beneficial to SDS users, the reality is that these barriers make it difficult
for the identity system itself to unilaterally change its behavior. This is exactly the
desired behavior for a constituent service in a systems-of-systems application—there
cannot be sudden, unilateral service changes without overwhelming agreement from
all affected parties.

A similar constraint exists for the SSI system’s underlying blockchain. Because
the blockchain is operated as a widely-deployed peer-to-peer network, it is difficult
to upgrade the entire blockchain without splitting the network. Indeed, even simple
rules changes such as changing the size of a block can take years to bring to fruition
and still result in a network split [194].

This property crucial to SSI systems, but it is not unique to them. Other protocols
like TCP/IP are so widely deployed that changing their behavior significantly is
infeasible, for the same reasons. Nevertheless, it behooves users and organizations to
rely on a trust bootstrapping mechanism that follows consensus-driven evolution like
this because they cannot be compelled to stop using the system or change the way
they use it (unlike cloud services).
Write Inimitability

The security of the SSI system assumes that there can only be one instance of a write log at any given time. This prevents the SSI system from equivocating about the write log, and ensures that correct peers in the SSI system see the same view of the write log. This is required in order for any user or organization to query the public key of any other user or organization in SDS.

By using a public PoW blockchain to host the write log, SSI systems achieve this security property in a way that does not require users to place trust in a specific third party. Instead, they rely on the assumption that after a certain number of blockchain writes, the write order is stable. That is, the order of writes in the blockchain cannot be retroactively reordered after a certain number of blocks are appended.

This assumption holds true in practice for public PoW blockchains that use Nakamoto consensus [140], where the blockchain that is considered to be valid is the one that is both well-formed and has the highest cumulative proof of work. For example, the ordering of Bitcoin transactions is stable with 98% probability after six or more blocks have been appended on top of the blocks that incorporated them [169], assuming 30% of the mining power is working on producing a conflicting fork and the leaders are publishing blocks as soon as they are discovered. Empirically, thanks to network optimizations between leaders [77], orphaned blocks are rarer than this in practice [33].

The inimitability assumption implies that the SSI’s database log is stable. The assumption holds as long as the majority of aggregate computing power used to order the writes is honest, regardless of who executes the computations. Specifically, the majority of the aggregate compute power is not used to generate blocks with the intent of reordering already-processed transactions (i.e. by generating an alternative transaction ordering with more proof-of-work).
Since PoW blockchains themselves were designed as the foundational building block for cryptocurrencies, they have a built-in incentive to keep leaders honest. In a PoW blockchain, generating blocks produces new currency tokens in exchange for an enormous energy expenditure. However, the currency tokens are only valuable if they can be reliably spent. That is, they are only valuable if all blockchain peers see the tokens being spent at most once, and received by the same recipient in all views. If the tokens can be “double-spent”—i.e. the blockchain gets reordered to show the units being spent, and then spent again with a different receiver—then they lose their value simply because users will not value the currency in a system that defrauds them. As a result, the blockchain’s leaders have a compelling reason to ensure that the transaction ordering remains stable.

There is empirical evidence that suggests that these incentives work in practice. For example, Bitcoin has a historically low write-conflict rate in practice. It encounters less than five orphan blocks per day [33], and has only had long-lasting forks in the event of unforeseen bugs [32] [30]. If a contentious network split does happen, it is easily noticed in practice because it is usually preceded by lots of outrage and arguments among the blockchain’s user base and results in the creation of a separately-branded blockchain [29] [69] [205] [72] created by the disgruntled users. However, the original blockchain is not affected, which preserves the integrity of the SSI systems’ databases derived from it.

In the event of a catastrophic blockchain failure where the write log’s inimitability cannot be assumed, SSI systems can migrate to new blockchains. The SSI developers can upgrade the SSI software to switch from writing transactions on the failing blockchain to writing transactions on a stable blockchain. This has been done before with Blockstack [173], which seamlessly migrated from Namecoin [67] to Bitcoin once it was discovered [7] that Namecoin was under the control of a single peer that had sufficient compute power to rewrite Namecoin’s history at any time. This is a case
where there was overwhelming consensus among the users and organizations for a software change. However, the APIs and semantics of Blockstack were preserved across the migration, so no applications broke in the process.

Censorship Resistance

One requirement for public key infrastructure systems is that if a user has a fixed identifier (such as a username or a domain name) for a public key, and is allowed to change the public key without changing the identifier, then other users must be able to read their *current* public key. That is, a PKI system must offer a well-defined consistency model on their keys that ensures that readers receive fresh key data.

SSI systems achieve this by relying on the fact that blockchains are hard to censor. Blockchains grow at a fixed predictable rate, and blocks have a predictable size. Moreover, the consensus rules in proof-of-work blockchains stipulate that the amount of work per block can only increase or decrease by a threshold amount [31]. These properties give them a degree of censorship resistance.

A SSI peer can predict when an adversary with a minority amount of compute power is trying to censor the underlying blockchain. If blocks do not arrive in a timely fashion, then the SSI peer can infer that the upstream networks are blocking them. If a block arrives with inadequate proof of work, such as a block generated by a malicious peer, then SSI peer will know to ignore it. If blocks arrive with sufficient proof of work, but do so very slowly, the SSI peer can infer that it is being eclipsed and being fed blocks from a peer with significantly less compute power than the global set of leaders.

All of these events serve as strong hints to the user that they are under attack. The attack is energy-intensive and takes a long time (days to weeks for Bitcoin [31]), so the user has a good chance of detecting that the peer is being fed the wrong blocks and can take corrective action. This also discourages would-be censors, since the
upfront cost of the attack is very high and has a low chance of succeeding without
the user noticing.

The only way a censor can succeed in tricking the user into accepting a blockchain
with less proof-of-work is to trick the user’s blockchain peer into believing that the
aggregate compute power of the blockchain has truly diminished. This would require
the attacker to eclipse the victim by blocking all other channels available to the user
to discover the true aggregate compute power, including secondary sources like Web-
based blockchain explorers and each of the various networks the victim is likely to
use. Moreover, the attacker would need to sustain the attack for long enough that
the victim’s blockchain peer node determines that the PoW difficulty has gone down
on its own. While at least one large-scale eclipse attack has been executed in the past
against Bitcoin [18], the attack was very disruptive and easily noticed.

Since censoring the blockchain is difficult, censoring SSI operations is also difficult.
An attacker may be able to silently eclipse a small number of users in limited cases,
but an attacker would have a hard time attacking the entire system without getting
noticed. This means that SSI nodes can be designed to return a user’s current public
key if its blockchain peer appears to have the latest blockchain state, and can NACK
reads if the blockchain peer appears to be in the process of being censored. In other
words, SSI systems use the blockchain’s censorship resistance to implement strong
read consistency guarantees by blocking key reads until the SSI peer can deduce that
it has processed all outstanding blocks.

Changing a key in the SSI system is necessarily no faster than propagating a
transaction in a new block—it takes at least as much time to change a key as it takes
to append a block. Moreover, systems like Blockstack process blocks only after they
are sufficiently deep in the blockchain. What this means is that changing a key can
take a long time—minutes to hours. However, once the block containing the key-
rotation operation is deep enough in the blockchain for the SSI node to process it, each SSI node processes it within one block confirmation time.

2.8.3 Using SSI with Volumes

Because anyone can write to the SSI system’s write log, anyone can obtain a username and a public key. Because the SSI system’s write log interface and behaviors naturally resist change, and are not unilaterally controlled by external parties, each user and volume owner has a reasonable expectation that their chosen SSI system will continue to work for the foreseeable future. This yields a straightforward solution to bootstrapping trust between gateways, volumes, and users that minimizes inter-organizational coordination and preserves organization autonomy (Figure 2.14).

Figure 2.14: Bootstrapping trust in certificate graphs with SSI. Each organization runs its own SSI database with the same blockchain. In doing so, they get the current public keys and account information for all users in the system. This lets each organization independently validate the volume and gateway configurations.

Thanks to the SSI system, each user and volume owner always has an up-to-date copy of each other user’s username and current public key. The total ordering of the write log imposed by the underlying blockchain ensures that each SSI node
reads the same sequence of username registrations and re-keyings. If any two users Alice and Bob have processed the same write-log, they can use the SSI system to register and discover each other’s current public keys as long as the blockchain exhibits permissionless writes, write inimitability, and censorship resistance.

To construct the certificate graph, a volume owner only needs to know the set of usernames. The volume owner uses the SSI system to get the set of current user names and public keys. When a user re-keys, the volume owner regenerates the user’s certificate and the user re-generates her gateways’ certificates. The other gateways in the volume refresh their views of the certificate graph when they interact with the user’s updated gateways, and thus learn the new key. As long as the volume owner has processed the entirety of the write log, the volume owner will reliably detect when the user re-keys.

Because the users and volume owner all know each other’s public keys, it becomes possible for them to establish per-volume trust policies. The volume owner can release a signed statement describing what each user must do in order to be added as a volume owner, and the users themselves can release signed machine-readable statements that prove that they have meet the criteria. For example, a volume owner may require users to prove that they are members of the same organization. The organization administrator can sign a statement for each user that attests to the user’s membership, and the user can sign the statement as well to prove that they have received it. Similarly, the volume owner can prove membership of a particular organization in this manner.

As a result of using SSI for bootstrapping trust, a SDS system no longer requires organizations to communicate with one another. The trust-bootstrapping burden has instead been shifted to individual volume owners, which get to set their own trust policies. This removes the communication overhead that trusted third parties and federations impose, and at the same time, ensures that each user can unilaterally
decide which other users and organizations to trust. Unlike federations, the organizations’ members no longer proactively maintain trust links; they instead allow users to self-organize into trusted groups (volumes) and simply provide them with the means to prove which organization(s) they belong to.

SSI Deployment

Each organization must run a trusted SSI server on behalf of its users. This includes storing a full replica of the blockchain and keeping it up-to-date.

The SSI system used with Gaia and Syndicate (Blockstack) uses the Bitcoin blockchain. This means it must download one megabyte every ten minutes, and must store about 180 gigabytes of data as of April 2018. While this cost may appear high, it is worth considering that most Bitcoin peers today can sustain bandwidths of up to four megabytes per 10 minutes [55]. Also, 180 gigabytes is not expensive—as of 2017, the marginal cost per gigabyte is as low as $0.028 USD for disk storage [99].

2.9 Design Principles, Distilled

To build applications from cloud services, developers must preserve end-to-end storage semantics while respecting organizational autonomy. A SDS system achieves this by providing mechanisms that isolate storage semantics, applications, users, organizations, and cloud services from one another. Tussles in storage semantics, cloud services, and trust relationships are tolerated by a SDS system built from these principles.
2.9.1 Organizations Deploy Gateways

A SDS system implements gateways as the logical barrier to separate the application and cloud services from an user’s data. The gateway’s main responsibility is to apply its user’s policy on data that moves through it.

The user relies on their trusted organizations to deploy and run gateways on their behalf, which in turn load and store the user’s data to their preferred storage providers via a user-given service driver. When the application requests to read and write, the gateway loads and stores chunks to the service using the user’s service driver implementation. This gives the organization the chance to enforce the user’s data-hosting policies to govern the requests regardless of where its data ends up hosted.

2.9.2 Developers Compose Gateways

The application’s storage semantics must apply end-to-end, and also must evaluated in accordance with each organization’s data-hosting policies. A SDS system composes gateways into data flows to address this.

Data flows separate the concern of applying end-to-end storage semantics from choosing the organizations and services that process it. A data flow applies the end-to-end storage semantics by passing the data through a sequence of gateways that implement the aggregation driver’s access or mutate flow stages. At the same time, the SDS system respects each organization’s autonomy by only declaring the flow’s execution successful if all gateways involved approved it and were able to carry out their part of the flow at the moment of the request. Each gateway in the data flow has the right to deny the request if the request violates the gateway’s user’s policy.
2.9.3 Users are External to Applications

In order for applications to read users’ volumes, users must exist outside of applications. This is because the user, not the application, directly encodes its trust relationships with other users (and their gateways) via the certificate graph. The user, not the application, instantiates and runs gateways within their organization. The application uses the SSI system to discover users’ volumes, instead of the user discovering the application to find other users’ data.

2.9.4 Users Own Data

Organizations trust cloud services with data availability, but do not have to trust them with anything else. This is because the data policy logic is offloaded to the aggregation driver.

What this means is that the organization’s users, not cloud services or applications, are the de facto owners of the application data. The fact that gateways cryptographically link all data to the gateway’s owner (i.e. a user) means that the user is the sole origin for application data at the protocol level. Neither the application, the cloud services, nor other users can generate data in place of a given user. In other words, the certificate graph ensures that users are the authoritative origins for all application data at a protocol layer beneath all applications.

2.10 Remarks

SDS inverts the architecture of conventional system-of-systems applications build on cloud services. In conventional applications, the application servers (or the cloud storage servers they employ) are data silos. They are designed to host everything and are treated as the trusted origin for all data.
In contrast, cloud services host downstream replicas of user data in SDS applications, and only serve to enhance its availability and durability. The application has no say in how data is hosted, and is reduced to providing users the tools with which to interact with their data. This is a boon to users that is not realized today in contemporary cloud applications, since it gives them the ability to both share data between applications and apply data-hosting policies without the applications’ help. For example, a social media user can select a gateway that will encrypt her photos end-to-end, so that only the intended recipients can see them. As another example, an undercover whistleblower can select a “dead-man switch” gateway that will replicate their encrypted messages to several different newspapers through Tor [189], and send them all the decryption key if the gateway does not communicate with the whistleblower regularly.

Inverting the architecture of conventional system-of-systems applications is also a boon to developers. With SDS, developers are no longer responsible for managing other users’ data. Developers do not need to concern themselves with hosting and backing up user data, governing access to it, or keeping it safe from hackers. With SSI, developers do not even need to maintain password databases.

Many SDS-powered applications can be realized without needing application servers. Instead, all business logic runs on the user’s client, and the user’s client loads and stores their data to their volumes. Chapter 4 describes several non-trivial applications that have been built on real SDS systems deployed in production settings.
Chapter 3

Exemplar Systems

In order to validate the design principles of software-defined storage, this thesis presents the design and implementation of two separate SDS systems. Both systems currently enjoy use in production environments. The first system, called Gaia, implements a global key/value store with programmable semantics for its get and put operations. It is a minimalist SDS system—it provides just enough functionality to ensure that applications and users can interact with their data under a fixed set of storage semantics running at a layer above the third-party services.

The second system, called Syndicate, implements a full POSIX filesystem interface with programmable semantics for most filesystem operations. It is much more featureful than Gaia, and is designed to port existing scientific computing workloads to commodity third-party services.

Despite being designed for different use-cases, both Syndicate and Gaia allow developers to preserve end-to-end storage semantics while respecting organizational autonomy. Both systems achieve this by providing one or more gateway implementations that run in separate organizations, but coordinate through a shared untrusted metadata service. While the systems have different gateway and MS designs and implementations, they nevertheless adhere to the same design principles.
3.1 Gaia: a Key/Value SDS System

Gaia is a global key/value store designed for users to host their data for decentralized Web applications. In this thesis, “decentralized” applications are applications where all of the business logic runs on the users’ computers. For example, a decentralized todo-list application \[166\] would fetch the user’s application state from the storage providers of their choice, allow the user to interact with the items once loaded, and would store the resulting state back to the storage providers when the user is done. Unlike conventional Web applications, there is no “application server” that runs business logic on the user’s data.

Gaia is designed for Web programming environments, and offers two modes of operation. The first mode, called “single-reader mode,” offers behavior similar to what Web developers today expect from HTML5 localStorage \[198\]. The Web code can load a value given a key and store a \((key, value)\) pair, with the expectation that only this instance of the code will be able to interact with the key. For example, the aforementioned to-do list application would use this mode to ensure that a user can only read and write their own data, and other users cannot interact with it at all.

The second mode, called “multi-reader mode,” offers one-writer many-readers semantics. Only a user may write to their own keys, but any user may discover and read their keys. For example, a blogging application built on Gaia would use Gaia’s multi-reader mode to allow a user to publish blog posts, and allow other users to read them.

The main contribution of Gaia is to give Web developers a secure and reliable way to outsource data-hosting to users. Gaia ensures that each user securely and automatically discovers each other users’ volumes and certificate graphs for each application they use prior to loading the data. In doing so, Gaia offers end-to-end data authenticity and confidentiality while using untrusted commodity cloud infrastructure to host and serve application data.
Despite being a minimalist SDS system with a simple API, it is used today on production workloads for Blockstack [7] applications. Many non-trivial applications rely on it for storage, including a shared document editor [107], a cryptocurrency portfolio manager [196], a microblogging platform [123], and an end-to-end encrypted Web chat application [181].

3.1.1 Motivation

In conventional Web applications, users and would-be developers are severely constrained in what they are able to do with their data. This is because in conventional Web applications, the business logic and the storage logic both run in the application’s servers. As such, all authoritative replicas are hosted outside of the users’ organizations, and any computations that may be performed over them are mediated by the application’s servers. Users and would-be developers need permission to access, modify, and extend their data’s storage.

The motivation for creating Gaia is to allow Web applications to be written in a way that decouples business logic from storage logic. Users and developers ought to be able to control where their data is hosted and how reads and writes on it are carried out. At the same time, making this change should not require Web application developers to significantly re-think the way they build applications—at most, they should only have to change the Javascript calls in their application frontends to direct reads and writes to the users’ chosen storage providers, instead of the application servers. Achieving this would yield three main benefits: (1) users can keep their data in the event that its developer stops maintaining the application, (2) multiple applications can interoperate by reading from each other’s volumes, and (3) developers can avoid the need to host user data, or any “hard state” for their applications.

These benefits are realized by first observing that in many cases, a Web application’s data interaction model is already centered around individual user activity.
Users can read and write their own data, but can only read other users’ data. In applications that present “shared-write” views of data, like a comment section on a blog or a shared Google Document page [95], the business logic attributes each write to a specific user, and then “merges” their writes to present a consistent view. Gaia exploits this property of Web applications by bundling up all of a user’s data into its own volume, and giving the volume owner the ability to grant other users read access to it.

![Diagram of Gaia versus traditional Web applications](image)

Figure 3.1: Gaia versus traditional Web applications. In traditional Web applications (left), application clients’ reads and writes are mediated through a shared application server. In Gaia, reads and writes are processed by a sequence of one or more Gaia nodes before being loaded and stored to commodity storage as chunks. Gaia nodes, in turn, run the users’ gateways.

Even though a Web application has a single logical database that holds all of its users state, this observation about access patterns allows Gaia to reformulate the global database as a collection of single-writer multi-reader user-specific databases (Figure 3.1). It becomes the application client’s job to translate a set of reads across the users’ databases into a consistent view, whereas this had traditionally been done by the application’s global database. In SDS terms, both the Web applications and each users’ computers form separate organizations, and each organization sets a policy.
that allows writes only from within the organization and allows reads from zero or more other organizations.

This reformulation of application storage gives Gaia the ability to separate each users’ piece of the Web application’s global state into its own volume, thereby placing it under the control of the user’s organization. The application only needs to be able to read from a user’s database piece in order to present other users with a view of its data. The database need not reside on servers that the application developer chooses. What this means in SDS terms is that there is one volume per \((\text{application, user}) \) pair, and that only the user may write to the volume and control its access semantics. Application developers are simply considered users of their own application.

A user may optionally make a volume readable to another set of users, or to the world. For example, users of a blogging application would make their volumes world-readable. As another example, the application developer’s volume would store application assets like images, CSS, and code to be loaded at runtime by the running application code (thereby allowing the developer to push updates to their application, much like how they do today on the Web).

The SDS design principles come into play in the following tasks:

- **Multiple Storage Systems.** Gaia allows users to choose the storage systems that will host their data in an application-agnostic way.

- **User Storage Policies.** Gaia allows users to stipulate programmatic policies pertaining to data availability and durability, thereby preserving organizational autonomy.

- **Application-specific Views.** Gaia uses aggregation drivers to construct global, consistent views of a set of users’ application state, thereby preserving end-to-end storage semantics.
3.1.2 Blocks, Manifests, and Volumes

Gaia organizes a user’s data into a set of volumes, where each volume holds one application’s data. The user decides whether or not the volume operates in single-reader or multi-reader mode, and selects the set of service drivers to use to replicate data.

A volume in Gaia is a key/value store. The API the Gaia client exposes to programmers resembles HTML5’s \texttt{localStorage}. It offers three methods: \texttt{get(key)}: \texttt{value}, \texttt{put(key, value)}: \texttt{bool}, and \texttt{delete(key)}: \texttt{bool}. The writers to the volume are the gateways that run on the user’s trusted devices. The readers are either exclusively the user’s devices (in the single-reader mode), or any device that can discover the publicly-visible data (in multi-reader mode).

Internally, the set of keys in a volume are bundled into a per-device manifest. Each value is the associated block, which points to replicas of the raw data. This means that per-device writes are serialized across keys, and that writes to a key are atomic. These behaviors were chosen specifically to emulate the semantics of \texttt{localStorage}.

3.1.3 Gateways

Users run one or more Gaia nodes to access their application state. Gaia nodes, in turn, run gateways on behalf of the application. The Gaia node the application accesses provides a key/value storage abstraction that encompasses all of the key/value pairs written by all of the user’s devices. It forwards reads and writes to gateways running within this and other Gaia nodes.

Gaia nodes are distinct from gateways in that a single Gaia node can run many gateways for many users in many applications. Gaia nodes are meant to be easy to deploy for non-technical users—the non-technical user should only need to understand that as long as they have a running Gaia node, then their policies will be enforced
regardless of which applications they use and regardless of which other users they share data with.

