Skip navigation
Please use this identifier to cite or link to this item: http://arks.princeton.edu/ark:/88435/dsp01xw42nc267
Title: Cheng-Yau Type Local Gradient Estimate for Harmonic Functions on RCD*(K,N) Metric Measure Spaces
Authors: Ansari, Sara
Advisors: Chang, Sun-Yung Alice
Zhang, Ruobing
Department: Mathematics
Class Year: 2024
Abstract: We present a geometric argument to prove a Cheng-Yau type local gradient estimate for positive harmonic functions on RCD*(K,N) metric measure spaces. The proof is an extension of Lihe Wang's geometric De Giorgi argument in [8] from Euclidean space to RCD*(K,N) space and uses a local uniform sobolev inequality and a local Bochner inequality established by Hua, Kell, and Xia in [6].
URI: http://arks.princeton.edu/ark:/88435/dsp01xw42nc267
Type of Material: Princeton University Senior Theses
Language: en
Appears in Collections:Mathematics, 1934-2024

Files in This Item:
File Description SizeFormat 
ANSARI-SARA-THESIS.pdf340.64 kBAdobe PDF    Request a copy


Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.