Skip navigation
Please use this identifier to cite or link to this item:
Title: Real-time capable modeling of neutral beam injection on NSTX-U using neural networks
Contributors: Boyer, M.D.
Kaye, S.
Erickson, K.
U. S. Department of Energy contract number DE-AC02-09CH11466
Keywords: Plasma Control
Neutral beam modeling
Neural networks
Issue Date: Feb-2019
Publisher: Princeton Plasma Physics Laboratory, Princeton University
Related Publication: NUCLEAR FUSION 59 056008 (May 2019)
Abstract: A new model of heating, current drive, torque and other effects of neutral beam injection on NSTX-U that uses neural networks has been developed. The model has been trained and tested on the results of the Monte Carlo code NUBEAM for the database of experimental discharges taken during the first operational campaign of NSTX-U. By projecting flux surface quantities onto empirically derived basis functions, the model is able to efficiently and accurately reproduce the behavior of both scalars, like the total neutron rate and shine through, and profiles, like beam current drive and heating. The model has been tested on the NSTX-U real-time computer, demonstrating a rapid execution time orders of magnitude faster than the Monte Carlo code that is well suited for the iterative calculations needed to interpret experimental results, optimization during scenario development activities, and real-time plasma control applications. Simulation results of a proposed design for a nonlinear observer that embeds the neural network calculations to estimate the poloidal flux profile evolution, as well as effective charge and fast ion diffusivity, are presented.
Referenced By:
Appears in Collections:NSTX-U

Files in This Item:
File Description SizeFormat 
ARK_DATA.zip66.5 MBUnknownView/Download
readme6.01 kBUnknownView/Download

Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.