This design constraint means that a single Gaia node must be able to instantiate many gateways for many users and many applications. To achieve this, gateways in Gaia are implemented as closures within the running Gaia code. This makes instantiating a gateway inexpensive—the node simply allocates a new internal gateway object and pairs it with an application-specific, user-specific context.

Gateway instantiation and teardown is driven by application sign-ins. When the user signs into the application, the Gaia node instantiates gateways to run access and mutate flows. When the application’s Web page writes data, it asks the user’s Gaia node to run a mutate flow through its Build, Push, and Publish gateways to make the write durable and available. Each of the user’s devices runs a Gaia node locally or on a trusted host to process writes. The device running the node with the writing gateways must be trusted, since it runs coordinator gateways and has access to their private keys.

The read path depends on whether or not the volume is a single-reader or multi-reader volume. If it is a single-reader volume, then the Web page simply asks the user’s own Gaia node to carry out the access flows. If it is a multi-reader volume, then the Web page instead contacts the Gaia metadata service (discussed below) to find the Gaia node that can serve the data. Once this node is known, the Web page asks the node to carry out the access flow.

Because a user may have multiple devices, there can be multiple writers to a single volume. However, Gaia assumes that application writes are sequentially consistent\footnote{[120]}—there exists a total ordering of writes issued by the application regardless of which devices originate them. This is a reasonable assumption in practice, because (1) a volume may only be written to by the user that owns it, (2) a user typically does not access the same application from two different devices simultaneously, and
any concurrent writes from the application on the same device can be serialized by the Gaia node.

Figure 3.2: Application interface to Gaia. Gaia combines the timestamped key/value writes in each device’s manifest to create a coherent view of the user’s volume.

This assumption side-steps the need for a user’s Gaia nodes to coordinate to resolve write-conflicts in the key/value abstraction. Since each device runs the coordinator gateway for the key/value pairs it has written, the key/value abstraction can be realized simply by merging each device’s key/value pairs into a single key/value space. The merge function simply accepts the value with latest timestamp in order to handle cross-device key/value conflicts (Figure 3.2).

In the rare cases where an application expects a user to read and write from multiple devices simultaneously, the developer has the opportunity to implement write serialization in the volume’s aggregation driver. The absence of built-in write/write conflict resolution is a design choice that makes the common case simple in its implementation and performant in its execution.
3.1.4 Metadata Service

Gaia nodes implement a peer-to-peer metadata service. The Gaia MS is based on prior work on Blockstack [7] [147] [6]. It enables Gaia nodes to both ensure that readers do not see stale data, and to ensure that any Gaia node can discover and read key/value pairs from a given volume for any user.

Gaia uses a blockchain-based SSI system both for bootstrapping trust between users and for implementing the “volume discovery” and “gateway discovery” functions of its MS. When users Alice and Bob register their user names in the SSI, they each include a cryptographic hash within the blockchain transaction. Each hash is the hash of a DNS zone file [136] that contains routing information for discovering the user’s volumes and Gaia nodes.

Gaia nodes work with the SSI system to build a 100% replica of all zone files. They self-organize into an unstructured peer-to-peer network through which they exchange zone files. They exchange bit-vectors with one another to announce the availability of their zone files, based on the sequence of transactions the SSI system has processed that include new zone files hashes. Peers inspect one another’s bit-vectors, and pull zone files from one another in rarest-first order such that they all eventually build a 100% replica.

Peers arrange themselves into a K-regular peer graph. They each choose an unbiased random sampling of the peer graph as their neighbors using a Metropolis-Hastings random graph walk with delayed acceptance [121]. The default implementation chooses $K = 80$, and when queried for neighbors, will respond with a random sample of at most 10 peers that have historically responded to queries at least 50% of the time. This helps each peer quickly discover “healthy” peers in its neighbor set. In addition, each peer remembers and periodically pings up to 65536 discovered peers regardless of their perceived health in order to accommodate churn in both the set of peers as well as the network links between them. For example, a healthy peer
that goes offline for a time due to a bad network link or misconfiguration will not be completely forgotten for some time, giving the operator a chance to correct the issue and quickly rejoin the network.

Since Gaia nodes view the same blockchain, they calculate the same sequence of zone file hashes. This gives them a “zone file whitelist” that grows at a constant rate, no faster than the blockchain. They use the whitelist to identify only legitimate zone files, and rely on the blockchain to ensure that not too many new zone files can be introduced into the system at once. A detailed description of the peer network can be found in [6].

Figure 3.3: Volume lookups in Gaia. When Alice wants to read Bob’s app data, she (1) looks up his ID in his SSI database, (2) finds his zone file in Gaia’s peer network, (3) finds his certificate graphs, (4) finds his public-facing Gaia node and volumes, and (5) routes access flows through it to access his volume data.

The peer network ensures that each Gaia node knows the names, current public keys and current zone file for each user. Each user’s zone file points to a set of signed volume and gateway configuration data structures, including the certificate graphs for each volume. This way, a Gaia node can look up an application-specific volume for a user given the user’s name on the SSI system (Figure 3.3). Importantly, the
networks and storage providers hosting zone files and configuration data are not part of the trusted computing base. As long as the user’s local SSI server is trusted, then they can discover authoritative state about other users’ volumes.

Discovering a user’s data is a matter of first looking up the volume metadata, and then searching the key space in the metadata for the desired metadata record. After Discovery, the reader caches the key’s version number, so subsequent reads do not return stale data. Publishing data is a matter of uploading a new key/value pair with a greater version number.

3.1.5 Aggregation Drivers

Users enforce end-to-end storage semantics for multi-reader volumes by standing up and running publicly-routable Gaia nodes to process reads from other users (Figure 3.4). By design, these public read nodes are not trusted, and the gateways they run do not have any write or coordination capabilities. The data they serve is meant for external consumption.

When a user Alice creates a volume, she simply lists the Gaia node in her signed Gaia configuration as the “read” endpoint. When others Bob and Charlie go to read from her volume, their Gaia nodes issue the request to her “read” Gaia node indicated by her configuration data. Bob and Charlie discover the “read” node by querying the MS.

3.1.6 Flow Routing

Only Alice can change her volume and node configuration. She does so simply by regenerating the configuration and signing it with the key listed under her account in the SSI system. If she wants to change the URLs to her signed configuration, she uploads her configurations to the new locations, generates a new zone file with URLs that point to them, and announces the new zone file’s hash in the SSI system’s
blockchain. Once the SSI system processes the transaction, she broadcasts the new zone file to Gaia’s peer network so all other Gaia nodes can discover her volumes.

When Bob wants to read Alice’s data, his node first inspects her volume record to determine the “read” endpoint. When Bob’s node runs the Discover and Acquire stages, the “read” endpoint is given to the aggregation driver as part of its execution context so it can pull data from it.

When Alice wants to write to data to a volume, her Gaia node ensures that the appropriate gateways are instantiated with the Build, Push, and Publish stages from her configuration. Once they are available, the node processes her write request. In practice, her gateways are locally available for the duration of an application session—her node instantiates them as part of an application “sign-in” process, and shuts them down when the session ends.

Figure 3.4: Gaia read/write configurations. Discover and Acquire happen in the same node in single-reader configurations, but can happen either on untrusted nodes or on both trusted and untrusted nodes in multi-reader settings. Mutate flow stages always run within the trusted computing base, however.
3.1.7 Administration

To minimize coordination between developers and users, Gaia automates as much of the system administration as possible. In its day-to-day operation, the only administrative contact a user has with their volumes is in connecting storage providers, which is handled via a provider-specific Web UI. In addition, Gaia minimizes the instances where the user directly interacts with cryptographic keys by ensuring that they only need to do so when they acquire or lose a personal computing device.

Application developers do not interface directly with storage providers, but instead with the user’s designated Gaia node. Instead, developers specify the storage requirements the application needs, and the Gaia node pairs the requirements with storage drivers when creating its volume.

The application code discovers a user’s Gaia node as part of the SSI sign-in process. The SSI service identifies to the application the network address of the user’s Gaia node. The application then learns the set of Gaia storage providers, and the set of capabilities they offer (which can be matched to storage requirements).

The resulting storage administration workflow for users and developers works as follows:

1. When the user creates an account in the SSI service, she connects one or more storage providers to her account.

2. The user loads the application and clicks its “sign-in” UI element.

3. The application redirects the user to the SSI service’s “sign-in” UI, which prompts the user to authorize the sign-in request. Specifically, the user is presented with the application’s request for either a “single-reader” or “multi-reader” volume.

4. Once approved, the SSI service redirects the user back to the application, passing it a session token which identifies the user’s Gaia node.
5. The application requests a volume. If this is the first such request, the Gaia node creates an application-specific volume. The node then returns a handle to the volume which the application subsequently uses to load, store, and delete keys.

At no point are users asked to interact with volume, user, or gateway keys, and at no point are users asked to perform access controls. At no point are the developers asked to identify or bootstrap a connection to storage providers, and at no point are developers required to perform any access controls beyond deciding whether or not their app-specific volume will be world-readable or private (enforced internally through encryption). This removes the need for developers and users to coordinate with one another—Gaia ensures that applications' storage interactions never interact, and ensures that users can only read one anothers' data if they interact at all.

Gaia users are self-sufficient—there is no designated third party service that is responsible for keeping the system alive, since users interact with their data through device-hosted Gaia nodes. However, users nevertheless need to recover access to their data in the event they lose their computing devices.

To facilitate this, the configuration state for a user’s Gaia node is replicated to all of the user’s storage providers. This state includes all app-specific public keys, as well as all encrypted authentication tokens for their storage providers.

The configuration bundle is signed and encrypted with keys linked to the user’s identity on the SSI system’s blockchain, so no matter which device(s) the user uses to modify their configuration state, they will be able to always be able to at least authenticate the externally-hosted data (even if they lose all of their devices). If the user changes their keys (i.e. in order to recover from device loss), the configuration state is automatically re-signed and re-encrypted by the Gaia node.

The only time a user directly interacts with a cryptographic key is when they change the device(s) they use to interact with their data. The implementation fa-
cilitates this by encoding an encrypted “master” ECDSA private key as a 12-word mnemonic phrase, and derive keys for signing name updates and for signing app-specific volume data using a deterministic key-derivation algorithm [154]. The encrypted private key is backed up to their email provider by default.

3.1.8 User Scalability

The limiting factor to the system’s scalability is how many users it can support. This is limited not by Gaia itself, but by the rate that transactions can be written to the underlying blockchain.

Registering a username requires two transactions—a commitment to the salted hash of the username, and a matching revelation of the username and the salt. Two transactions are necessary in order to prevent front-running, whereby an adversary can watch the set of unconfirmed blockchain transactions (i.e. those that are present in each peer’s local memory but not yet assigned to a block) and race the victim to send out a transaction that acquires a username. If Bitcoin’s blockchain were utilized solely for registering Gaia users, it could only process 72,000 requests per day (assuming 1kb transactions and 144 blocks added per day).

Once a name is registered, the owner can update their zone file with a single transaction. The blockchain provides a linearizable history of all zone file updates, and thus all zone files.

To scale up the number of users, Gaia allows an alternative way for registering and updating usernames by packing many such operations into a single Bitcoin transaction. It does so by packing them into a single on-chain name’s zone file, and then propagating the zone file through Gaia’s metadata service. The on-chain name owner issues the transaction to set the new zone file. The history of off-chain user name operations is still linearized, since the history of zone files is linearized by the blockchain. Each off-chain user name has its own public key and its own zone file.
Names registered this way must not collide with on-chain names. To do so, off-chain names use the on-chain name that propagated their initial “creation” operation as a suffix. For example, Alice would create the name \texttt{alice.personal.id} by asking the owner of \texttt{personal.id} to propagate a “creation” operation for it.

Off-chain names retain the same safety properties as on-chain names. Off-chain names are owned by separate private keys. Only the owner of an off-chain name’s private key can generate a valid “update” or “re-key” operation. Gaia nodes only accept newly-discovered off-chain operations if they are signed by the right principal. The “create” operation sets the initial public key.

However, off-chain names do not have the same liveness properties as on-chain names. An off-chain name owner needs the cooperation of an on-chain name owner to propagate a new operation. Specifically, a “create” and “re-key” operation \textit{must} be propagated by the owner of the corresponding on-chain name (i.e. only \texttt{personal.id}’s owner can propagate these transactions for \texttt{alice.personal.id}). In addition, a “create” or “re-key” operation will only be accepted if the on-chain name owner has propagated \textit{every} zone file.

The reason for these constraints is that they ensure that each client receives the \textit{current} public key for each off-chain name, regardless of the order in which zone files are replicated. This requires making sure that the history of non-idempotent off-chain name operations (creation, re-keying) is linearized. By requiring all zone files for the on-chain name to be present before processing a subsequent zone file for the on-chain name, Gaia ensures that no conflicting off-chain name creation or re-keying operations exist in each off-chain name’s history.

Unlike “create” and “re-key”, the “update” operation can be propagated by any on-chain name owner. This is because changing an off-chain name’s zone file is idempotent and commutative. The order in which the off-chain name “update” operations
are propagated to Gaia’s peer network does not affect a correct Gaia node’s ability to resolve the off-chain name to its zone file.

Even though creating off-chain names only improves the system’s throughput by a constant factor, it is sufficient in practice. The Gaia implementation allows an on-chain name’s zone file to be 40Kb, and can fit between 100 and 120 off-chain name operations without compression. At a rate of eight transactions per block (about 3.4% of Bitcoin’s throughput), the system can accommodate over 115,000 new user registrations per day (about the rate at which Twitter acquires new users [191]).

3.1.9 Global Relational Databases

Even though users own and control their volumes, application developers need global insights into how people use their applications in order to catch bugs and make improvements. For example, developers often need to answer queries like:

- Which users are using a given application? Which version?
- Which users are the “power users” who create a lot of content?
- Which users only try the app out a few times and then abandon it?
- Which users use a competing application?

Users need similar functionality to implement cross-volume queries and search functionality. In the Web today, this need is fulfilled by a search engine. Similarly, users should not be expected to discover which other users have useful public data in Gaia without the aid of a search tool.

Gaia addresses both needs by providing the means to implement a global, read-only, software-defined SQL (called a “Gaia database”) over the entire set of public data in the system. Application developers and search engine providers instantiate their own databases for specific applications, specific users, and/or specific types
of public data. The database services queries by fetching public data from users’ multi-reader Gaia volumes, so each query still invokes the data owner’s aggregation driver (thereby preserving each organization’s ability to control data exposure to such systems).

A Gaia database is straightforward to implement because the set of usernames, and thus the set of volume certificate graphs, is *globally consistent* and *enumerable* thanks to the SSI system. The developer instantiates a Gaia database by first enumerating all user names (i.e. by instantiating a Gaia node and an SSI node). They build up the list of all user names, and for each user name, they fetch the user’s list of volumes and then search the user’s public data. This information is then fed into a commodity database of the developer’s choice. This indexing process is very similar to the indexing process of a Web crawler, but is simpler to implement because it already has the complete list of all data to index.

The Gaia database design pattern is a frequently seen in Gaia-powered applications, since they allow developers to solve common problems like building search engines or aggregating content in application-specific ways. For example, a photo-sharing application would use an application-specific Gaia database instantiated in this manner that aggregated a user’s friends’ photos on their behalf. The Gaia database would coordinate with the photo-sharing app clients to implement a write-through view of the users’ photo albums. Whenever the user posts a new photo or likes someone else’s photo, she would both save this new state to her Gaia node and send a hint to the Gaia database that new content had been written (so other users could be informed in real time).

It is important to remember that even though a Gaia database gives developers a similar set of insights into user data that they enjoy today in conventional Web applications, the key improvement offered by Gaia is that the Gaia database preserves each organization’s autonomy. The Gaia database is simply a downstream replica of
each organization’s state, and is used in SDS applications as a read optimization (i.e. so clients do not need to fetch data from as many sources). Each organization can still unilaterally deny queries or service them in domain-specific ways using their volumes’ aggregation drivers.

This relationship is similar to how search engines on the Web today host downstream replicas of Web content, and rely on the robots.txt convention [87] to control access to site content. But unlike the robots.txt convention, Gaia gives users the unilateral ability to filter what a Gaia database can query by means of strong encryption.

A demonstration of the Gaia database design pattern is available online to search the set of Blockstack user names [86]. It allows users to discover other users’ linked social media profiles. In addition, this design pattern is common to Gaia-powered applications described in the next chapter.

3.2 Syndicate: a SDS File System

Syndicate is a scalable software-defined distributed file system meant for scientific workloads. Unlike Gaia, Syndicate is designed to provide shared volumes that efficiently leverage CDNs for read-heavy workloads and support I/O from a scalable number of concurrent users. It is meant to be used for sharing data across compute clusters, where the data sources and sinks reside in different organizations.

3.2.1 Motivation

Science research is increasingly data-driven and increasingly distributed. Researchers often share large datasets with other labs across the world and with the public. As the cost of storage space becomes cheaper, scientists can afford to generate and retain larger and larger amounts of data for the indefinite future.
These trends create an interesting set of operational challenges:

- How do scientists onboard new users and labs that use different technology stacks than their own?
- How do scientists keep legacy data-processing workflows running in the face of changing storage and compute systems?
- How do scientists take advantage of commodity storage and compute technologies without having to write a lot of bespoke code to do so?
- How do scientists enforce data access and retention policies when the underlying storage substrate can be changed out from under them?

The standard practice today is messy. Each time a lab wants to change its storage system, it must re-work its workflows to be compatible. This entails more than patching the code to read and write data. It also means changing their operational practices for staging data for computation and changing the way they share data, both internally and with other labs.

The recent “containerized approach” to using containers, VMs, and SDNs to preserve the runtime environment for scientific workflows is a step in the right direction for preserving end-to-end storage semantics. However, it still forces scientists to copy their data into the new runtime and copying results back out, and it additionally forces scientists to maintain the (virtualized) infrastructure. This puts them in the uncomfortable position of having to become experts in state-of-the-art devops techniques and in data management software.

These challenges stem from the fact that scientists increasingly need to share data across organizations. Organizations include individual scientists’ computers, the computers in the same research group, the computers across a collaborative set of research groups who work across multiple labs (including multiple universities,
corporations, and countries), and the general public. Whenever a scientist in one organization needs data in another organization today, they need to manually copy it out into their organization’s storage. At the same time, whenever a scientist needs to report the results of their workflow to another organization, she has to manually replicate it to a place where other organizations can read it.

What is needed instead is a storage system that preserves end-to-end storage semantics across organizations while interoperating with legacy storage. Scientists should not have to manually access and copy data to move it between organizations. Instead, the workflow software ought to be able to do that automatically on an as-needed basis, while preserving the workflow’s expected end-to-end storage semantics.

3.2.2 Gateway Types

Syndicate accommodates cross-organizational data acquisition and data replication by supplying specially-crafted gateways designed to make it easy to share and store data. An organization that wishes to share data with another organization would encode its rules for allowing access into an acquisition gateway that takes care of indexing and exposing the data as manifests and blocks. An organization that wishes to store the results of scientific computations would run a replica gateway that enforces rules that govern whether or not (and how) to store manifests and blocks within the organization’s storage systems. Linking the two together are user gateways that expose the Syndicate-formatted data to scientific workflows in a workflow-defined manner, such as an externally-mounted filesystem within a container (Figure 3.5).

Acquisition gateways (AGs) are gateways that connect to an externally-hosted dataset and “import” its records into a Syndicate volume in a read-only fashion. It does so by crawling its backend dataset, and publishing metadata for each (logical) record to the Syndicate MS. Other gateways read the dataset by first discovering the
metadata, and then asking the AG for the manifest and chunks (which it generates on-the-fly by fetching data from its backend dataset).

Replica gateways (RGs) are gateways that connect to existing storage systems. They provide a read/write interface at the chunk granularity. The prototype Syndicate implementation comes with service drivers for Amazon S3 [10], Dropbox [64], Google Drive [96], Amazon Glacier [9], iRODS, and local disk (for compatibility with NFS [168], AFS [105], Ceph [199], and other legacy distributed filesystems used today).

User gateways (UGs) are gateways that connect users and their workflows to other gateways. Each UG provides a different interface to workflows, subject to their needs. For example, Syndicate comes with a UG that implements a FUSE [79] filesystem, a UG that implements a RESTful [78] interface, a UG that implements a suite of UNIX-like shell utilities, and a UG that implements a Hadoop filesystem [14] backend.
Other types. Syndicate allows operators to specify new gateway types at run-time, allowing them to incrementally deploy and adapt the system to changing workloads. Each gateway’s type is embedded in its certificate, so each gateway knows at all times the network addresses and types of all other gateways in the volume. This allows the operator to construct complex acquisition and replication strategies that span multiple hosts and multiple organizations. This feature is put to use in Chapter 4.

Each organization runs the appropriate gateways on their computers depending on how they wish to interact with the data. This allows scientific workflows to run across organizational boundaries in an automated fashion, allowing scientists to independently devise new workflows without incurring the cost of coordinating with each lab to set it up.

For example, an astronomy lab would run acquisition gateways to expose telescope images of earth. They could stipulate rules in its aggregation driver code that ensure that newly-generated images are only readable to a privileged set of labs for a time (e.g. only labs in the same country) before releasing them to the public. Similarly, a meteorology lab would run replica gateways to store data from trusted scientists, and store them in a time-series fashion. Unbeknownst to either lab, a scientist could run a user gateway on her laptop and on her VMs that allowed her to read from both the astronomy and meteorology labs’ gateways and write data to both the meteorology lab and to her Dropbox account to be shared with her collaborators. By having multiple gateway types running in these specific roles, no coordination is necessary between the astronomy and meteorology labs.

3.2.3 Data Flows

Syndicate gateways route requests to one another based in part on what their type is. In other words, a gateway’s type identifies the steps it is guaranteed to take while
handling an access or mutate flow. The UG, RG, and AG gateway types identify a set of common routing policies that work well in practice (Figure 3.6).

Figure 3.6: Reads and writes in Syndicate. Writes are initiated by UGs, which rely on RGs to Push chunks. UGs Publish the files that they coordinate. AGs crawl datasets and Publish them as files, and both RGs and AGs serve UGs chunks as part of their Acquire stages.

A UG initiates access flows to AGs and RGs to handle reads, but initiate mutate flows only to RGs to handle writes. A UG’s Discover step will always fetch the record’s manifest metadata from the MS, while optionally caching it for a user-specified length of time. Once it has the manifest metadata, it identifies whether or not the record’s coordinator is an AG or another UG. If it is an AG, it will fetch the chunks directly from it in its Acquire step. If it is an UG, however, it will try to fetch the chunks from each RG. It considers the read to be successful if it Acquires all of the chunks requested (without regard to which gateways served them).

A UG initiates mutate flows only to RGs. It executes a logical write by Pushing its modified chunks to each RG. That is, it starts one mutate flow per RG in the volume. Once each RG successfully processes the request, it Publishes the new manifest metadata to the MS.
The behavior of the Build and Publish stages depend on whether or not the UG is the record coordinator. If the UG is the coordinator, it will Build the manifest, Push the manifest and chunks, and then Publish the metadata. If it is not the coordinator, it will Push only the blocks, and then contact the coordinator UG to Build and Publish the manifest.

AGs and RGs do not initiate any flows of their own. AGs are always the coordinators for the records they Publish. They mark their records as read-only, and will not participate in any mutate flows for them. They will participate in access flows to serve chunks to other UGs in the volume.

RGs load, store, and delete chunks in their underlying storage systems. They do not serve as coordinators. They react to chunks uploaded by the UG by running their Push driver stage on each of them.

Custom Gateways

The ability to add new gateway types allows operators to define additional flow-processing policies. Each gateway in the volume can determine the type of all other gateways, which allows their drivers to make custom routing decisions. This allows the operator to implement their stage logic to extend the routing behavior of existing gateways.

For example, suppose the operator defined a custom gateway type called a write-logger gateway (WLG) for logging all mutate flows. A WLG is not considered to be an RG, UG, or AG, so the other gateway types will ignore WLG instances by default. However, the operator could modify the Push implementation for her volume’s RGs to send a syslog message to each WLG in the volume to record whether or not the RG completed the write flow successfully. In doing so, the operator is able to define custom mutate flow routing and processing logic for the volume by composing multiple gateways together in a pipeline. The UG, RG, and AG implementations do not need
to be modified at all; only the RG driver code needs to be patched (which is facilitated by Syndicate’s view-change facilities).

3.2.4 Data Organization

Unlike Gaia, each record in a Syndicate volume has its own manifest, and is comprised of a variable number of blocks. The block size is fixed for the volume, but each volume can have its own block size.

Volumes in Syndicate can have arbitrarily many data records, and each data record may have arbitrary sizes (i.e. made of arbitrarily many blocks). Manifests, blocks, and certificates are all cacheable for indefinite amounts of time, since Syndicate ensures that they are all immutable (that is, they each receive new IDs in the system when their contents change).

Readers construct URLs to manifests, blocks, and certificates using their IDs to ensure that any intermediate caches serve the right data. Readers learn the IDs directly from the MS, and use in-band hints to determine when their view of these IDs is stale (as described in Chapter 2).

Garbage Collection

A consequence of immutability is that writes to a record will cause overwritten blocks and manifests to become unreferenced. To prevent memory leaks, Syndicate’s gateways execute a distributed garbage-collection protocol to remove them. The process is asynchronous and tolerant of gateway failures.

When the coordinator of a record uploads new metadata to the MS, it includes a vector of block IDs and the old manifest ID. These are appended to a per-record log in the MS. Once the write completes, the coordinator asynchronously queries the MS for the first k entries in this log, constructs delete requests for them, and sends the requests to the volume’s replica gateways. Once all replica gateways successfully
acknowledge deletion, the coordinator instructs the MS to remove the k entries from the log.

3.2.5 Metadata Service

Syndicate’s MS runs on top of a scalable NoSQL database. In practice, deployments run within Google AppEngine [92] and AppScale [19], meaning that Syndicate’s metadata is hosted in either Cassandra [118], Hbase [15], MySQL [138], Megastore [21] or Spanner [53]. In all cases, writes to a single key are atomic, and multi-key atomic writes are allowed provided that the set of keys is small (e.g. five or less in the implementation).

There are two reasons for building the Syndicate MS on top of a third-party NoSQL store. The first reason is that it makes it easy to automate the MS operation. When running on Google AppEngine, for example, deploying an MS from scratch can be done simply by creating a new AppEngine project and pushing the code from the user’s laptop to Google’s servers. No further maintenance or infrastructure administration is required, beyond setting up billing.

The second reason for building on top of a NoSQL store is that it makes it easy to parallelize non-conflicting operations. The MS metadata records are structured such that in the absence of concurrent writes, metadata reads execute in parallel. Moreover, writes to different metadata records execute in parallel. The number of operations that can execute in parallel depends on how many hosts are running the NoSQL store; adding more hosts increases the number of parallel operations supported. By building on top of Google AppEngine specifically, Syndicate users can easily acquire more capacity as their workloads need it.

Syndicate organizes metadata into a filesystem-like directory hierarchy. The Syndicate MS does not resolve paths for gateways. Instead, the user gateway iteratively
walks the metadata record hierarchy by querying each directory on the path and searching for the next metadata record along the path.

Because it is designed for read-heavy workloads, Syndicate’s MS directories are log-structured, and meant to be cached by other gateways. When a user gateway walks a directory for the first time, it fetches the entire log and caches it indefinitely. When it walks it again, it only fetches the new log entries from the MS, and replays them locally to obtain the current state of the directory. Meanwhile, the MS asynchronously prunes a directory’s log as entries are updated or removed, thereby keeping the “steady state” size of the directory log at $O(n)$ for n entries.

As a result, a user gateway can expect an $O(n)$ time and space overhead when fetching a directory for the first time, and $O(k)$ time and space overhead when synchronizing its log after k Publish operations on the directory’s children have been processed (each metadata record has a constant size, takes constant time to parse, and takes a constant amount of time to cache if the user gateway implements directories with a hash table). The worst-case time and space bound for fetching a directory occurs when the MS is receiving many Publish requests to the directory’s children at the time of read. In this case, the bound is $O(n + k)$ for k additional (uncompressed) Publishes.

In practice, k is small relative to n since Syndicate is used with read-heavy workloads. Often times, datasets are write-once read-many, so k can be zero. In addition, a volume’s directory structure is expected to be broad and shallow. With the datasets explored in this thesis, scientific workflows tend to store their data as many files within a single directory, and scientific workflows sharing a volume tend to create their own top-level directories to store their data.
3.2.6 Programming Model

Because Syndicate’s gateways are already designed to fulfill special roles in the system, each gateway has its own programming model. This helps developers avoid re-implementing boilerplate logic, and instead focus on helping the gateway fulfill its designated role.

However, some commonalities exist. Syndicate gateways implement HTTP servers to serve chunks to one another, in order to remain compatible with existing CDNs. Similarly, they implement HTTP clients to pull chunks from the CDNs, and from existing Web-accessible storage services and datasets.

Each gateway’s programming model is inspired by the fast CGI protocol [36], whereby the server spins up one or more long-lived “worker” subprocesses to handle a particular kind of request (e.g. defined by a canonical HTTP path). This gives developers a way to implement long-lived stateful aggregation driver logic. The aggregation drivers run as stateful fast CGI workers, and the service drivers run as stateless libraries that are loaded by the aggregation drivers as needed.

Syndicate’s driver model distinguishes between the logical representation of a record, the application representation of the record, and the on-the-wire representation of the record. The logical representation is simply a flat byte array (i.e. a file), with additional metadata describing the block boundaries and ownership information contained within the manifest.

Application-facing gateways (i.e. UGs in Syndicate) are free to represent data to the application in any way they want. For example, a UG implementation may represent a data record as a SQL database. Such a UG would require applications to interact with the data via SQL commands. The implementation would translate the commands into reads and writes on the record’s bytes at the logical layer. Syndicate implements a UG programming library and SDK to allow developers to provide application-specific interfaces.
Figure 3.7: Syndicate driver model overview. Each gateway controls how it serializes and deserializes its chunks, but otherwise each type of gateway has a unique driver profile.

Syndicate’s aggregation driver model also gives gateways the ability to control a record’s chunks’ on-the-wire representation. This allows the developer to control how the networks that connect gateways view the data. For example, the developer can implement end-to-end encryption by encrypting and decrypting chunks as they are transmitted and received, thereby hiding data from the networks. As another example, the developer can buffer and send batches of chunks between gateways on-the-wire independently of the logical and application representations. An overview of the driver model is seen in Figure 3.7.

On-the-wire Processing

All gateway drivers implement a `serialize()` and `deserialize()` method to translate a logical block or manifest to its on-the-wire representation and back. The `serialize()` method is called whenever the gateway sends data or caches it to disk, and the `deserialize()` method is called whenever the gateway receives data or loads it from its on-disk cache.
Unlike the remainder of a gateway’s methods, these methods are *always* invoked whenever a chunk is loaded or stored by the gateway.

Acquisition Gateway Service Drivers

The AG driver model is designed to handle datasets that can change from external modifications. For example, the iRODS AG driver subscribes to the iRODS event queue, which allows it to get notified when files it indexes change. This allows it to push updates for them to the MS in order to ensure that the state of the backend dataset is accurately reflected by the volume.

Aggregation Driver: An AG only needs to implement the Publish stage of the aggregation driver model, since it will never initiate access or mutate flows. Its Publish stage is implemented as a method that the AG repeatedly calls. It takes nothing as input, but outputs new record metadata and a hint as to whether or not to create, update, or delete the record on the MS. The implementation is allowed to block the AG in the event that the backend dataset has not changed.

Service Driver: When another gateway asks for a block from one of the records, the AG forwards it to its service driver in order to fetch the bytes from the dataset (the `read()` method). The AG will automatically generate manifests on request.

User Gateway Drivers

The UG driver model is designed to pull chunks from RGs and AGs, and push new chunks to RGs. Unlike the other gateways, the UG driver model gives developers a chance to have the UG connect to one or more CDNs to fetch chunks.

Aggregation Driver: The UG is mainly concerned with reading and writing data, and only allows the developer to customize the Discover, Acquire, and Publish stages. The UG itself handles communication with the MS to Discover new data, but it lets the driver code decide whether or not a given access should contact the MS. This stage
is implemented as a method that takes the record metadata as input, and outputs a yes/no response as to whether or not to contact the MS. This way, the driver can implement whatever view of the data the application needs by ensuring that the UG Discovers new data at the right times (but with the constraint of only being able to present views of data as it had existed at some point in the past).

The UG driver model defines the Acquire stage as a method that takes some metadata about the chunk to fetch as input, and returns as output a URL that, when resolved by the UG, will return the particular chunk’s data. The Acquire stage may invoke the service driver (described below) to connect to underlying network caches in-between upstream RGs and AGs, and may carry out any pre-fetching in order to place the data such that the URL it generates will resolve to the data. As an optimization, the UG supports a handful of widely-used protocols by default (HTTP, FTP, local disk), so often times Acquire stage implementation only needs to generate the appropriate URL.

The UG’s Publish stage is invoked whenever the application either creates a record or synchronizes its state. The stage is defined as a method that takes new record metadata as input, and outputs new record metadata for the UG to send to the MS. If the metadata is unchanged, then no information is sent to the MS. This not only allows the developer to control the circumstances under which new data is exposed to the volume, but also gives the developer a chance to carry out any side-effects of doing so (such as logging the creation or modification of each record to a third party for later audits).

Service Driver: The service driver in the UG is designed to be used to fetch data that cannot be handled by one of the UG’s built-in protocol handlers. In the rare case where the UG implementation is unable to carry out a data transfer on its own, the the Acquire stage invokes the service driver to fetch the data, store it to local disk, and feed the UG a `file://`-schemed URL that points to it.
To carry out a mutate flow, the UG serializes blocks and manifests and sends them to all RGs in the volume. The mutate flow succeeds only if all RGs acknowledge successful replication. Developers do not have the ability to control when or how mutate flows are processed beyond controlling their on-the-wire serialization. Instead, developers are given the ability to control how RGs handle chunks once they are received.

Replica Gateway Drivers

RGs allow the developer to customize how data will be stored. RGs do not initiate any access or mutate flows of their own, but instead participate in flows initiated by UGs. As such, the RG driver model complements the UG driver model—it allows developers to customize the Push and Acquire stages.

Aggregation Driver: The RG driver model gives the developer the ability to load, store, or delete chunks. It gives the driver code insights as to whether or not a chunk is a block or a manifest, and which bytes in the record it represents. This gives the developer the ability to reason about how individual chunks affect the view of the whole record.

The Push stage is defined as a method that takes the chunk and chunk metadata as input, and returns success or failure. Its responsibility is to make the chunk persistent, such that any subsequently-executed Acquire stage from any RG in the same volume will successfully fetch the chunk data (barring network errors). The implementation is allowed to contact other RGs and their running driver processes in order to make this guarantee (such as to implement a total ordering on chunk writes).

The Acquire stage complements the Push stage. It is defined as a method that takes the chunk metadata as input and returns the previously-Pushed chunk as output.
Service Driver: The Acquire and Push stages each call into the service driver to load, store, or delete the raw bytes. The service driver translates the chunk metadata into chunk-specific addresses, which it uses to access or remove the data in a service-specific way.

3.2.7 Administration

Syndicate divides administrative responsibilities between volume owners and gateway owners. Each user that owns a gateway in a volume can control the storage and aggregation driver code it runs. This is necessary to ensure that each organization retains the ability to control which code it runs. In the UG case, this allows each scientist to independently tailor their view of the data to their workflow. In the AG case, this allows labs to preserve how their data is presented to the world even when the underlying dataset changes its data format or access semantics. In the RG case, this allows labs to preserve data availability and serialization even when the underlying storage systems are changed out. A volume owner retains the ability to unilaterally control all other fields of the volume’s certificate graph.

Administrating a gateway is similar to managing a `.ssh` directory. As long as a computer has the appropriate private keys, it can run the gateway. This allows the user to run a single logical gateway across as many computers as need be, provided that the set of computers has the same network address (e.g. they could be positioned behind a commodity HTTP load-balancer which has the gateway’s network address).

Volume administration is designed to be carried out from the volume owner’s personal device, and only their personal device. The volume owner is not required to trust a third-party service to execute the certificate graph update. Instead, to propagate changes to the certificate graph, the volume owner uses the Syndicate administrative tool to first replicate the new, signed certificate graph to one or more existing storage services that the gateways know how to access (e.g. the tool can...
replicate the data to an HTTP-addressable cloud storage provider). Once the new certificate graph state is available, the tool contacts the MS and each gateway via their certificate-listed network addresses to instruct them to reload their views of the graph. The tool includes the certificate version vector information in the request, so the remote gateways will be able to determine the freshness of the fetched certificate graph state in addition to its authenticity. If all gateways in the volume acknowledge success, then the volume will have been reloaded by the time the next access or mutate flow executes. Even then, gateways will not participate in a flow unless they have the latest view (and the MS will NACK messages from gateways if they do not report the latest version).

The tool itself offers a simple set of CRUD (Create, Read, Update, and Delete) commands for users, volumes, and gateways, as well as a “list” command that can select objects by field value. When combined with an SSI system, the tool does not require users to interact with public keys at all (since each user, including the user that manages the MS, registers their public keys under an easy-to-remember persistent name in the SSI’s blockchain).

Because Syndicate volumes are readable and writeable by many users, and because a single MS can host many volumes, there additionally exists an “admin” organization that has the power to unilaterally alter the MS state. Only an admin user can create and delete users and change individual users’ quotas. The organization that pays the bills for the MS controls the admin user.

3.3 Discussion

Both Gaia and Syndicate minimize the marginal cost of adding support for existing services by imposing a communication discipline between the services’ endpoints and the application, in the form of chunks and record-specific hints. This keeps the service
drivers isolated from both applications and higher-level aggregation logic, so they can be reused in many contexts. There is little difference between their service driver models and implementations.

Gaia and Syndicate both minimize the marginal cost of adding support for new storage semantics as well. In Gaia’s case, a user can alter their data’s storage semantics simply by (1) standing up a publicly-routable Gaia node that adds the new rules, and (2) updating her nodes’ routing information to send access flows through it. The process is analogous in Syndicate: a volume owner adds or updates an AG or RG to implement the new functionality, and the UGs automatically take advantage of it. Neither the applications nor the storage systems need to be modified to take advantage of the new feature.

These costs are minimized in SDS systems because gateways are designed as composable units of I/O processing. By keeping differences between systems-of-systems confined to individual but interchangeable gateways, SDS enables each volume to adapt to changes without disrupting applications.

Minimizing the cost of cross-organizational coordination requires identifying organizations by the network paths that data take when a volume’s principals read and write it. In Gaia’s case, each organization is represented as a \((user, application)\) pair, since application state is only writable by the owner’s devices and is only readable by the users she allows. Gaia enables users to control how their data is accessed simply by changing the code that executes in response to their queries.

In Syndicate’s case, an organization is any group of scientists’ computers that interact with the same datasets. The cross-organizational coordination difficulties come from scientists trying to share data with one another. On the read path, Syndicate reduces the coordination costs between data publishers and data consumers by interposing an AG. This way, a data-publishing lab can store data however they want as long as there exists an AG that can translate the data into the formats required by
the consumers. Either the publishing group or the consuming group can run the AG. Once the AG driver code is written and published, all consumers can get the same consistent view of the data and the same access semantics without having to get the data producers to commit to a particular publishing strategy.

A similar story describes Syndicate’s write path. Either the data producer or data consumer can stand up an RG to ingest the incoming data, but the presence of the RG allows the producer and consumer to independently choose their data formats and write semantics. As long as the RG can do the proper translations, users that write to the volume do not need to worry about the choices the data recipients make (and vice versa for the producers).

The availability of a separate UG ensures that producers and consumers can keep their applications forward-compatible with future AGs and RGs. The UG provides the application-expected interfaces, formats, and access semantics, so programs and workflows written today can continue working even as Syndicate’s other gateways evolve. This ensures that scientists who get their workflows working with one UG can continue to run them, without having to worry about changes to AG and RG deployments.

3.4 Implementation Details

Syndicate is implemented in 30,000 lines of C++ and 36,000 lines of Python 2. Gaia is implemented in 14,000 lines of Python 2 (this count includes the peer network implementation, but not the SSI system implementation that it uses to identify zone file hashes). The SSI system that Gaia relies on (the Blockstack Naming Service [144]) is implemented in 39,000 lines of Python 2 (13,000 lines implement the blockchain indexer and name database, and 26,000 implement the client that queries the indexer and sends transactions).
Both Gaia and Syndicate have read-write drivers for local disk, Amazon S3, Dropbox, Google Drive, and a Kademlia DHT, as well as read-only drivers for HTTP, FTP, and WebDAV resources. Service drivers are written in Python 2 and are less than 200 lines of code each. Service drivers for Gaia are easily ported to Syndicate and vice versa.

Syndicate is the designated value-add storage system for Internet2 infras-
structure such as OpenCloud, and allows researchers to mount public datasets as Docker containers with a single command. Gaia is the designated storage system for Blockstack, a network for building decentralized applications.
Chapter 4

Applications

This chapter presents three applications built with Syndicate and Gaia. In all cases, the ability to control end-to-end semantics within SDS (instead of the application) enables developers to tackle difficult data management techniques, in ways that both preserve backwards-compatibility with existing applications and preserve forward-compatibility with future storage features. Applications do not need to be modified to leverage new commodity services, and data flows and gateway placement let developers consistently solve data management problems across multiple applications.

4.1 Serverless Groupware

Groupware is a common category of Web application that allow users to collaborate via data-sharing. Groupware applications include shared to-do lists, calendars, documents, contact lists, and so on. Multiple users read and write to the same storage medium in order to coordinate their activities.

The data storage story for groupware today requires each user to be able to see a consistent view of her data, regardless of which of her devices read or write it. Since groupware is often used in sensitive settings such as corporations, users have an expectation of privacy—by default, their state is only visible to their devices. Users
must explicitly share data with other users (or the public), and if they do so, their shared data is visible to all other users on all of their devices.

In conventional groupware software, this is achieved by running a shared server. The users in the same user group have read and write access to the server’s state, and the server resolves conflicts between writes and enforces access controls. In addition, the server takes advantage of its global view of the users’ state to build up derived state like edit histories and backups. From a data policy perspective, all users trust one organization composed of the server and all of the user groups’ devices.

In multi-organization settings, or in settings where users do not directly know one another, implementing shared groupware is more challenging. Each user (or subgroups of users) have different policies regarding how their data is to be shared. For example, a user’s personal calendar should not be shared with work colleagues. What is needed is a groupware system where users can self-organize into user groups with which to share data, in a way where users can easily authenticate one another and establish trust relationships with minimal coordination. This is achieved with a Gaia groupware library.

The groupware library differs from existing groupware software in two key ways. First, it lets each user host their data on whichever cloud services (or servers) they choose, while preserving end-to-end storage semantics for groupware applications. Second, it gives each user the ability to vet each other user in the system by having users prove ownership of existing social media accounts. This latter feature allows users to self-organize into their own per-application organizations with minimal coordination. By posting machine-checkable proofs-of-ownership on social media that are cryptographically linked to accounts in Gaia’s SSI system (henceforth referred to as “social proofs”), a user can easily vet other users when deciding to share groupware data with them. For example, users can leverage social proofs to prove that they work in the same company, or go to the same school, or have the same shared interests.
4.1.1 Motivation

Groupware software falls into two categories: in-house groupware servers that the users of an organization must maintain themselves, or outsources groupware servers that run in third party servers. There are undesirable trade-offs for both types of groupware. In the first case, users incur an ongoing operational cost for keeping the software up-to-date and keeping the server running. The advantage, however, is that they unilaterally control all aspects of the server’s data storage—including how often it gets backed up, who can view the data, what kinds of derived state it makes, what version(s) of the software it runs, and so on.

The second type of groupware is increasingly popular. Companies like Microsoft and Google each have suites of software-as-a-service offerings that take the operational responsibilities out of the user’s hands [84] [135]. The advantage is that the SaaS offerings have potentially higher uptime and are managed by experts, and are available at a predictable cost to users no matter how easy or hard it is to maintain it. The downside, however, is that the SaaS provider has global visibility into the users’ data, regardless of the users’ desired privacy settings. If the SaaS provider is hacked, their groupware data can be exposed to the public. If the SaaS provider goes out of business, the groupware data can be lost forever. If the SaaS provider changes its API, then any custom integrations with the platform break.

There does not exist a middle ground where users can share their data in a way that is convenient for them (like what SaaS offers), but with the policy controls they would get by running an in-house groupware server. The serverless groupware library for Gaia fulfills this need.

4.1.2 Role of SDS

Gaia enables the best of both worlds. Users get all of the operational convenience of SaaS with the privacy and data controls of having their own servers. Importantly,
Gaia allows users to select whichever storage providers they want without affecting the design of the groupware software. In addition, ancillary functionality like search indexing can be implemented in Gaia gateways and reused in other applications by way of the global relational database design pattern described in the previous chapter.

The users rely in Gaia’s SSI system to bootstrap data confidentiality and authenticity. The gateways in Gaia ensure that all data is signed and encrypted when it leaves the device, such that only the user’s designated recipients (if any) can view it. In addition, the groupware software uses Gaia to ensure that applications are isolated from one another at the volume level—an application client can only access application-specific state.

A key operational concern of groupware systems is that they must only allow users to view one another’s data with the owner’s permission. Gaia’s gateways enable this by allow users to implement data-specific checks when sharing data. This is achieved by giving users the ability to create and vet one another’s social proofs. Importantly, the social proofs are verified automatically by the software and presented to the user as part of the permission-granting user experience.

4.1.3 Design

The groupware software is designed to run within the Web browser. The application logic runs as a Web page, and loads and stores the user’s credentials and data via a co-located Gaia node. This allows decouples the user experience and application functionality from the user’s shared storage concerns. For example, one user can store their data on Dropbox and another user can store theirs on Google Drive, but the application can access each user’s data regardless via the Gaia node. A system overview is given in Figure 4.1.
Figure 4.1: Design of serverless groupware with the Gaia SDS system. Alice lists signed certificate graphs in her SSI user account data, as well as the list of her personal devices’ public keys and social proofs. While Alice can write to her storage from her private Gaia nodes, she can make her data available via a public Gaia node as long as her SSI account contains enough social proofs that she is a valid application user. Bob uses this public gateway to discover and read her shared data.

Setup

A user receives a volume for each groupware application she uses. When she signs up for a specific application, the groupware software inserts an application-specific set of keys into the user’s SSI account information, indexed under the application’s name. To provide confidentiality, the user has the option of encrypting this routing information such that only her trusted peers can discover that she uses it. Her other devices and other users’ devices inspect her account in the SSI system to determine which keys to use to authenticate the data she writes, as well as discover how to access her storage (i.e. which Gaia nodes to contact, which storage providers to contact, etc.).
Sign-in

The groupware software employs device-specific keypairs to allow the user to sign in via multiple devices. When the user signs in for the first time, her device creates a volume for her and registers all of her devices as belonging to the same volume owner. Then, when the user signs in from a different device, she can still read and write data to her existing volume and administrate it.

The software ensures that her devices are aware of each other via a “delegation record” in her SSI account. The delegation record lists all of the user’s device IDs and their public keys. This way, when the user creates a new volume, the software automatically grants all devices the volume owner privileges. To the user, it appears that they simply began using the app from a separate device, just as they would have had it been a conventional Web groupware application.

If the user wants to add or remove a device, she must re-generate her delegation record with the current set of device public keys. To do this securely, the software requires a quorum of signatures from a trusted subset of her devices (configurable by the user). A delegation record will only be considered valid if it is accompanied by a sufficient number of signatures from this trusted device set. For example, a user might require a signature from two of three of her devices in order to add a fourth device or remove the third, and in doing so tolerate the loss of one of her three devices. This way, the user can control which devices are allowed to write to her data while tolerating the loss or compromise of a pre-configured set of them.

Both the quorum threshold and the public keys of the trusted devices are listed in the user’s SSI zone file. Since changing the zone file requires a blockchain transaction in the SSI system, there will be a widely-replicated auditable log of each user’s device key rotations. This makes it easy for users (and their collaborators) to check key lifetimes, and makes it risky for attackers to attempt to change keys (since they cannot do so silently).
When the user signs in, the groupware library creates a gateway for the device she is using if one does not exist already. Her device will sign the new certificate graph for the app’s volume and make it available in her SSI account. The software authenticates data from the user by (1) looking up the user’s ID in the SSI system, (2) extracting the trusted device public keys and quorum threshold from the zone file, (3) validating the delegation record, and (4) validating the certificate graph against the delegation record. The software caches monotonically-increasing version numbers for the certificate graphs locally to prevent stale certificate graphs from being reused.

Reading and Writing Data

Since a user gives each application its own volume, a groupware application like a shared calendar spans the set of users’ devices. Gaia ensures that when the application client is loaded, it only has visibility into the application-specific volumes the users have created (i.e. so a malicious or buggy application cannot read another application’s state).

The groupware storage interface references data by its volume key and owner user. For example, to read Bob’s file `today.cal`, Alice’s application client would call `get('today.cal', 'bob.id')`, where `bob.id` is Bob’s username in the underlying SSI system. All the while, Gaia ensures that Alice’s calendar application only discovers the routing information to Bob’s calendar volume.

Read Authorization

When writing shared data, the user must ensure that it is readable by a given set of other users. How does the writer identify these other users, and how can the software identify users as belonging to particular organizations? The groupware library addresses these problems by both allowing the writer to specify other individual
readers, and by allowing the writer to specify which social proofs a reader must have (as well as a way to vet them).

The user is free to choose which proofs are required for their application, depending on the application. For example, a cryptocurrency investment application could require a user to produce a signed KYC (know-your-customer) attestations from the government and the user’s bank that prove that the user is an accredited investor. This proof would be signed and stored in a social media platform that the groupware library can crawl (such as AngelList [12]).

Once a Gaia gateway knows which social media proofs are required to read a key value, it will only accept read requests from users who present the requisite proofs. To facilitate this check, users insert URLs to the proofs within their SSI account linked to their names in the SSI system (which the Gaia gateway looks up on-the-fly).

Searching

Public groupware data is readily indexed by anyone who wishes to stand up a Gaia database instance to crawl the set of application-specific volumes. In addition, private groupware data can still be indexed—either by a trusted, private Gaia database, or by downstream user groups.

To implement private search in a user group, the groupware software ensures that the local device’s Push stage indexes the contents of the file before encrypting and replicating it. The Push stage encrypts the index data with the viewers’ public keys, so the viewers will be able to search for the file by keyword.

The index itself is application-specific, but can do things such as associate search terms to file names and word counts. The index data is structured as a per-user prefix tree, so that a search query only needs to fetch a narrow subset of the index to find files with the search term.
A global untrusted relational database can accelerate delivery of encrypted index files to downstream readers. Trusted readers asynchronously fetch, decrypt, and incrementally reconstruct the writer’s index locally to service search queries. Depending on the sizes of the index and the number of users, the application may take different strategies for fetching the encrypted index—for example, a large user group may employ a private trusted instance of a Gaia relational database that can eagerly build up a search index, whereas a small user group may simply fetch and reconstruct each other users’ indexes as needed.

4.1.4 Implementation

The groupware library implementation is the work of multiple contributors. It is implemented in two parts: Javascript library that facilitates user sign-ins and application-specific volume creation, discovery, reads, and writes, and a UI that allows users to manage their social proofs. It was developed in collaboration with Blockstack Public Benefit Corporation [34].

Several applications have been independently built by Blockstack community members with the groupware library. Examples include:

- **Blockstack To-Dos**: This is a private to-do list application that uses single-reader Gaia volumes to store private user to-do lists.

- **Graphite**: This is a Google Docs work-alike [107]. Users store and share documents and spreadsheets via multi-reader Gaia volumes. The data is encrypted by default, so that only the designated readers can access it. It makes use of a Gaia database to facilitate secure document discovery—the database discovers encrypted pointers to the encrypted document, so that only the intended recipient can access the data. It also offers end-to-end encrypted messaging, where messages are replicated to Gaia volumes for long-term storage.
• **Blockstagram:** This is an Instagram work-alike that allows users to securely share photos via multi-reader Gaia volumes [3]. Photos are encrypted with the recipients’ public keys before being replicated, thereby providing end-to-end confidentiality. It was developed by a team of eight Web application developers with no prior experience with Gaia (or Blockstack, Gaia’s SSI system) in less than 36 hours at a hackathon in Berlin [180].

• **Stealthy.im:** This is an end-to-end encrypted chat application, where users can securely send text and pictures real-time [181]. It uses multi-reader Gaia volumes to store chat data, and uses a Gaia database to discover and invite users to chat. A similar Gaia-powered application is **Hermes** [103].

• **Coins:** This is a private cryptocurrency portfolio application that uses single-reader Gaia volumes to securely and confidentially store the user’s cryptocurrency holdings [196]. It allows the user to track the worth of their holdings without exposing them to anyone outside of the user’s computer.

• **Publik:** This is a microblogging application that uses multi-reader Gaia volumes to share blog posts [123]. A Gaia database for indexing hashtags and user posts is under development.

• **Bellweathr:** This is a business analytics program that uses machine learning in the user’s Web browser to help a business owner identify patterns in customer purchases [25]. Business owners use Gaia to load and store encrypted copies of their customer data and trained models, thereby ensuring that it will remain private. Equivalent applications today require business owners to expose their customer data to third parties, which puts both they and their customers at risk to hackers and security mishaps.

All of these applications use Gaia and its SSI system to load, store, and share user data. The SSI system implementation (the Blockstack Naming Service [144]) removes
the need for per-app password databases and per-app identity services, and Gaia removes the need for per-app data silos. Users can share data from one application to another [145] without the application’s permission or cooperation.

The applications Graphite, Blockstagram, Stealthy.im, and Hermes all rely on a global database instance to discover other application users. They are not coupled to a specific instance; anyone can deploy a new global database if the default instance misbehaves or is not trusted.

4.1.5 Discussion

The usefulness of SDS is apparent in its ability to implement its users’ data-hosting policies independently of the applications. Each user can keep their groupware data on the storage providers of their choice, and in doing so, control their availability, durability, and access control independently of one another and independently of the applications. For example, a user’s Gaia node can programmatically delete old Stealthy.im messages without Stealthy.im’s permission. As another example, a user’s Gaia node can limit access to its owner’s Graphite documents by denying reads from hosts outside its local area network.

At the same time, application developers do not need to care about hosting user data, and do not need to worry about coupling their data to specific storage systems. All of the third-party applications above do not rely on application servers.

As an optimization, their respective developers deploy Gaia global databases to help users discover one another. For example, Stealthy.im implements an invite mechanism using a Gaia global database, and Graphite uses a Gaia global database to help users discover shared files. However, the developer is not required to deploy and maintain a global database. Gaia global databases only host soft-state in the application, and any user can instantiate their own global database and derive the same database state. This means that as long as at least one user is interested in
preserving Stealthy.im’s invite system or Graphite’s document discovery system, they can do so without the developer’s help.

The expressive power given to developers by the aggregation driver model is apparent in the ability to control read and write access based on whether or not the requesting user has made particular social proofs. The social proof check code only needed to be written once, and it now works across all groupware applications and all cloud services. The expressive power is also apparent in the ability to automatically generate private search indexes in response to reads and writes.

The main difficulty with giving users direct control over their groupware data today is that it forced them to run a shared groupware server (or collectively trust someone to do so on their behalf). By instead implementing what used to be server-side functionality as aggregation driver stages, the library removed the need for a shared server while preserving each user’s control over their data.

4.2 End-to-End Encrypted Email

The ability for SDS systems to instantiate application-specific data flows gives users the power to enforce data transmission and storage concerns in existing protocols as well. This is demonstrated by using Syndicate to construct end-to-end encrypted email that addresses long-standing usability concerns that impede the widespread use of PGP [206].

4.2.1 Motivation

Encrypted email is not a new concept. However, it has proven notoriously difficult to deploy [201] [163] due to the need for users to manage private keys. In addition, deploying end-to-end encrypted email over legacy SMTP servers and clients leaves users vulnerable to two security flaws: users can only achieve end-to-end encryption
if they all share keys, and users can accidentally leak other users’ cleartext when including new users in an email thread.

Using Private Keys

Even if users had a good understanding of public key cryptography, they must still contend with key distribution and key revocation. Key distribution is not addressed by the encrypted email systems studied. However, existing methods—key escrows, certificate authorities (e.g. S/MIME [159], DANE [104], x.509 [52]), and webs-of-trust are difficult to use securely, and easy to use incorrectly.

Key escrows and certificate authorities are “centralized” entities that often live outside of a users’ organizations, which makes it difficult for users to reason about their trustworthiness. Only organizations whose data policies admit a trusted third party can make use of these services. Trusting a third party for such a task carries the risk of compromise: if a widely-used certificate authority is compromised, it can lead to widespread data exposure. Users may not discover until after harm has been done to them, such as identity theft.

Webs of trust do a better job than centralized key servers at preserving organizational autonomy because they allow each organization to unilaterally decide which other organizations to trust. However, there is a high coordination cost in maintaining them. This is because trust is not transitive by nature—if Alice trusts Bob and Bob trusts Charlie, it does not follow that Alice trusts Charlie. Users in each organization need to be wary of the degree to which to trust their peers, and wary of the trust judgments their peers will make. Moreover, they must curate their webs of trust to account for changes in the organization. For example, if Bob is fired from his job, then all of Bob’s coworkers must update their webs of trust to stop trusting his email signing key.
Key revocation adds another layer of complexity. Key revocation certificates and signed key expiration dates do not go far enough in making encrypted email usable. If a user loses both their private key and their key revocation certificate, then they have to get other users to re-establish trust in them from scratch. If the user’s private key is compromised, then the attacker can send arbitrary emails before the user can transmit their key revocation certificate. If the user loses their revocation certificate, or if the attacker can stop the certificate from reaching the victims, then the user cannot stop an attacker with their compromised private key.

Contacting other Users

Even if users could reliably distribute and revoke public keys, conventional email clients still allow users to communicate with others in insecure ways. Users can bring harm to themselves by accidentally sending email in the clear when they meant to encrypt it. Also, users can bring harm to others by accidentally divulging their communications by carbon copying their cleartext in an email to a user who does not use encryption.

Neither existing SMTP clients (including Web clients) nor SMTP servers address these problems. SMTP clients do not help users with key distribution or revocation, and they do not help the user discover whether or not they have the right key. Web SMTP clients are even less secure, because the Web client offloads transmission to a remote server (which now must be trusted by the user). If the user wants to use another device to send an email, such as a public terminal, they have to divulge a private key to the device.

SMTP is already ill-suited for encrypted communications because at a minimum the email’s sender and recipient must be readable by all SMTP servers between the sender and recipients. Also, due to its store-and-forward architecture, any messages accidentally sent in the clear will be stored by the servers for an indefinite amount
of time. Users do not get to choose which servers store and forward messages, and users cannot “unsend” messages if they discover that they sent them to the wrong recipient.

4.2.2 Role of SDS

This thesis presents a backwards-compatible mail system built on top of Syndicate. Unlike conventional email, the Syndicate email system automatically encrypts data end-to-end and ensures that users discover each other’s *current* public keys by way of its SSI system. User can do the following with this system:

- **Automate key management.** Users do not need to interact with keys at all. Users do not need to trust external key escrows or certificate authorities, and they do not need to participate in webs of trust. Instead, users rely on Syndicate’s blockchain-powered SSI system to discover each other’s current public keys.

- **Control where emails are hosted and who can request them.** A user’s message contents will not be relayed through the SMTP network, but will instead be hosted in one or more storage hosts of the user’s choosing. Recipients will instead download and decrypt the message once they have discovered where it is hosted and have obtained sufficient permission.

- **Support sending to legacy users.** The Syndicate email system does *not* require both sender and recipient to use the same client in order to achieve better security than legacy email. If the recipient does not use this new system, the sender has the ability to contact the receiver while preserving sender-chosen security properties. For example, the sender can share the message body via a trusted private shared cloud storage folder that only the sender and receiver can
access, and send the URL to the message body via SMTP. Only the recipient will be able to access the data.

- **Safely use untrusted devices.** This secure email system uses Syndicate’s SSI system to allow users to derive short-lived throw-away keys for signing and encrypting messages on untrusted devices, like public terminals. The keys are automatically distributed and revoked.

4.2.3 Design

The Syndicate email system follows a similar design to the Internet Mail 2000 [27] proposal. Users store their encrypted emails in a Syndicate volume, which they use to selectively give recipients access to their messages. The system uses the SMTP network to allow senders to inform receivers when they have new messages waiting for them (Figure 4.2).

Setup

Each user stores their preferred email address in the SSI system. Alice sends a message to Bob by looking up Bob’s account information in the SSI system, and then obtaining his email address. In order to convince Alice that he is the “right” Bob (i.e. the Bob she is looking for), he includes additional credentials in his SSI data, such as social proofs or signed attestations from trusted third parties. The Syndicate email system is not concerned with implementing a particular authentication strategy, but instead gives users the ability to prove that various pieces of user-submitted identifying state associated with the email address are signed by the same key that owns the email address in the SSI system. For example, if Alice knows that Bob owns the website **www.bob.com**, Bob could authenticate to Alice by hosting his SSI username and a signature on **www.bob.com** and list a pointer to **www.bob.com** in his user account on the SSI system.
Figure 4.2: Design of end-to-end encrypted email with Syndicate SDS. Alice can send email from both a personal device and a public terminal; the latter of which gets assigned a temporary session key that expires shortly after being created. Bob’s client detects new mail from Alice via the legacy SMTP network by receiving a signed list of URLs that point to Alice’s chosen storage services. If Alice emails non-users of this system, her UG employs a custom “message gateway” (MG) type to Push the message payload to them while enforcing her custom security policies (such as “store this message in a private shared Dropbox folder that the recipients can access and email them the URL”).

The system is designed to accommodate multiple devices owned by the user by storing all emails in a single volume that spans the user’s devices. Each device has its own key-pair in the volume certificate graph, which is used to create gateways specific to that device. The user has an “admin” email account (i.e. an account that is tied to the Syndicate volume owner account that stores her emails). The admin account is controlled from a trusted device and is used to add or revoke permission to communicate from other devices.

When a user signs up for the system for the first time, she downloads and installs a mailer daemon that implements an SMTP and IMAP endpoint locally. The user points their preferred email client to the local mailer daemon to send and receive
messages. In addition, the daemon implements an HTTP interface for serving the mail client encrypted messages from the Syndicate volume.

The mailer daemon prompts the user to generate a device-specific Syndicate user account and two gateways (a UG and an RG) when it is installed. The user does so by using her admin account. The installer wizard gives the user the option of pre-allocating keys for her devices and their gateways, which can be fetched and installed on untrusted devices on-the-fly without requiring her to use her admin account again. Their keypairs are encrypted with a password of the user’s choice, and stored to the user’s volume.

Signing In

Each device the user sends mail from receives its own keypair. Each device-specific key is associated with an optional expiry timestamp and revocation certificate, which are stored in the user’s Syndicate volume for safekeeping.

Signing in with a new device requires ensuring that the device-specific private key is available. For devices the users trust, this is achieved simply by (1) installing the software, and (2) allowing the device to register its public key with the user’s account in the SSI system. An untrusted device, such as a public kiosk, would receive a key with an expiry date and revocation certificate. When the user signs out of the device, she would “activate” the revocation certificate by appending a signed timestamp to it and moving it to a canonical path in her volume. Other users’ clients would discover and process it automatically when receiving a message, thereby ensuring that the kiosk does not use the private key after the user is done with it. The key expiry timestamp ensures that the key expires nonetheless if the user is unable to successfully sign out (i.e. unable to post the revocation certificate).

The device-specific key state includes the device-specific user account and the device-specific gateway keys that the mailer daemon will use to interact with the
volume. Each devices’ gateways only write to one directory of the volume, and mark their files as read-only by other devices (which the MS enforces). The mailer daemon develops a coherent view of the mailboxes by listing all of the devices’ directory states.

In addition to creating device-specific Syndicate keys, the software also creates a generic read-only UG and read-only RG whose private keys are publicly readable and exposed in the volume. These gateways are meant to allow recipients to access the volume’s ciphertext, so the designated recipient can decrypt them. They are configured in the certificate graph to only have read capabilities, and to only serve on localhost. This ensures that all of the user’s other gateways will ignore them, and that anyone can run them on their computers to access the inbox data.

Sending and Receiving Mail

The mailer daemon implements a Syndicate UG and RG (e.g. as subprocesses). The UG implements the SMTP and HTTP endpoints, and the RG uploads messages to the user’s preferred storage service, such as their personal Dropbox folder or a S3 bucket.

When the UG receives an outgoing message, its serialize() driver method inspects the message for the recipient, and automatically looks up the public key in the SSI system to encrypt the message to the recipient before sending it to the RG. This way, the sender is never involved with selecting the key for a recipient user. The software additionally makes a copy of the sent message encrypted with the sender’s public key, and stores it into the device’s “sent” mailbox.

The mailer daemon informs the recipient that they have a message waiting for them by sending a small amount of discovery information to the recipient’s email address via SMTP. This discovery information is signed by the sender, to prove its authenticity to the recipient. It identifies the path to the message in the volume, as well as the hash of the ciphertext.
The recipient’s mailer daemon polls the user’s SMTP inbox for discovery messages. When it finds one, it fetches, authenticates, and decrypts the associated message from the sender’s volume, and locally stores it so the user’s mail client can read it as a normal email. It does so automatically as part of the `deserialize()` driver method in the UG—this driver method only succeeds if the message could be authenticated. The discovery message’s sender email address is used to look up the user’s device keys in the SSI system to perform the authentication. *This way, the receiver never needs to select the key for the sender to authenticate the message.*

The sender must host the email contents for the recipient until either the recipient downloads it. Once the recipient daemon has fetched the cleartext, he encrypts and backs up a copy via its RG for safe-keeping. The sender can delete the messages she sent at any time, thereby granting her the opportunity to “un-send” an email’s message body if she can do so before the recipient fetches it. The sender can garbage-collect old messages once she is sure the recipient has fetched them, or once the information is no longer relevant. For example, the sender could simply delete all messages she sent over one month ago.

If the sender includes multiple recipients, or includes a new recipient part-way through the email chain, their mailer daemon detects this and ensures that the previous conversation is kept secret. This is achieved by having the local RG in the mailer daemon remember which email threads have which recipients, and ensure that their respective messages are re-encrypted before transmission. This conversation metadata is encrypted and stored on the user’s volume, so it is accessible from all devices’ RGs. This decreases the likelihood that a user accidentally divulges cleartext in carbon copies on the email client—the message would simply fail to send if the user did this.
Legacy Compatibility

As with PGP before it, the Syndicate-powered email system requires both sender and recipient to use it in order to realize the full benefits. Unlike PGP, the developer can ensure that certain safety features are in place if only the sender uses the software. This is made possible by Syndicate’s aggregation driver programming model.

It is important to recognize that when it comes to email, the correct way to send a message depends on the sender, the recipient, the content, and the context in which it is sent. For example, two friends exchanging vacation photos do not need the same security guarantees as an anonymous informant communicating with a law enforcement agent.

One of the major drawbacks of PGP is that it cannot work if either the sender or recipient do not use it. This significantly limits the set of senders and recipients. Moreover, PGP-encrypted messages are easy to spot in SMTP traffic, which makes it easy for network eavesdroppers to identify users who have something to hide.

What is needed is for senders and receivers to be able to communicate even if one of them does not use PGP-like encryption. The approach taken here is to make it easy for the sender to control how the message will be delivered, while allowing messages to be discovered by the recipient over legacy SMTP. The sender is free to set up the delivery process to implement the security guarantees on a case-by-case basis, subject to what she knows about the recipient and subject to the contents of the message. For example:

- The sender can encrypt the message with a password known to the recipient, and send the message body in a common document format, like Microsoft Word or PDF, that the recipient can open and decrypt with already-installed software. This can provide the confidentiality of PGP.
• The sender can replicate the message to a shared private storage provider like a Dropbox folder or private git repository, and send the recipient the URL over SMTP. This process can be carried out via HTTPS. While this does not provide the same degree of end-to-end confidentiality and authenticity as PGP, it guarantees that as long as the certificate authorities and shared storage are trusted, then only the sender, the recipient, and the storage provider can view the message (but SMTP servers see nothing).

• The sender can select which network to use to transmit the data, based on the recipient. For example, an enterprise user could require all messages sent to the company SMTP server must be sent through the corporate VPN. The aggregation driver would refuse to send messages unless it detected that the VPN was available. This ensures that all email messages sent by employees are visible only to the company and the recipient.

These examples do not provide the same guarantees of PGP, but they are better than relying only on legacy SMTP for email. While they can all be done today in an ad-hoc manner without SDS today, Syndicate lets users ensure that they are all executed automatically and consistently. Moreover, the way these features are implemented allows them to be reused in multiple different contexts, giving senders the ability to combine different features to create a custom message transmission process.

Addressing legacy compatibility is a practical application of Syndicate’s custom gateway types. The deployment designed so that the RG’s Push driver stage (1) reassembles the Pushed chunks received from the UG (embedded in the email client) back into the original email, (2) scans the certificate graph for gateways with a type identifier specific to the email client (the “MG” gateway in Figure 4.2), and (3) forwards the reassembled email to them for further processing.
When the MG receives the message, it inspects the message headers and runs a user-specified program based on the recipient address. The user-specified program is responsible for actually transmitting the email. For example, each of the above examples can be implemented with separate programs that are invoked as subprocesses that take the message as input and carry out the actual transmission.

The transmission programs themselves are part of the email-type gateway’s driver. The user deploys them to her volume by updating the certificate graph. Since the volume spans all of her devices, each of her devices will have the most up-to-date transmission programs available whenever the user sends a message.

Search Indexing

Since all messages are encrypted client-side, there is no option for server-side message indexing. Instead, the user’s RGs incrementally build up a word-to-email index as part of their Push stage logic, just as they do in the serverless groupware example. The index itself is encrypted with the user’s public keys, so it is visible only on the user’s devices. In fact, the code to maintain the users’ indexes can simply be re-used by the RGs without affecting the design or implementation of the mail clients.

There are two reasons to offload search indexing to the RGs instead of allowing applications to handle this. First, this preserves the index across all devices. This is especially important for Web clients, which cannot easily store a large amount of state locally on their own (HTML localStorage is limited to 5MB, for example). Second, it makes it easier to implement additional features like spam filtering, described below.

Spam Filtering

A key usability problem with encrypted email is that the servers cannot filter spam, since they cannot read the messages. This can be addressed in four ways within the volume’s aggregation driver.
Shared Spam Database. First, the aggregation driver is programmed to have the RGs in a user’s volume build up a *shared* set of classification data from user input. When the user moves data to the “spam” mailbox, the RG driver’s Push stage generates and a feature vector from the cleartext and stores it in a shared storage provider. This allows users to share each others’ spam feature information.

The shared storage itself is implemented as a separate, third party volume that enforces write-once read-many access patterns, and tracks which users add which features. That is, the RGs to the volume do not allow a record to be written more than once, and do not allow records to be deleted (except by the volume owner). This ensures that users do not accidentally clobber one another’s writes, and a malicious user (such as a spammer) cannot erase the feature vectors. If it is later discovered that a particular user’s records were written with malicious intent, they can be removed by the volume owner.

This arrangement is similar to existing third party spam detectors such as Spamhaus [179], where a third party aggregates spam information on behalf of many users. The spam volume owner would aggregate the spam information to train a spam classifier, and write the classifier parameters to the volume. A user’s mailer daemon would connect to the volume in a read-only fashion to read the classifier parameters, and use them to classify the user’s inbound messages as spam or not spam. Because the volume is shared across many users (and can be replicated by any user), the users are able to avoid spam-detection service lock-in because they can (1) independently calculate the spam classifier parameters, and (2) come up with their own, better classification system if the spam volume owner does not do a good enough job.

Anyone can set up and run a collective spam filtering process. Users are free to unilaterally decide which ones to use. Therefore, this approach does not infringe on organizational autonomy.
Sender Pays for Storage. The second anti-spam feature is that by design, the user pays for storing messages to recipients. Since each recipient has a different public key, the user must encrypt a message for each recipient. As a result, a spammer must store a lot of state to spam many users at their own expense. This discourages, but does not completely remove, bulk spam. This is similar to the Internet 2000 [27] webmail proposal.

SSI Proofs of Payment. The third measure is to take advantage of the fact that the SSI system is implemented on top of a public blockchain. This feature allows for some interesting anti-spam mechanisms. A recipient can require the sender to include a “proof-of-payment” on the message, generated by a transaction on the underlying blockchain. This would have the effect of both rate-limiting spammers and making emailing users prohibitively expensive to do at scale. It would also allow senders to prioritize messages by paying higher fees. This is a technique that was successfully employed by Earn [66], for example, whereby a user will only see a message if the sender has paid a minimum amount of money required by the recipient.

SSI Social Proofs. The fourth measure is to re-use a concept from Gaia-powered groupware to require that a sender provide sufficient proofs in the SSI system that they are a legitimate human being, and not a bot. For example, a recipient can enforce a default anti-spam policy whereby a sender must supply evidence in their SSI account that they own at least five unique social media accounts, and that the accounts undergo a minimum amount of activity. This makes it hard to send spam at scale because (1) the spammer would need to circumvent all of the social media systems’ anti-bot mitigations, and (2) if the spammer gets caught, they have to register a new identity in the SSI system (necessitating a blockchain transaction). Since the blockchain itself grows at a fixed rate, and since blockchain peers effectively bid on the ability to write new transactions, a spammer could not easily register many identities without paying a high price (i.e. the price gets higher the faster the
spammer tries to register new identities). This allows the system to overcome the limits of prior proof-of-work techniques [65] which either had a fixed proof-of-work threshold or a threshold that increased independently of the system’s usage.

All four of these techniques would be implemented in part by the Acquire stage of the mailer daemon’s RG. This ensures that all email clients automatically benefit from these mechanisms without modification.

4.2.4 Implementation

The prototype system, SyndicateMail, is implemented in 4100 lines of Python and 1700 lines of Java. It implements end-to-end encryption across multiple devices and offers legacy compatibility with SMTP.

The system is being refactored to use the search indexing logic from Gaia to implement search indexing in Syndicate. The RG driver runs the indexing logic as a subprocess in a node.js VM. The spam filtering is carried out simply by passing the text through an existing spam-detecting system such as spamd [178] or spam-assassin [16], and only forwarding the email text if it is not spam.

4.2.5 Discussion

In terms of the number of patches to write, it would be costly to implement this email system without SDS. Each email client would need to be patched to store its state to the storage provider of the user’s choice, whereas the use of Syndicate ensures that storage services only need to be ported once. By moving data signing, encryption, decryption, and verification to the storage layer, and using Syndicate’s SSI system to bootstrap key trust, Syndicate enables the use of existing email clients with encrypted email without forcing users to understand public-key cryptography. By using gateways to represent the capabilities of each device, the system is able to
provide the convenience users expect from Webmail without forcing them to manually copy private keys between devices.

Filtering spam and preventing accidental cleartext disclosure are problems that require the system to inspect email contents on the user’s behalf. This is achieved by having the user’s RGs carry out this inspection locally, instead of forcing the user to trust an external SMTP server to do so on their behalf. This is crucial to ensuring end-to-end message confidentiality, and is required to be implemented at a layer beneath email clients to ensure that the user’s choice of client does not alter the system’s ability to ensure message confidentiality and prevent spam delivery. These problems are both addressed by allowing the user to run application-specific aggregation driver stages interposed between their personal devices and the rest of the network.

4.3 CDN-accelerated Scientific Data Staging

Scientific computing is increasingly conducted across multiple research groups. Data is generated and stored in the labs where a scientific instrument or dataset is curated, and then shared across the world with collaborators. Similarly, collaborator labs publish their data analyses, which get downloaded by other labs (and classrooms) for further consumption.

The third application presented here is to use Syndicate to implement a cross-site data processing framework that allows scientists to take advantage of commodity cloud storage and CDNs to host and deliver data to each lab. For dataset curators, this reduces the task of exposing a dataset to collaborators to running a Syndicate AG that can crawl the dataset (with a dataset-specific driver) and serve chunks of it to downstream UGs. For dataset readers, this reduces the task of accessing a dataset to fetching a dataset-specific Docker image that mounts the dataset as a read/write
filesystem backed by the dataset AG, an intermediate CDN, and the user’s personal cloud storage.

4.3.1 Motivation

The main motivation for considering an SDS approach to scientific data storage is that due to the nature of the data they gather, each lab will have its own data curation policies, its own unique data access patterns, and its own data-sharing policies. There is not a one-size-fits-all approach for hosting scientific data, and labs will need to tailor their storage systems to meet their specific needs (especially since their needs change over time, depending on the nature of the data they produce).

This need to accommodate changing data storage and access policies is evident in the evolution and wide success of state-of-the-art scientific storage systems like iRODS [158], which offer user-programmable policies (“rules” and “microservices”) that allow individual scientists, project teams, and entire labs to programmatically specify their curation policies and have them automatically enforced. In fact, iRODS is considered to pioneer SDS concepts (Chapter 6).

The scientific data-sharing framework uses commodity CDNs and cloud storage to help iRODS deployments handle “fan-out” data distribution cases, where many labs across the wide area want to read existing datasets and write back changes that will be incorporated into the iRODS dataset. CDNs would let individual iRODS deployments scale up the number of reads they could service while preserving the policies encoded in its rule sets and microservices. Commodity cloud storage would allow users to host the results of their computations and share them with their lab mates and peers before generating and preserving a “curated copy” of the data back to iRODS.
4.3.2 Challenges

Augmenting existing systems like iRODS with commodity infrastructure introduces challenges of its own. It is not enough to simply place a CDN in between iRODS and remote readers for three reasons:

- **Protocol Incompatibility.** CDNs are designed for Web content acceleration, which means using HTTP as the data delivery protocol. However, iRODS does not speak HTTP. A protocol translation layer is required.

- **Cache Thrashing.** CDNs are designed for caching lots of “small” files—i.e. website assets like HTML or CSS that are not usually gigabytes in size. However, iRODS data can be extremely large, and clients may only even want a small range of an iRODS file. Serving iRODS data with a CDN while getting good bandwidth will require file-level fragmentation and reassembly on both the producer’s and consumers’ endpoints.

- **Cache Incoherency.** iRODS is a read/write datastore. While some users are reading from a file, another user can be writing to it. This can cause readers to cache corrupt data, which in turn gets served to future readers by the CDN. Avoiding this problem requires manual coordination between readers, writers, and the cache operator.

In addition, sharing the results of local computations and generating a dataset to write back to iRODS has its own challenges:

- **Replica discovery.** Suppose a scientist reads some data from iRODS, runs some local jobs on the data, and saves the job’s results to the lab’s shared Dropbox folder. How do the scientist’s peers find the data, so they can run their own analysis on it? Today, they email the links to the peers or put the
links on the lab website. However, this introduces a manual, tedious process for sharing data. Can we automate data discovery with Syndicate?

- **Replica write-back.** A scientist’s collaborators do not always have access to her lab’s iRODS deployment. How do her collaborators get their results incorporated into her deployment? More specifically, how do they discover a set of authentication credentials to use to do so? How does the data ingress server authenticate the collaborator if they do not have an iRODS account? Today, the solution is to find and email an iRODS user with sufficient privileges and ask them to incorporate the changes. But can this be done automatically, without requiring users in the loop?

As will be shown, these problems can be solved with the right configuration of Syndicate gateways.

4.3.3 Role of SDS

The need for software-defined storage in scientific computing is not new. The labs that gather and share scientific data must already do so according to data-specific rules. These include rules governing storage aspects like national export controls, disclosure of proprietary or potentially dangerous information, and even mundane concerns like ensuring the data appears in the correct format.

Prior to systems like iRODS, these rules had to be enforced either within the scientific computing applications, or within a bespoke storage system. Enforcing the same rules across many labs’ applications poses a high cost of coordination, since each lab’s applications must be audited for compliance. Enforcing a set of rules within a bespoke storage system requires constructing a bespoke storage system for each rule set. Allowing a storage system to have its curation rules programmed at runtime
without changing the application-facing storage APIs is the “sweet spot” of SDS for scientific computing.

This Syndicate-powered scientific data-sharing framework extends an existing system (iRODS) with Syndicate to allow existing workflows to take advantage of commodity infrastructure (CDNs and cloud storage) without affecting the application-facing storage APIs. Crucially, the data-sharing framework does so in a way that preserves the data owner’s existing iRODS rules in a global setting, while allowing the owner to specify additional rules within Syndicate to specifically control how data is disseminated once it leaves iRODS.

4.3.4 Design

An iRODS system can store many different datasets, and each dataset can have its own access control policies set by the owner. These are enforced internally by iRODS when other users attempt to access the data.

The strategy for distributing each dataset to remote readers is to allow an iRODS user to “export” their dataset by way of a Syndicate AG, and later “import” changes to it by way of an RG. Both the AG and RG run with the permissions of the dataset owner (Figure 4.3).

The AG crawls the owner’s dataset using an iRODS driver and exports individual file metadata to the Syndicate MS. It runs within a demilitarized zone (DMZ) on the network, linking the iRODS data to the outside world. It acts as an origin server to the CDN and uses its iRDOS driver to load and serve file data as blocks and manifests to downstream readers. A dataset owner can run many AGs, and can have different AGs index different parts of the dataset.

The RG accepts inbound write requests from external users who want to incorporate their changes to the dataset owner’s files. It also runs in the DMZ, so it can receive inbound requests. It uses the dataset owner’s credentials to access iRODS.
Figure 4.3: Overview of CDN-accelerated scientific data. The iRODS deployment is private, and accessible only via the AG and RG (which run in trusted networks). Remote UGs leverage the MS and CDN to read cached but fresh data, regardless of the CDN’s caching policies. When UGs write data, they do so via the trusted RG which sends the changes to the proper datasets. All the while, the AG keeps the MS metadata consistent with writes from non-Syndicate iRODS clients by subscribing to a (iRODS-specific) message queue.

The dataset owner’s AG and RG operate in separate volumes—one for distributing data to readers (backed by the AG), and one for accepting new data from writers (backed by the RG). A remote user would mount the AG-backed volume for read-only access, and would mount the RG-backed volume for read/write access. The AG-backed volume is meant for sharing datasets with collaborators in wide-area settings using commodity CDNs, while the RG-backed volume is meant for granting privileged users the ability to save data back into the dataset. While it is possible for a user to mount both datasets on the same host, in practice they mount one or the other.
Read Authorization

Each AG acts as an origin server to one or more downstream CDNs. It does not have direct contact with UGs at the edge, which initiate access flows. This is acceptable for public datasets, where no read authentication is needed.

If read confidentiality is desired, the AG will encrypt its manifests and blocks with the `serialize()` stage of its driver. It uses each UG’s public key from the certificate graph to send it a shared secret. The encryption is deterministic, such that two requests for the same chunk will resolve to the same ciphertext. This allows multiple UGs to leverage the CDN for read availability without the CDN being trusted with data confidentiality—UGs reading the same chunk will fetch the same ciphertext, and the CDN will only cache one copy of the chunk’s ciphertext.

The two drawbacks of this configuration is that the CDN can still see access patterns on the ciphertext, and anyone who can read from the CDN can fetch ciphertext. This may allow unauthorized principals to infer information about the data being accessed. If scientists wish to avoid this outcome, then the solution is to use a trusted CDN that will carry out authentication at the edge.

Regardless of the disposition of the CDN, the scientific applications are none the wiser as to the authentication steps taken by the UG. This is because the UG’s driver handles the interfacing with the CDN. If the UG needs a decryption key to read chunks (i.e. for read confidentiality), then the volume owner can distribute them to the UGs by sharing it through the certificate graph (encrypting the decryption key with each UG’s public key). The UG fetches and decrypts the key automatically, as part of its driver code. If the UG needs an access credential to the CDN (i.e. for metadata confidentiality), then the volume owner can use the certificate graph to encrypt and distribute it to remote UGs and write the CDN driver to submit the credential to the CDN on read.
Write Authorization

Each RG acts as an aggregation point for data generated by external UGs. Unlike the read path, the UGs have direct contact with the RG on the write path. As such, the UG’s Push stage can ensure data confidentiality across the wide area simply by contacting the RG via a TLS channel using client-side certificates. The UG and RG configurations in the certificate graph would be structured to include TLS keys and certificates for each gateway, so the RG could authenticate UGs and UGs could authenticate the RG.

Only the RG has write access to the iRODS deployment. The volume owner installs its iRODS credentials via the certificate graph as well, ensuring that they are confidential and up-to-date by encrypting them with the RG’s public key.

The RG has the ability to perform write authorizations on a per-file and even a per-file-region basis. This is because the UG informs the RG which file it writes to (i.e. as part of the manifest and block information it Pushes), and it informs the RG whenever it renames or truncates a file. The RG has the ability to NACK operations that do not conform to the volume owner’s policies. For example, a UG may be denied a request to rename a file into a separate $HOME directory in order to prevent users from gaining control of parts of the dataset.

Preserving Existing Policies

From iRODS’s perspective, the AG and RG are the only readers and writers to a particular dataset. Moreover, their reads and writes reflect the global sequences of reads and writes initiated by wide-area users. As such, the volume owner retains the power to globally enforce her iRODS-specific rules on data accesses—any gateway-initiated accesses must also conform to the already-deployed iRODS rules.
The volume owner can also set *per-user* rules within her gateways’ drivers. Importantly, iRODS does not need to be aware of the Syndicate users, nor aware of the per-user policies that the gateways enforce, since they occur in a separate layer.

As a result, scientists do not need to do any extra work or carry out any extra configuration steps to begin sharing their iRODS-hosted data with off-site users. All of their iRODS-local access policies continue to apply, and the scientist has the option of creating more-detailed rules within Syndicate. The only step the scientists must take is starting up a publicly-accessible AG and RG, which will read and write to their datasets on their behalf when remote users request it.

4.3.5 Implementation

The prototype data-sharing framework employs a variant of the Akamai [5] CDN deployed on OpenCloud [151]—a federated computing platform similar to PlanetLab. The CDN is operated by the OpenCloud developers and is made available to all participating sites.

Several AGs have been deployed on top of the iRODS deployment at the University of Arizona, and registered as origin servers on the OpenCloud-hosted CDN. In addition, several Docker images [184] and a dataset-mounting tool [42] have been made available for the general public to try out the system.

When a user downloads and installs a read/write Docker image, she receives two mounted volumes—the read-only volume containing the dataset, and a read/write volume for writing the results of her experiment. She and her collaborators will see each other’s results when they are written. Several RGs are deployed that will write back her and other users’ results both to iRODS and to a temporary S3 bucket that gets cleared every 24 hours.
iRODS-compatible applications interface with iRODS through FUSE and through a set of command-line utilities. The framework comes with a FUSE filesystem to preserve compatibility.

A Hadoop filesystem plugin has been implemented that allows Hadoop computing jobs to pull data from iRODS via Syndicate and the underlying CDN. The HDFS plugin gives the job scheduler insight as to where Syndicate UGs have locally cached chunks, so it can schedule tasks on nodes that already have the data present.

The iRODS-facing driver is 1900 lines of Python, of which 640 are specific to iRODS, 375 are specific to the AG, and 375 are specific to the RG. The UG-specific CDN interfacing driver is 100 lines of Python. The Hadoop plugin is 2300 lines of Java.

4.3.6 Discussion

Again, the utility of using SDS to link existing scientific data stores to commodity cloud infrastructure is that SDS allows users to “slap on” extra storage and data distribution capacity with little effort. The marginal cost of adding support for new storage and CDNs in terms of lines of code is small enough that it can be achieved in as little time as a couple of hours, including testing.

The key benefit to iRODS users in particular is that the iRODS system needs no special modification to be made compatible with the CDN. This is because SDS effectively ports the CDN and storage to iRODS, instead of the other way around. In doing so, iRODS-compatible applications (and even applications that only use iRODS indirectly, such as Hadoop jobs) can transparently benefit from its extra availability without having to overcome these aforementioned challenges.
4.4 Remarks

In these sample applications, using an SDS system to host data addresses several difficult problems. In all three examples, SDS provides semantic independence from storage systems (i.e. portability). By both wrapping individual services behind well-defined service driver models, and by allowing the volume owner to inject aggregation driver logic in-between the application endpoints and the underlying services, the SDS systems ensured that applications had access to a persistent data store that behaved exactly the way they needed as if the application was using a purpose-built storage system.

In all cases, the desired application-specific storage semantics were realized by implementing gateways to handle unrelated storage concerns, and composing them together into handle access and mutate flows. In the Gaia groupware-powered applications, users host their data on whatever storage providers they want while deploying gateways to enforce arbitrary access controls and maintain globally-visible search indexes. In the email example, users host their email in whatever storage providers they want and deploy gateways to implement spam filtering, search indexes, message prioritization. In the scientific data-sharing example, users augment existing storage systems with the CDNs and cloud storage of their choice while deploying gateways to preserve the original system’s global access control rules and end-to-end consistency semantics. Being able to compose gateways was crucial to preserving storage semantics across organizations, since in all cases there were sensitive operations like access controls and encryption that could only be allowed to execute on certain computers.

The separation between aggregation drivers and service drivers proved useful in practice. Having these two layers of indirection allows service drivers to be reused across different applications, and even across different SDS systems. In doing so, SDS reduced the marginal cost of adding support for new services to writing a single driver. Neither the aggregation driver logic nor the application need to be patched
when a new service becomes available. Instead, a volume owner only needs to deploy an updated service driver to her relevant gateways.

A slew of engineering problems were solved by designing the storage layers of these applications to treat users as the de-facto data owners. For groupware, this enabled gateways to authenticate and vet new users who would share their groupware data. For email, this enabled gateways to discover the sender and recipient public keys automatically and preserve end-to-end authenticity and confidentiality. For scientific data sharing, this enabled gateways to identify and preserve dataset access controls regardless of the infrastructure used to ship the data to external consumers.
Chapter 5

Evaluation

This chapter presents performance numbers for Gaia and Syndicate. Ultimately, the end-to-end performance of an SDS system depends on the decisions made in the application-specific aggregation and service driver implementations. However, each SDS system will impose measurable, predictable overheads on reads and writes. It is important for developers to know where these overheads come from and how big they are in order to make good driver and application design decisions. In light of the measured overheads, this chapter gives developers recommendations on how to implement their aggregation drivers to minimize the impact for specific workloads and end-to-end semantics.

5.1 Overview

SDS systems offer developers a trade-off. On the one hand, the cost to developers and users is some additional performance overhead on the read and write paths to cloud services. This is because the data needs to be converted into access and mutate flows comprised of manifests and chunks, which must be relayed through one or more gateways en route to the cloud services. The SDS metadata service may also need to be contacted in order to complete the operation.
On the other hand, SDS systems offer significant gains over the status quo. First, SDS systems greatly reduce the cost of building and maintaining system-of-systems applications built on cloud services. By handling storage semantics and inter-organizational trust relationships independent of applications, SDS systems allow developers to spend more time on their application business logic and less time on addressing the users’ storage and trust concerns. Second, SDS applications give organizations unilateral control over how their data is hosted, which frees developers from having to be responsible for conforming to their hosting policies. Third, SDS decouples application data from the application code, preventing users from being locked into relying on a specific application. These gains are realized in each sample application presented in Chapter 4.

Despite overheads, using a SDS system does not mean that application workloads take more time or space than they would had the application avoided SDS. In fact, the workload on the SDS system can be faster and require less space, depending on the behavior of the service and aggregation drivers. For example, a service driver can cache blocks on behalf of a slow service like Amazon Glacier [9], allowing a read-heavy workload to execute faster with the SDS system than it would have if the workload had to contact the service directly. As another example, an aggregation driver can de-duplicate and compress chunks before sending them to service drivers, speeding up data transmission and reducing the amount of storage space needed when compared to directly writing to storage services.

This chapter describes and measures the time and space overheads in both Syndicate and Gaia’s default access and mutate flow behaviors, and provides recommendations on how to design an aggregation driver to minimize their impact on common workloads. The measurement focus is on the efficiency of reads and writes—that is, what fraction of time and space is used for loading and storing the application’s data.
Some aggregation driver design recommendations distilled from these measurements have already been used in real-world applications built on these SDS systems.

The efficiency measurement gives developers a way to measure the impact of their service and aggregation driver implementations on the end-to-end overhead perceived by the application. A higher efficiency implies higher application-perceived goodput. Performant driver implementations maximize efficiency using tactics such as caching MS-obtained data, or running access and mutate flow steps in parallel when possible.

To maximize efficiency, the developers need to first understand the SDS system’s overheads in order to make good engineering decisions to minimize their impact on reads and writes. But in order to write an effective aggregation driver, developers need to know what overheads exist in a SDS system first.

5.2 Access Flows

An access flow runs in two steps: the Discover step translates the name of a record into a manifest ID, and an Acquire step uses the manifest ID to fetch the block(s) that contain the requested data. Both steps may be implemented in the aggregation driver, but the SDS system supplies a default implementation if the aggregation driver does not. This section presents the time and space overheads of the systems’ default access flow behavior, so developers can better understand how to design aggregation drivers and applications to minimize their effect on their workflows.

5.2.1 Overheads in Gaia

In both Gaia and Syndicate, the default behavior of the Discover step is to query the metadata service. This adds measurable time overhead to the access flow’s execution, comprised of a network round-trip plus the time required by the MS implementation to look up the current manifest ID for the record.
Gaia is designed for applications where each user is the owner of a volume that contains all of their application-specific data. When using a Gaia-powered application, the volume owner usually has only one device online—the one she is currently using. To take advantage of this, Gaia provisions gateways to run both the Discover and Acquire step on the volume owner’s personal device by default. The node itself participates in the peer-to-peer metadata service, and in doing so maintains a local copy of all of the users’ volume certificate graphs and pointers to Gaia metadata. In addition, the node maintains a set of service drivers that its gateways can use to load and store chunks on behalf of the organization that runs it.

The default Discover step in Gaia is to try to fetch the volume record from each storage system it has a driver for. This includes looking up the volume owner’s public key and certificate graph in the node’s local replica of the system’s set of zone files, since this information is required to authenticate the record. The volume record itself is stored in the volume owner’s chosen cloud storage services, meaning that the gateway running the Discover step only has to ask its node’s co-located storage driver to fetch it and decode it. In the worst case, the Discover step has to try each storage service before succeeding.

The volume record contains the volume’s manifest ID (recall that a Gaia volume only has a single manifest). This is passed to the Acquire step, which by default will fetch each of the volume owner’s key space shards in parallel and reassemble them into the list of keys available in the volume. Once the full set of keys are assembled, the Acquire step can finally fetch the requested value (as a single chunk).

To fetch the value’s chunk, the default Acquire step looks at the volume record to get a list of upstream Gaia gateways or storage providers that the volume owner has listed as possibly storing a copy. The Acquire step iterates through them in order, using one of the node’s service drivers to contact each service. Functionally speaking, the act of asking an upstream Gaia gateway for the chunk is equivalent to asking a
storage provider—to the requesting gateway, there is no difference in mechanism (i.e. the upstream gateway is treated like a storage provider).

To summarize, the sources of overhead in Gaia’s default access flows stages are:

- **Fetching the volume record in the Discover step.** This adds both time overhead in the form of a round-trip to a storage service, and a constant-space overhead from having to store the volume record (which contains the manifest IDs).

- **Fetching the manifest in the Acquire step.** This is the work required to find the globally-consistent view of the manifest. Each device that can write to a Gaia volume stores its own manifest, so a reader will need to fetch all of them and merge them. This adds both a time overhead in the form of a round-trip to a storage service (one per device manifest), and an $O(kn)$ space overhead for n keys and k devices. The time overhead of interest is the combined time required to fetch all device manifests in parallel, and the time required to authenticate each device’s signature. The space overhead is dominated by n, since k is the number of devices the volume owner can use to write (which in practice is small—on the order of 10 or fewer). Each key requires a constant amount of space.

- **Decoding and authenticating the chunk fetched from the Acquire step.** This adds a time overhead that is $O(n)$ in the number of bytes, since the chunk must be hashed.

Measured Overheads

Gaia’s read performance was evaluated for records whose sizes vary between 64K and 640K, in intervals of 64K. These sizes were chosen to emulate the sizes of files being stored. For example, a typical image would be around 640k (taken from Block-
stagram [3]), a typical text document would be around 320k (taken from Graphite Docs [107]), and the set of the user’s microblog posts would be around 64k (taken from Publik [123]).

The read tests were done on a Gaia deployment that matches the cold start default deployment given to each user. In this deployment, the user runs a local Gaia node that Discovers and Acquires data from an upstream Gaia node. The upstream Gaia node loads and stores data from Microsoft Azure Blob Storage [134] in response to downstream Gaia requests. Anyone can read from it, but it only accepts writes from users who have stored profiles that point to at least two social media accounts (i.e. in order to prevent bots from abusing the system). In this test, no caching of any kind was performed by the local Gaia node.

This test evaluates a production deployment of Gaia that serves over 15,000 users. It is used by the majority of users of the Gaia-powered applications described in Chapter 4.

An instrumented version of a Gaia node was used to evaluate 150 reads on these file sizes on the live Gaia network. A single record was written to an empty volume and read back 150 times from a single device. The overall read performance is shown in Figure 5.1.

Unsurprisingly, the time taken to store data increases linearly with the amount of data being stored. Storing a “small” file of 64K took a median of 0.836 seconds on the cold path, and an average of 1.56 seconds with a standard deviation of 1.79.

Each read operation is composed of a Discover and Acquire stage. The performance of both of these stages is shown in Figure 5.2.

As expected, the Discover stage time overhead is constant relative to the file size—all that is happening in this stage is the constant-sized volume record is being loaded. Also, as expected, the Acquire stage time increases with file size, since it includes the
Figure 5.1: Box-and-whiskers plot of the overall read performance.

times taken to fetch the (single) manifest and fetch the (single) block. The Acquire
stage time overheads are further broken down in Figure 5.3.

In this test, the manifest size was constant, and took between 0.522 and 0.576
seconds to download in the median case. The times taken to download the record
increased with the record size, taking between 0.223 seconds (for 64K) and 0.448
seconds (for 640K) in the median cases.

The efficiency for each read was calculated for record sizes tested. Two efficiency
results were calculated. The “cold efficiency” is calculated as the time taken to fetch
the record data divided by the total running time of the access flow. This includes
fetching the volume record from the underlying cloud storage provider, despite the
fact that in practice this record can be safely cached. The “warm efficiency” is similar
to the “cold efficiency”, except the total running time of the access flow excludes the
Figure 5.2: Box-and-whiskers plots of access flow stage performances in Gaia, for file sizes between 64K and 640K in increments of 64K.

(a) Gaia Discover performance.

(b) Gaia Acquire performance.
(a) Times taken to fetch the manifest in the Acquire step, for given key/value block sizes.

(b) Times taken to fetch the key/value block in the Acquire step, for given sizes.

Figure 5.3: Box-and-whiskers plots of the Acquire stage performance.
time taken to fetch the volume record. This calculation reflects the act of caching the volume record.

Both efficiencies are shown in Figure 5.4. Naturally, the efficiencies will tend towards 1.0 for larger and larger record sizes. However, the act of caching the volume record can significantly improve the read efficiency for small records.

Recommendations for Developers

Relative to fetching data directly from a storage provider, Gaia’s most noticeable time overheads come from fetching and decoding all of the metadata and volume record information required to request the data. Fortunately, these costs can be mitigated by metadata-reading and metadata-writing strategies in their applications’ aggregation drivers.

Metadata Caching

In applications that assume at most one writer per login session, the Gaia gateways can cache data for the duration of the session. For example, the Gaia-powered Coins application [196] assumes that the user only accesses the data from the same trusted device. This application’s aggregation driver can spare users the cost of reloading metadata on each read by having its Acquire and Publish steps maintain a coherent local copy.

Some applications only need delta-consistency [10]. In such applications, users are already expected to have to wait a few seconds for newly-written data to appear. In this case, the Acquire step can be implemented to cache metadata for a particular key for an application-configurable amount of time. For example, a social media application could cache the metadata for a user’s avatar for a long time, since it is
(a) The cold efficiency, which includes the time taken to fetch the volume record over the network.

(b) The warm efficiency, which assumes the volume record is cached and excludes it from the access flow’s running time.

Figure 5.4: Box-and-whiskers plots of Gaia’s read efficiencies.
not expected that the user will change it frequently. This would save other readers
the cost of having to fetch the same metadata for it over and over.

The exact rules for how long to cache a given key/value pair’s metadata are
application-specific, and affect the end-to-end storage semantics of the volume. As
such, metadata caching is not part of Gaia’s default behavior. Instead, Gaia defers
to the aggregation driver to make these decisions.

In practice, the volume record is cached for the duration of the session. This
was omitted from the read test since the test was meant to measure overheads from
cold starts (in order to identify overhead points). Simply caching this record for the
duration of a login removes about 0.16 seconds from the read time.

Metadata Streaming

Some applications like online shared document editors need to access metadata
quickly from a small set of peers. In these cases, the Acquire and Publish steps of
the aggregation driver can augment the default read path by eagerly replicating their
metadata via a shared broadcast channel (such as a shared Web socket), in addition
to replicating it to cloud storage. This way, the Acquire step would listen for Publish
events from other peers, and eagerly update cached metadata before an application
read occurs. If the broadcast channel is down or starts dropping messages, the Acquire
step would fall back to fetching metadata via the slow path.

Discovering the broadcast channel can be achieved by placing hints in the volume
record in the Gaia MS, such as a set of Websocket URLs. On loading, the application
would allow the user to connect to other peers by querying the peers’ volume records
to find their broadcast channels of choice.

Not all applications need this feature, and even for applications that do need it,
the developer would need to select a broadcast channel that is capable of handling the
application’s workload. As such, Gaia defers metadata streaming to the aggregation driver implementation.

At least two Gaia-powered applications—Stealthy [181] and Hermes [103]—are known to use this technique. Both are encrypted chat applications, and use a streaming mechanism to accelerate message delivery instead of forcing clients to continuously poll each others’ Gaia volumes. They both replicate message logs to Gaia so recipients can read messages sent to them while they were away.

5.2.2 Overheads in Syndicate

In Syndicate, the Discover and Acquire steps always run on user gateways. In the default case, the same user gateway runs both an access flow’s Discover and Acquire steps.

The default behavior of Syndicate’s Discover step is to contact the cloud-hosted MS for the latest manifest ID. Unlike Gaia, Syndicate’s metadata records are arranged into a filesystem-like file hierarchy, and gateways do not need to obtain a full record of the volume metadata in order to access blocks.

The time overhead of fetching a given metadata record in Syndicate is dependent in how deep into the metadata hierarchy it is, since at a minimum the user gateway will need to verify that its cached copies of the path’s directory logs are up-to-date. If the directory’s log is not cached or has been modified since the last request, then the overhead will also include fetching and synchronizing each directory log in the path. The space overhead for processing the metadata path is simply the sum of the metadata record fetched, plus the sum of the sizes of the directory logs.

The default behavior of the Acquire step in Syndicate is to first fetch the manifest from an upstream gateway, and then fetch the relevant blocks from one or more upstream gateways. It uses the metadata record from the Discover step to determine
whether or not it needs to contact an acquisition gateway or the volume’s replica gateways.

When reading a record whose data is hosted in a curated dataset, the user gateway’s default Acquire step always contacts the acquisition gateway that acts as its coordinator. It determines which gateway this is using the metadata record acquired in the Discover step. The acquisition gateway is not given any specialized aggregation driver logic by default. It responds to the user gateway by using its service driver to fetch and serve the requested block or manifest from the underlying data set.

When reading a record whose data is stored in a cloud storage provider, the user gateway may choose from a set of replica gateways that may be able to access it. The default behavior of the Acquire step in this case is to ask each replica gateway in order of increasing gateway ID. Once the user gateway successfully fetches the manifest, it fetches at most six blocks in parallel from the replica gateways. Similar to how it fetches the manifest, the user gateway will try contacting each replica gateway in sequence by replica ID for the block (but will process at most six blocks concurrently). The choice of six parallel connections is inspired by the same implementation choice made in Web browsers [37]. The replica gateways are not given any aggregation driver logic for the Acquire step by default; they simply use their service drivers to fetch and serve chunks from their services upon request.

To summarize, the overheads in Syndicate’s default access flow stages are:

- **Synchronizing the metadata path’s directory logs.** In the best case, all of the path entries will be cached and up-to-date. In this case, the time overhead is $O(n)$ for n path entries, and $O(dn)$ space overhead for d entries per directory log. In the worst case, all path entries will not be cached. In this case, both the time and space overheads are $O(dn)$.

180
• **Fetching blocks and manifests through a replica or acquisition gateway.** When servicing an application read, the user gateway does not fetch the data directly from the cloud service or dataset, but instead contacts an upstream replica gateway or acquisition gateway to fetch it on its behalf. However, this overhead is only incurred when the user gateway cannot load the requested block or manifest from an upstream CDN.

• **Fetching, authenticating, and decoding the manifest.** This adds $O(m)$ time and space overhead in the best case (i.e. the first replica gateway contact has the manifest), where m is the number of blocks in the record. In the worst case, the time overhead is $O(m + r)$ for r replica gateways, since in the worst case the last replica gateway to be contacted out of the set of replica gateways in the volume has the manifest.

• **Searching for the correct replica gateway.** Fetching a manifest or block that is available only from replica gateways incurs at worst a $O(g)$ overhead, for g replica gateways. This is due to the simple but inefficient strategy of contacting replica gateways in order by gateway ID. The g parameter is not expected to change very often relative to the occurrence of reads and writes, since the user is not expected to frequently add and remove gateways.

• **Fetching and decoding the data as a set of blocks.** A record that exceeds the volume block size will be fetched piecemeal over HTTP. This adds $O(n/b)$ time and space overhead, where n is the number of bytes and b is the block size. The overheads come from processing and discarding the HTTP headers. In addition, each block will be hashed in order to authenticate it, yielding a $O(n/b)$ time overhead.
Measured Overheads

Syndicate reads and writes data as fixed-sized blocks. Obviously, a larger block size and a larger file size would improve the efficiency of Syndicate reads and writes, since a greater fraction of the total operation time would be spent uploading or downloading data. Therefore, read performance was measured on a small block size of only 1k, and on a moderate block size of 10k, in order to emphasize read overheads in the measurements.

File sizes were chosen between 10x and 100x the block size, in intervals of 10 blocks (meaning 10 different file sizes were tested per block size). Each file of each size was downloaded 100 times to measure overheads. The read test was carried out on a volume with one UG and one RG. The RG and MS ran on a Microsoft Azure VM and stored metadata and chunks to the VM’s local disk.

The Discover step in these tests synchronized one directory (the root) and fetched one metadata record. The Acquire step in these tests fetched a manifest representing between 10 and 100 blocks. The size of the block’s metadata in the manifest is constant—manifest sizes and download times are a function of the number of blocks only. However, the size of the record metadata on the MS increases with the number of blocks, since the MS stores a garbage-collection log for all blocks in the record. Each garbage-collection entry is only 8 bytes.

The total read performances for 1K and 10K block sizes are shown in Figure 5.5. These represent the times taken by all of the Discover and Acquire logic, including the aforementioned overheads.

Figures 5.6 and 5.7 show the Discover and Acquire stage performances of Syndicate access flows for 1K and 10K blocks, respectively. In both cases, the times taken by the Discover step increase slightly for records with 80, 90, and 100 blocks. This is due to the fact that the MS incurs extra disk overhead from loading the metadata record with a larger garbage-collection log. This could be optimized away.
Figure 5.5: Box-and-whiskers plots of end-to-end access flow performances in Syndicate, for 1K and 10K block sizes.

(a) Syndicate access flow performance with 1K blocks

(b) Syndicate access flow performance with 10K blocks
Figure 5.6: Box-and-whiskers plots of access flow stage performances in Syndicate, for file sizes between 10K and 100K and a block size of 1K.
(a) Syndicate Discover performance with 10K blocks

(b) Syndicate Acquire performance with 10K blocks

Figure 5.7: Box-and-whiskers plots of access flow stage performances in Syndicate, for file sizes between 100K and 1000K and a block size of 10K.
Unsurprisingly, the Acquire stages increase in time as a linear function of the number of blocks fetched. The spreads of the distributions increase with the number of blocks because more blocks introduce more noise into the measurement. The time taken to fetch records increases faster for 10K blocks than for 1K blocks.

The tasks of fetching the manifest ID and fetching the blocks for the Acquire stages are further broken down in Figures 5.8 and 5.9.

The times taken to fetch the manifests are about the same across the record and block sizes sizes measured. While the size of a manifest grows linearly with the number of blocks, it does so via a small constant factor per block (48 bytes per block). The times taken to fetch the blocks are the reason why the Acquire stage’s time increases linearly with the record size.

Figures 5.10 and 5.11 plot the cold and warm efficiencies of Syndicate, for 1K blocks and 10K blocks respectively. In both cases, the efficiencies approach 1.0 as the record sizes increases. The warm efficiency excludes the time taken to fetch the metadata record from the MS (i.e. by caching it locally). Caching metadata makes a noticeable difference in the system’s efficiency for small files—it can be up to 33%

Recommendations for Developers

Syndicate gives developers several options to manage read performance in the face of these overheads. A few of these recommendations have been put into practice in production settings.

Long Metadata TTL with Explicit Invalidation

Volumes of scientific data often have few writers. In cases where a volume is backed by a dataset, the only writer would be the acquisition gateway that crawls the dataset. In cases where a volume acts as a data dump or a scratch space, writes
(a) Syndicate's performance of fetching manifests with 1K blocks

(b) Syndicate's performance of fetching records of various sizes with 1K blocks.

Figure 5.8: Box-and-whiskers plots of Syndicate’s Acquire stage performance with 1K blocks.
Figure 5.9: Box-and-whiskers plots of Syndicate’s Acquire stage performance with 10K blocks.

(a) Syndicate’s performance of fetching manifests with 10K blocks

(b) Syndicate’s performance of fetching the blocks for records of various sizes with 10K blocks.
(a) The cold efficiency for 1K blocks, which includes the time taken to fetch the metadata record from the MS.

(b) The warm efficiency, which assumes the metadata record is cached and excludes it from the access flow’s running time.

Figure 5.10: Box-and-whiskers plots of Syndicate’s read efficiencies for 1K blocks.
(a) The cold efficiency for 1K blocks, which includes the time taken to fetch the metadata record from the MS.

(b) The warm efficiency, which assumes the metadata record is cached and excludes it from the access flow’s running time.

Figure 5.11: Box-and-whiskers plots of Syndicate’s read efficiencies for 10K blocks.
happen only when a workload finishes, and occur on the same set of metadata paths (e.g. each user or each workflow would write its dump to its own directory).

Developers can take advantage of these special cases to save round-trips to the MS. The Publish steps of writer gateways can be programmed to broadcast a metadata invalidation hint to all read-capable gateways in the volume. The MS would only be contacted as a fallback.

This strategy is used in the scientific data-sharing application today in order to improve the efficiency of reading small files.

Use a CDN

Syndicate was designed to be used with a CDN. Developers wishing to get the best read performance would implement their Acquire step to contact one or more CDNs that can pull down chunks from upstream replica gateways. This is highly beneficial for read-heavy workloads, where most of the chunks can be cached close to readers. This reduces the number of network round-trips and reduces the amount of transit traffic out of cloud storage providers, all without violating end-to-end storage semantics and organizational autonomy.

The performance boost developers can expect to see depends on the CDN leveraged and the size of the working set. However, the benefit to breaking data into chunks is that developers can expect the CDN to accelerate reads even if only part of the data is cached.

This strategy is used in the scientific data-sharing application today. The CDN—an instance of the Akamai CDN—is deployed on OpenCloud.
Gateway-local Block Cache

Since Syndicate handles end-to-end semantics at a level above block transport, each gateway can implement a write-coherent block cache in its Acquire stage. This effectively adds multiple tiers to a commodity CDN—the first tier would be at the user gateways, the CDN would be the shared middle tier, and the replica and acquisition gateways would be the top tier. Syndicate gateways offer this feature as a built-in option, but using it requires the developer to set the cache size first (which is workload-specific).

This strategy is deployed in the scientific data-sharing application.

Chunk Advertisement

If the developer implements a gateway-local block cache in the Acquire step, a complementary feature would be allowing gateways to advertise to one another which chunks they have cached. If the Acquire step detects that a nearby peer has a cached chunk, then it could fetch the chunk from the nearby peer instead of from an upstream cache. This is useful in cluster computing, where host-to-host bandwidth is high but bandwidth in and out of the cluster is comparatively low. It may be cheaper to fetch a chunk from a cluster peer than an upstream CDN node.

This strategy is also useful for MapReduce [57]-style workflows, where the job scheduler can query gateways to determine which chunks are already cached so it can schedule jobs on hosts that already have the requisite data. This is a feature implemented in Syndicate’s HDFS driver, for example.

This is not part of the default behavior because it makes assumptions about the network bandwidth between gateways and assumptions about the threat model the deployment faces. A wide-area Syndicate volume would not want this feature, because
it would disclose to the Internet information about which gateways could access which data, and thus give an attacker insight into which hosts to compromise in order to exfiltrate it.

Chunk Compression

Syndicate gives developers the ability to control the wire-format of each chunk. If the entropy of the data is low, then developers stand to gain by having their gateways’ `serialize()` and `deserialize()` driver methods compress and decompress chunks. However, if the data has high entropy, then this strategy would be useless. Syndicate does not do this by default, but instead defers to developers to make the right decision based on their data.

Read-ahead

Many scientific workflows read sequentially. If this is the application’s behavior, then the developer can program the Acquire step to pre-fetch blocks asynchronously. This is useful if the application is reading variable-sized ranges of a file that straddle block boundaries—the last block fetched in one read will be the first block fetched in the next read, so keeping it local would save a round-trip.

Syndicate does not perform read-ahead by default because it cannot assume that data reads are sequential. In a random-read workload, read-ahead would be more wasteful than the default behavior. However, if the developers know that their application has a read-sequential access pattern, then they can add this behavior to the Acquire stage.
Favor Shallow Metadata Hierarchies

Developers can reduce the amount of time spent querying metadata by organizing their data into shallow directory hierarchies. This would cut down on the number of round-trips to the MS to resolve a path. In addition, developers can ensure that their directories do not get too big in order to minimize the cold-cache start-up time for a user gateway to synchronize its metadata logs.

This strategy is used in the scientific data-sharing application.

5.3 Mutate Flows

A mutate flow has three steps: a Build step which constructs a new manifest for a record that incorporates the modified blocks, a Push step which replicates the new manifest and new blocks, and a Publish step which makes the mutation visible to subsequent access flows. A SDS system supplies default implementations of these steps, but they may be overwritten by the aggregation driver. This section presents the time and space overheads the default steps in Gaia and Syndicate impose on top of application writes, and presents a discussion on how developers can minimize them.

5.3.1 Overheads in Gaia

To handle writes, Gaia’s default strategy to process a mutate flow is to do so entirely on the volume owner’s device. When the volume owner signs into the application, the device’s Gaia node instantiates gateways with the Build, Push, and Publish stages in order to service application writes for this session.

The Build stage takes the new key/value pair the application is trying to write, and assembles a new key space shard to replicate. The Push stage takes the key’s value and replicates it to the volume’s cloud storage services. This may include Pushing
them to an upstream Gaia node, which carries out further processing (but to the node doing the Push, the upstream Gaia node looks and behaves like another cloud storage service). The Publish stage takes the new key space shard and replicates it alongside the Pushed key value.

The default deployment of Gaia implements a couple of optimizations. First, the Gaia node optimizes the execution of a mutate flow as a sequence of subroutine calls. There is minimal overhead between passing control from a Build stage to a Push stage, and from a Push stage to a Publish stage. Second, the Push and Publish stages execute in parallel by default. This is because there often no logical dependencies between them that require them to run sequentially.

The end-to-end default write overheads include:

- **The time and space overheads of generating the new metadata.** In the Build step, the Gaia node will need to hash the key/value pair chunk and append it to the manifest. This adds a $O(n)$ time overhead, where n is the size of the value. In addition, the Gaia node will need to ensure that it has a fresh copy of the key shard before it can build a new key shard (i.e. before the mutate flow executes, another mutate flow may have executed from another one of the user’s devices).

- **The time and space overheads in storing the new key shard.** Each new key added takes $O(1)$ additional space to the volume’s manifest, and $O(1)$ additional space to the volume’s metadata. Storing the key shard adds a $O(n)$ time and space overhead for n records in the volume (since in the worst case, a key shard can have as many records as there are keys in the volume). These costs are incurred in the Publish step, where the volume’s manifest is replicated.
Measured Overheads

Write overheads in Gaia were measured on the live Gaia network. Just as with the read experiment, this test was conducted on a representative Gaia deployment whereby the user runs a local Gaia node that will Push and Publish new data to an upstream Gaia node, which in turn Pushes the data (as chunks) to a bucket in Microsoft Azure.

The test wrote key/value pairs with sizes ranging between 64K and 640K, in intervals of 64K, to simulate writing data from real-world Gaia applications. The test wrote the files 150 times using an instrumented Gaia node to measure overheads. Each run was from a cold start—there was no caching performed between requests.

![Box-and-whiskers plot of the overall write performance.](image)

Figure 5.12: Box-and-whiskers plot of the overall write performance.
The overall write performance for Gaia is shown in Figure 5.12. While the measurement is noisy, the write times increase linearly with the file size. The source of the noise comes from the fact that the upstream Gaia node is shared with many Gaia users.

Figure 5.13 shows the Build, Push, and Publish stage performances in Gaia. In this test, the Build stage includes the time taken to fetch a copy of the device manifest to update. If the device manifest is cached, then the Build stage is extremely fast—effectively the amount of time taken to hash the data and insert it into a hash table and serialize the hash table to a string for upload.

The Push and Publish stages run in parallel in Gaia by default, so their measurements are combined.

This test calculated the efficiency of Gaia’s write path in two ways—a “cold write efficiency” which includes the cost of fetching the manifest in the Build stage, and a “warm write efficiency” which excludes this step. Including both efficiency measures is valuable to developers because often times, the manifest can be safely cached across writes. Figure 5.14 reports both cold and warm efficiencies. The efficiency of the write path improves somewhat when the manifest can be cached across writes.

Recommendations to Developers

Developers have a few strategies available to alter the performance of writes in Gaia. The specific strategies taken ultimately depend on the workload and data being stored.

Incremental Key Space Shard Writes

Some applications may have a large key space, but only need to carry out a key/value writes at a time. The aggregation driver has an opportunity to reduce the
(a) Gaia Build performance. Note that this includes the cost of fetching the existing manifest before constructing a new one.

(b) Gaia Push/Publish performance (both stages execute in parallel).

Figure 5.13: Box-and-whiskers plots of mutate flow stage performances in Gaia, for file sizes between 64K and 640K in increments of 64K.
(a) The cold efficiency, which includes the time taken to fetch the volume record over the network.

(b) The warm efficiency, which assumes the volume record is cached and excludes it from the mutate flow’s running time.

Figure 5.14: Box-and-whiskers plots of Gaia’s write efficiencies.
amount of time and space that need to be consumed to carry the write out by only writing the new key metadata.

If the application only wrote one value, then only one key in the manifest would be altered. The Build stage could be optimized to inspect the Gaia node’s key space shard in-between writes, only pass along the delta between writes to the Push stage.

The Push stage would accumulate deltas from the Build stage, and combine them into a single key shard in the backend storage service. Then, a subsequent Acquire step would continue to fetch the key space shard as expected.

The reason this is not the default behavior is because patching a record efficiently requires the cloud service to support a “range write” API call, whereby the client specifies a byte offset and length as to where to write the given data. Most popular cloud storage providers do not support this—they only allow clients to write whole records. For these services, a Push stage could not efficiently write key shard deltas, since it would need to load the entire key shard, patch it, and store the entire updated key shard on each write. As such, this behavior would be added by developers in the special case where they were using a suitable cloud storage provider.

Write Batching

Applications may not need all of their writes to be Published immediately. Instead, a Publish can reflect many writes at once. This would be allowed if the application’s storage semantics do not require all peers to see each others’ most-recent state. This can lead to better overall performance for applications that frequently overwrite the same key/value pairs—overwritten key/value pairs would not need to be replicated.

Applications that have semantics compatible with write-batching can not only realize better performance than the default behavior, but also take advantage of client-side libraries that offer more expressive storage interfaces. Examples include
Compass [50], which provides a MongoDB-like interface, and sql.js [204], which provides a client-side SQLite implementation. Both of these libraries are easily used with Gaia, provided that the application’s storage semantics allow write-batching (i.e. a Publish would take place in response to the application committing a transaction in one of these APIs). In fact, Compass was designed specifically for Gaia by a third party contributor.

5.3.2 Overheads in Syndicate

Syndicate’s default write strategy is make data as durable as possible. This is realized by the default behaviors of replicating all manifests and blocks to all replica gateways in the volume in the Push stage, and synchronously uploading the record’s metadata to the Syndicate MS in the Publish stage.

User gateways invoke the Build, Push, and Publish stages on write. Since Syndicate is designed to process scientific workloads, it expects multiple write-capable user gateways to be online at once. However, it assumes that user gateways usually (but not always) write to the same files that they coordinate. This is reasonable in practice, since scientific computing loads are usually designed to run on many parallel computers which share as little data with one another as possible.

In light of this, the default common-case behaviors of the Build, Push, and Publish stages in Syndicate are to assemble a new manifest locally (Build), replicate the manifest and blocks to all replica gateways (Push), and synchronously upload the new metadata to the MS (Publish). Push and Publish are run automatically when a record is close()’ed, if the application does not do so explicitly via a call to fsync(). These are the default behaviors of the user gateway carrying out the write is also the coordinator.

If the writer gateway is not the coordinator, then it enlists the coordinator’s help it carry out the write. The writer’s Push stage will first replicate the new blocks, and
then synchronously request that the coordinator both Push a new manifest with the requested changes and Publish new metadata that reflects it.

By default, replica gateways do not have any specialized aggregation driver logic on the write path. They simply accept chunks from user gateways, and replicate them with their service drivers.

To summarize, the write overheads in Syndicate are as follows:

- **The time and space overheads of building a new manifest.** By default, a UG will incur a network round-trip when it Builds a new manifest for a record that it does not coordinate. In addition, the UG will incur a round-trip to the MS to ensure that the new manifest it is modifying is fresh when executing the default Build implementation.

- **The time and space overheads of storing new metadata.** The record’s coordinator will incur a network round-trip to the MS when Publishing new data, and storing the new metadata incurs $O(1)$ extra space. In the case where the writer is not the coordinator, two network round-trips are incurred: one to the MS and back, and one to the coordinator and back.

- **The time and space overheads of storing a new manifest.** The record’s coordinator will incur a network round-trip to each replica gateway to store the new manifest, and a network round-trip from each replica gateway to its underlying storage services. This yields $O(g)$ round-trips, where g is the number of replica gateways. The manifest size is $O(n)$ bytes for a record of n bytes, so replicating and storing it to all gateways takes $O(gn)$ time and space.

- **The time overheads of storing blocks.** Similar to manifests, replicating a block takes two network round-trips (one for the replica gateway, and one for the service).
Measured Overheads

The overheads of writing in Syndicate were measured for the same block sizes and record sizes as reads: records composed of 10 to 100 blocks (in intervals of 10 blocks) for a “small” block size of 1K and a “medium” block size of 10K. The same UG, RG, and MS in the read test were used in the write test. The total mutate flow performances are shown in Figure 5.15.

Despite the noisy measurements, the amount of time taken to write records of these sizes grows linearly with file size. For the 1K block measurement, the noise in the measurements is mainly due to variations in the disk write performance and chunk-writing scheduler in the UG. For the 10K block measurement, the noise is mainly due to the Push stage (i.e. there is more variance in uploading large blocks). This is visible in the Build, Push, and Publish performances in Figures 5.16, 5.17, and 5.18 respectively.

The Build step occurs within the UG. In Syndicate, the Build step includes the process of hashing the blocks and flushing them to a temporary storage location on disk before it is replicated. While the effect is hard to see here due to the small amount of data, the Build stage’s time increases linearly with the amount of data being written, since the manifest includes the hashes of all blocks (Figure 5.16). The Build stage with 1K blocks completes in less than 500 milliseconds, while the Build stage with 10K blocks takes less than 750 milliseconds.

The Push stage replicates all blocks to the RG. The Push stage times show linear increases with the number of blocks (Figure 5.17). In the 1K block size case, the median Push stage completes within 1.9 and 2.5 seconds. In the 10K block size case, the median Push stage completes within 3.5 and 8.1 seconds.

The Publish stage replicates the new manifest ID to the MS, as well as a garbage-collection log. Because the garbage-collection log data that the UG replicates is
Figure 5.15: Box-and-whiskers plots of mutate flow performances in Syndicate, for file sizes between 10K and 100K and a block size of 1K.
Figure 5.16: Box-and-whiskers plots of the Build stage performance, for 1K and 10K blocks.
(a) Syndicate Push stage performance with 1K blocks

(b) Syndicate Push stage performance with 10K blocks

Figure 5.17: Box-and-whiskers plots of the Push stage performance, for 1K and 10K blocks.
Figure 5.18: Box-and-whiskers plots of the Publish stage performance, for 1K and 10K blocks.
proportional to the number of blocks written, it is expected that the amount of time
taken to replicate metadata will increase linearly with the size of the write.

However, due to the facts that only at most 100 blocks are replicated and that
the size of a garbage-collection entry is 8 bytes, this linear relationship is not visible.
Publish steps take between 640 milliseconds and 900 milliseconds across both the 1K
and 10K block size tests (Figure 5.18).

The write efficiencies of Syndicate are shown in Figure 5.19. As long as inter-
nal fragmentation can be avoided, using larger block sizes drastically improves the
system’s efficiency.

Recommendations for Developers

In addition to recommendations for aggregation driver developers for reads, some
performance enhancements can be devised for writes. These strategies depend on
the workload and the nature of the data, which is why they are not included in the
default behavior.

Write Coalescing

A lot of workflows write data sequentially, and in bursts. Developers can save
a set of round-trips to the replica gateways in the case where two sequential writes
straddle a block boundary by deferring replication of the straddled block.

Replica Gateway Selection

Developers are not required to replicate a chunk to all gateways. It is expected
that in situations where there are multiple choices for a data store, the aggregation
(a) Syndicate write efficiency for 1K blocks.

(b) Syndicate write efficiency for 10K blocks.

Figure 5.19: Box-and-whiskers plots of the efficiencies of Syndicate writes.
driver will choose which chunk goes with which storage provider. This can be done both to preserve end-to-end storage semantics, and to improve write performance.

Replica Gateway Chains

Syndicate supports custom gateway types. Developers can exploit this to implement chain replication [193] [187], whereby a set of replica gateways are arranged into a sequence such that when receiving a chunk, the gateway stores it and forwards it to the next gateway in the sequence. User gateways would only need to forward chunks to the chain tip. The tip would have a “replica gateway” type, but the gateways in the chain would have a distinct “chain replicator” type.

The aggregation driver would be written such that each replica gateway and chain replicator gateway discover their types and locations in the topology from the certificate graph. The Push stage for each gateway would use this knowledge to determine its next-hop gateway. This strategy is generalizable to arbitrary store-and-forward topologies.

The performance advantage this would incur is that it would enable the same degree of durability as replicating in parallel, but without the extra round-trips from the user gateway. User gateways located behind underprovisioned network links would notice the improvement, since they would not need to spend as much time pushing chunks through a local bottleneck.

Chunk Patching

If the workload exhibits random-write behaviors, one strategy developers can employ is to implement a “patching” algorithm in their aggregation driver’s Push stage. Instead of sending the entire chunk to a replica gateway, a user gateway would send
only the byte ranges and offsets to the replica gateways. This would cut down on the
data the replica gateway needs to send, even if the block size in the volume was large.
The replica gateway would reassemble the patches into a block sometime before the
next read occurs—either eagerly as part of an internal garbage-collection algorithm,
or lazily as part of the get_chunk() or serialize() driver methods.

5.4 Discussion

Both Syndicate and Gaia add measurable overheads when compared to reading and
writing directly to cloud storage. This should come as no surprise given the designs
of these two systems.

The overheads in both Gaia and Syndicate are due to three design factors: all
data is broken up and transmitted as blocks and manifests, all data passes through
one or more gateways en route to services that host it, and reads and writes may
incur an extra round-trip to the SDS system’s metadata service. The microbench-
marks presented here show that these overheads either increase the time and space
requirements by a constant factor, or are in a linear relationship with the amount of
data being read or written. The fact that the read and write efficiencies both increase
with the size of the data indicates that loading and storing the data to the underlying
storage services are the limiting factors to the system’s performance.

The benefits to users and developers the systems offer cannot be overstated. Us-
ing SDS systems has the same value proposition of using TCP/IP sockets instead of
layer-2 frames, or using filesystems instead of directly loading and storing disk sec-
tors. While both SDS and these systems impose measurable overhead and are less
performant than the alternatives, the gains that users and developers realize by using
them outweigh the performance loss.
Regardless of the overheads SDS imposes, the case for SDS-powered applications is becoming more and more apparent to non-academic and non-technical audiences. The overheads may simply be perceived by users as the cost of achieving the gains SDS provides. Implementing features such as end-to-end data privacy and data portability is straightforward in SDS, since SDS systems already isolate applications from both the storage they use and the trust relationships between users and organizations. Users seem to appreciate this—Gaia-powered SDS applications like Graphite Docs and Stealthy have been reported on in multiple mainstream news outlets [174, 83], in which these very features are touted as technical remedies to problems that exist in Google Docs and Facebook Messenger, respectively.
Chapter 6

Related Work

The SDS approach described in this thesis is synthesized from ideas from several different bodies of work. Individual concepts in SDS are based on time-tested design principles and engineering techniques that have seen widespread usage. The main contribution is a new way to apply many existing principles in a coherent fashion to address long-standing challenges in the design of wide-area networked applications.

6.1 Software-defined Storage in Industry

Over the course of the development of this thesis, the term “software-defined storage” has emerged as a marketing term in the software industry with a different meaning than the one put forth in this thesis. In the industry, SDS refers to software that implements some form of network-wide storage virtualization or storage emulation in the context of a single organization (e.g. company or datacenter) [200].

Industry offerings that refer to themselves as “software-defined storage” focus on implementing datacenter storage hardware as software, thereby decoupling datacenter tenants and operators from specific vendors. This is a complementary to but fundamentally different problem from this work, which focuses on preserving wide-area applications’ storage semantics in the face of changes to underlying storage systems.
This work addresses the problem of preserving storage semantics across multiple organizational boundaries, whereas prior work focuses on applying storage provisioning policies within a single organization.

6.1.1 Virtual Block Devices

One category of industry offerings that refers to itself as “software-defined storage” focuses on implementing programmable block devices. Recent work on datacenter storage networks have focused on providing abstractions similar to software-defined networking (SDN) to manage VM disk I/O queues. In IOFlow [188], virtual block devices are mapped into VMs as virtual hard drives, and the datacenter implements a centralized storage control plane and distributed data plane to shape I/O traffic to and from storage servers.

Some storage vendors have begun to refer to their existing iSCSI, NAS, and SAN offerings as “software-defined storage” [71]. In particular, they tout the ability to run the storage network controllers in software (whereas previously, they had been implemented on dedicated hardware).

Another work that refers to itself as software-defined storage is software-defined flash [153], where datacenter applications interact with solid-state disks (SSDs) via a software-defined flash controller. This work focuses on improving utilization of the hardware by allowing the application to directly control aspects of the hardware that are typically left to the device driver or firmware (i.e. I/O scheduling, channel utilization, provisioning, etc.).

While there is some conceptual overlap with the wide-area SDS work in this thesis insofar as applying policies on storage data flows, the bulk of this prior work focuses on applying policies on shaping IOP traffic. There is minimal focus on preserving application-level semantics. Since these systems are always under the control of a
single organization (i.e. the datacenter), there is no need for them to worry about preserving organizational autonomy.

6.1.2 Storage System Emulation

Other industry offerings that refer to themselves as “software-defined storage” focus on emulating existing storage systems, instead of specific pieces of hardware. This allows tenants to move from one datacenter to another without having to rewrite the storage interfacing logic. For example, industry offerings exist to provide compatibility with NFS, CIFS, SMB, and Amazon S3 (contemporary offerings include those from Veritas [195], Scality [170], Acronis [2]).

Like this prior work, the work in this thesis implements storage system emulation through service drivers. The difference between prior work and this thesis is the use of aggregation drivers to allow multiple cloud storage systems to be combined while preserving end-to-end semantics.

6.1.3 Storage Abstraction and Virtualization

Cloud storage gateways [157] are type of network appliance that sometimes refer to themselves as “software-defined storage.” They allow an organization to apply certain data management policies on organization-originated data bound for cloud storage. These policies include transparent compression, de-duplication, encryption, access logging and so on.

The wide-area SDS gateways described in this thesis act as “virtual” cloud storage gateways after a fashion, in that they apply local data transformations in the form of an aggregation driver stage. Unlike cloud storage gateways, SDS gateways exist entirely in software and can be provisioned, duplicated, migrated, reprogrammed, and arranged in a particular network topology on-the-fly.
Software compatibility libraries like Apache libcloud and various storage-specific userspace filesystems try to provide a uniform interface for accessing disparate cloud storage resources. This is equivalent to what service drivers do in SDS. However, these systems only provide a uniform syntactic interface (i.e. a filesystem). The storage semantics are different for each back-end system—even though two software compatibility libraries have the same interfaces, they cannot be used interchangeably.

6.2 Operating System Storage Principles

SDS isolates application design from both the syntactic and semantic interfaces of underlying storage systems, and facilitates code-reuse by allowing its components to be recombined to create new functionality. This concept is inspired by well-established operating system design principles.

6.2.1 Operating System Storage Design

The designs of virtual filesystem abstractions in various points of UNIX’s evolution address this concern. Like SDS, they introduce two layers of indirection—a set of filesystem drivers that overlay a set of block device drivers—to isolate single-device semantics from cross-device semantics. This is analogous to the concept of service drivers and aggregation drivers being logically distinct abstraction layers. One layer provides a common “narrow waist” between the hardware and API, and the other layer implements storage semantics for a host of applications “on top” of the narrow waist.

The presence of two layers of indirection can also be found in the storage architectures of other multi-user non-UNIX operating systems like VMS, Microsoft
Windows \[59\], and IBM System z \[108\]. This is an emergent design pattern in storage systems with multiple back-ends, and this work in SDS echoes this pattern.

One task performed by SDS systems is storage virtualization. Synthesizing logical volumes from multiple devices \[186\] has been a mainstay in most UNIX-like operating systems, and hierarchical storage management \[202\] has been used in production in mainframes and workstations for decades. This is a use-case that can also be fulfilled by SDS with the right storage drivers.

6.2.2 Composable Software Systems

SDS allows developers to construct complex storage systems by composing unrelated stages of different aggregation drivers into a single driver. This design principle is similar to the UNIX design philosophy \[85\], stackable filesystems \[102\], network function virtualization systems like ONOS \[26\], and programmable network processors like the Click modular router \[114\].

SDS aggregation drivers are constructed by chaining together a sequence of reusable stages to form a program that controls the system’s end-to-end I/O processing. This is analogous to how UNIX programs are built by chaining together unrelated programs into pipelines, how stackable filesystems can be chained together to implement complex storage semantics, how how Click router components can be chained together to implement complex packet-processing programs, and how network functions are chained together to implement complex network-wide processing. In all cases, the developer synthesizes new functionality by swapping existing modules in and out, as opposed to writing bespoke code for each use-case. SDS extends this idea to multi-user, multi-network settings, and shows how different composable parts can be combined by developers while operating in separate organizations.
6.3 Secure Code Deployment

A major operational facet of SDS systems is the ability for volume owners to specify and upgrade drivers at runtime. This allows them to preserve the storage semantics of their volumes in face of changes in the underlying services. But in order to do so, SDS systems must offer a way to securely deploy new driver code at run-time, without interrupting the running system.

6.3.1 Secure Code Deployment

The concerns addressed by prior work like Stork [38], Raven [100], and The Update Framework [167] revolve around ensuring end-to-end software authenticity and freshness, so that the remote hosts deploy the code the owner specifies without having to trust any intermediate repositories. SDS must address this concern as well in the deployment of driver code and configuration. This work in this thesis operate under the additional constraint that upgrades must be atomic with respect to all ongoing application-level operations.

6.3.2 Secure Remote Code Execution

The aggregation driver only executes successfully if all of its stages execute successfully, even though they run in separate organizations. This introduces the problem of verifying that the remote processor executed the code as prescribed. Prior work in secure remote execution focuses on new computational techniques, like implementing homomorphic encryption [127], preserving auditable execution traces [192], or relying on trusted hardware extensions in the remote computers [54].

SDS gateways complement this prior work in multi-host, multi-network settings by ensuring that each gateway has a coherent view of the other gateways invoking its driver code. A data flow only executes if all affected gateways can first verify that they
each know what code each other gateway is running. It is possible to construct SDS gateways that employ a secure computation techniques in this related work, and in doing so, arrive at a data flow processing algorithm whose execution can be audited end-to-end by concerned users. However, this is the responsibility of the gateway implementation’s driver runtime environment.

6.4 Software-defined Networking

Software-defined networking (SDN) addresses similar types of problems for network policy as SDS addresses for data policy. SDS builds on several design techniques pioneered in SDN systems.

6.4.1 Control and Data Planes

Early SDN systems like 4D [97] and Ethane [39] introduced the concept of separating a distributed data-processing plane from a logically-central control plane. This allowed SDN operators to specify top-down, globally-scoped policies for controlling network traffic—a key innovation over earlier work in active networking [75]. SDS applies this concept by separating data flow processing from configuration management, whereby the volume owner operates the logically-central control plane for the volume by manipulating a certificate graph.

Another key concept introduced by 4D is the notion of dedicated subsystems for discovery of network elements and rule dissemination to them. SDS’s use of a self-sovereign identity system and certificate graph addresses the same kinds of problems, but for users and gateways instead of network elements.

SDN systems encourage open interfaces between their control and data planes. For example, the OpenFlow specification [132] describes interfaces for network elements to implement in order to participate in an SDN system. This removes a barrier to entry
by allowing control planes and data planes to be implemented independently, leading to a proliferation of different network operating systems [26] [98] [182] [28] [75].

SDS extends this concept for storage by encouraging the development of many different type of gateways, which can be tailored to individual applications while remaining compatible with an existing SDS system. Gateways share a common interchange format (chunks), but allow developers to independently implement their own APIs and custom behaviors. This was leveraged implement email-specific replica gateways on top of Syndicate, for example.

6.4.2 Ease of Programmability

More recent work in SDN programmability, such as Frenetic [80] and Pyretic [137], focuses on allowing developers to write a global flow control program in a familiar language that compiles into individual flow rules. This work takes a similar approach in the design of Syndicate’s aggregation drivers, whereby a single driver program is automatically distributed and executed piecemeal across all of the volume owner’s gateways.

6.5 Peer-to-peer Storage

SDS systems distribute data chunks in a peer-to-peer fashion, but use a logically central metadata service to discover and route requests. In addition, they employ a “trust-to-trust” user discovery layer [45] which SDS elements use to bootstrap trust in one another. Prior works in distributed storage systems have faced similar challenges to the ones that necessitated these SDS design elements, but have addressed them in different ways.
6.5.1 Content Discovery

Content discovery is an important aspect of distributed storage design. Prior work in scalable distributed storage systems \cite{197, 4, 101, 22, 90, 115} has shown the utility of implementing separate metadata servers from data servers. This helps system operators to better manage access control and consistency by placing the logic to do so within one system component. SDS systems employ a metadata service to achieve the same end, but such that metadata servers are not part of the trusted computing base. In addition, SDS elements may be programmed to validate the metadata via application-specific criteria.

In wide-area systems that span multiple organizations, a key difficulty with addressing content discovery is ensuring that the system can operate under organizational churn. The solutions in prior work depend on who manages the content discovery mechanism.

6.5.2 Single-stakeholder Content Discovery

Wide-area storage systems like Oceanstore \cite{117}, Pond \cite{161}, and Bonafide \cite{44} implement content discovery by relying on a federation of BFT nodes, which perform write admission control and write serialization. While they are all able tolerate the failures of other storage elements, the users of these systems do not participate in content discovery and instead trust the federation to not be faulty.

SDS systems like Syndicate offer a more flexible approach. While Syndicate relies on a central metadata service for content discovery, the service is only trusted to keep data available. Moreover, each application, through the use of an aggregation driver, can program its volumes to validate system metadata in arbitrary ways. This allows the application to seamlessly control how much trust it places in metadata services outside of its control. For example, in the limit the set of Syndicate gateways can
maintain their own replicated log of metadata writes through their aggregation driver, and use the log to monitor the metadata service for faults.

6.5.3 Multi-stakeholder Content Discovery

Prior wide-area storage systems like Shark [13], CoralCDN [81], Vanish [88], OpenDHT [162], and BitTorrent [49] are designed with multi-stakeholder content discovery mechanisms. Anyone can stand up additional nodes to help with content discovery.

A key improvement in multi-stakeholder content discovery systems offered by SDS is the use of a blockchain as a shared source of truth between storage elements. All of the aforementioned prior works rely on DHTs or DSHTs [82] in order to scale the number of records, and work by distributing routing information evenly across a number of hosts while tolerating node churn and supporting fast queries.

The drawback with this approach is that they are vulnerable to Sybil attacks [63] and route-censorship attacks [175]. This can cause to a loss of routing state, and can possibly cause invalid or malicious routing state to be used. The two SDS systems in this work avoid these problems by ensuring each node has a 100% replica of the routing state (within the SSI system), and ensure that the state size grows at a fixed rate by relying on a public blockchain as a rate-limiter. As a result, gateways in the prototype SDS systems can discover one another and one another’s content as long as at least one SSI node is reachable.

6.5.4 User Authentication

Peer-to-peer systems are often multi-user systems. To support multiple users, they need to perform some form of user discovery and authentication. Most network filesystems systems that run within a single organization (like NFS [168] and GFS [89]) use a trusted, centralized user directory, which allows users and administrators to
enumerate user accounts and assign them easy-to-remember names without name collisions. Federated filesystems like AFS [105] and Farsite [4] use a trusted, existing public-key infrastructure to discover users in a similar fashion.

Other systems try to do without a centralized user directory, but at the expense of removing human-friendly user identifiers. For example, SFS [131] eschews user enumeration by addressing this problem with self-certifying paths, where users are identified by public keys. Others like WheelFS [183] punt on user discovery altogether, and require each operator to curate the public keys of trusted users out-of-band.

By relying on a self-sovereign identity system, SDS systems allow users to discover each other’s public keys without a centralized user directory, and without introducing human-unfriendly names. Certain PKI systems like attribute-based encryption [171] [35] try to enable this, but have the significant drawback that each user must re-key if a single private key is compromised.

6.6 User-defined Storage Semantics

Different applications need to make different trade-offs in their storage. To accommodate this, prior work has provided control points to help them make these trade-offs. SDS systems take this idea to its logical conclusion, where the application itself specifies a portable, reusable driver that defines its end-to-end semantics.

In their simplest forms, systems that offer user-defined consistency do so by allowing the user to choose from a handful of built-in semantics that all reads and writes to the data will follow. This includes systems like WheelFS [183], PRACTI [24], and Bayou [155], where the user can tag files and sessions as needing to adhere to a certain consistency models have a certain degree of durability.
Some storage systems try to resolve write conflicts by deferring to user decisions. These include version control systems like subversion \cite{17} and git \cite{68}, and file storage systems like Dropbox \cite{64}.

Other storage systems like Coda \cite{112}, COPS \cite{125}, and Ori \cite{128} allow the user to supply a conflict-resolution algorithm for handling conflicts. The algorithm is later used by the system in order to resolve conflicts between replicas.

Systems that need high availability or high durability allow clients to choose replica placement. These include programmable CDNs like CloudFlare \cite{48} and Akamai \cite{5}, as well as high-availability cloud storage like S3 \cite{10}. Open-membership storage layers that offer this include BitStore \cite{119} and Storj \cite{172}.

In the context of SDS systems, developers materialize systems that address all storage concerns within a single storage element—the aggregation driver. This allows them maximum flexibility in addressing storage concerns. SDS helps developers manage the associated complexity and development overhead of doing so by providing an aggregation driver specification that facilitates component reuse and incremental deployment.

6.7 Applications

This thesis described three sample SDS-powered applications, all of which have been implemented in prior work but with significant constraints. Re-implementing them with SDS helped to remove many of these constraints.

6.7.1 Encrypted Email

PGP \cite{206} has long been the “gold standard” for encrypted communication over email. It works by allowing users to send and receive encrypted messages over SMTP. However, multiple usability studies \cite{201} \cite{163} have shown that users have a hard
time interacting with cryptographic key pairs. Email clients like Enigmail [11] and Mailvelope [126] attempt to alleviate some usability problems, but ultimately require users to actively participate in key management and key discovery. All PGP-based email requires both the sender and recipients to participate in order to realize message confidentiality and authenticity.

The Syndicate-powered email application differs from prior work in that it removes the need for humans to manage keys. In doing so, it provides a user experience comparable with Webmail. The underlying SDS gateways automatically encrypt and decrypt messages on endpoints, and provide multiple options for communicating with legacy SMTP email users.

6.7.2 Groupware

Software that helps groups of users work on a shared task has been a significant computer application since the late 1980s, with many early works focusing on various ways to allow clients to interact with shared state on a server [20]. Many groupware applications, such as video-conferencing, chat rooms, and document-sharing have subsequently been realized as Web applications. Examples today include Microsoft Office 365 [135], Google Docs [95], and Slack [176].

An architectural mainstay of most groupware systems is that they follow a client-server model. The users run the client software on their computers (e.g. as a Web page in a Web browser in contemporary systems) to interact with shared state hosted on one or more servers. Clients are not assumed to be reliable, and do not host any authoritative state. Instead, servers store the authoritative state of the system and present clients with views of it.

What this means for groupware implementations is that most of the application’s business logic runs on the servers. This is necessary in order to address global data management concerns, such as access controls, concurrency handling, and replication.
Since only the servers process operations on authoritative state, only the servers are in a position to handle these concerns. In doing so, groupware servers pose a single point of failure—if a groupware server fails, clients cannot interact with their data.

The serverless groupware library built on Gaia avoids this issue by separating the business logic from the storage logic. Gaia still provides groupware applications with the client-server computing model, but such that the role of the server is reduced to loading and storing opaque blobs of data. Gaia instead moves application business logic into an aggregation driver, which can be deployed, upgraded, and migrated across a dynamic set of gateways at runtime. This provides a degree of operational flexibility not seen in prior groupware implementations—a volume owner can transparently migrate the groupware from one storage provider to another (to tolerate changes in service providers), and from one set of gateways to another (to tolerate changes in trust relationships and changes in host availability).

6.7.3 Scientific Data Set Staging

Related work on sharing scientific data across multiple networks includes work on dedicated sharing and transfer services like Globus [41], hosting data in highly-available datacenters like ABoVE [141] and Cyverse [56], and relying on an array of network caches to distribute data from one data origin to many downstream readers (like CernVMFS [111]).

Scientific data transfer services allow labs to explicitly share and copy data from one site to another. Globus allows scientists to pipe data between servers that the requester can access, and allows scientists to share data from commodity cloud storage to external data consumers. Like Globus, Syndicate encourages reusing commodity cloud storage services for hosting data, and leverages existing identity management services to authenticate data and transfer requests between organizations.
This thesis is not the first to propose using a network of commodity caches to help distribute scientific data. CernVMFS [111] allows scientists at CERN to share data with the world. CernVMFS implements a catalog service that functions like the Syndicate MS and AG in that it provides an index over the available datasets, which can be fetched out of band and used to read the data itself through the caches.

This work extends this concept by supporting reads and writes while preserving cache coherency. Unlike CernVMFS, the Syndicate-powered data-sharing framework allows the upstream datasets to be written to at runtime, while there are ongoing reads. The AG and MS allow readers to discover the latest data without having to rely on consistency hints from the caches (such as Etags or Last-Modified HTTP headers).
Chapter 7

Conclusion

Wide-area applications that leverage commodity infrastructure are difficult to keep running in the face of changes in the underlying services. Services can go offline, services can change their APIs and storage semantics, and services can fall outside the trust domains of their users.

This thesis presents wide-area software-defined storage as a solution to these challenges. By giving developers the ability to implement end-to-end storage semantics as a first-class storage element (an aggregation driver), SDS allows applications to tolerate changes in both the underlying services and trust relationships between users without modification. In addition, SDS embraces the fact that storage spans multiple organizations, where each organization has its own data hosting policy. SDS allows each organization to enforce its policies unilaterally without affecting the end-to-end storage semantics. It achieves this by allowing users to choose the routes their reads and writes take through the set of organizations.

This thesis explores the design principles of wide-area software-defined storage, and distills several design principles for building such systems. To validate the principles in practice, this thesis presents two real-world implementations—Gaia and Syndicate. Both systems allow applications to leverage commodity cloud services in the
face of changes to both the service API and changes to the trust relationships users have with them.

To demonstrate the feasibility of constructing SDS-powered applications, this thesis presents the design and implementation of three real-world applications: end-to-end encrypted Webmail, decentralized groupware, and CDN-accelerated scientific data staging. All three applications leverage a SDS system to ensure that application-specific end-to-end semantics are applied across each participating organization, while continuing to preserve each organization’s data policies. In each case, the SDS systems helps the application overcome several hard problems that have plagued prior application designs: overcoming the usability challenge of public key management (for email), removing central points of control (for groupware), and preserving end-to-end consistency while relying on third-party CDNs (for scientific data-sharing).

This thesis gives microbenchmarks and performance numbers for the SDS prototypes and sample applications. The overhead of the SDS system is acceptable, since it does not affect the sample applications’ usability. SDS gives developers many options for controlling the end-to-end performance of reads and writes, allowing them to produce performant applications despite the overheads.

Gaia, Syndicate, and the sample applications have all been released as open-source [146] [185] [148] [166] [165].
Bibliography

238

