Skip navigation
Please use this identifier to cite or link to this item: http://arks.princeton.edu/ark:/88435/dsp01x920g107d
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSkinner, Christopher
dc.contributor.authorDo, Kim Tuan
dc.contributor.otherMathematics Department
dc.date.accessioned2022-10-10T19:50:52Z-
dc.date.available2022-10-10T19:50:52Z-
dc.date.created2022-01-01
dc.date.issued2022
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/dsp01x920g107d-
dc.description.abstractIn this thesis, we construct a new anticyclotomic Euler system (in the sense of Jetchev-Nekovar-Skinner (JNS)) for the Galois representation attached to a newform f of weight 2k twisted by an anticyclotomic Hecke character \chi of infinity type (l,−l), denoted by V_f(\chi), when the Heegner Hypothesis is not satisfied. The main ingredients for our construction are the Bertolini-Seveso-Venerucci (BSV) diagonal classes and the Lei-Loeffler-Zerbes norm maps. We then show some arithmetic applications of the constructed Euler system, including the rank 0 Bloch-Kato Conjecture for V_f(\chi) when k>=l+1, using the explicit reciprocity law of BSV and the machinery of JNS.
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.publisherPrinceton, NJ : Princeton University
dc.relation.isformatofThe Mudd Manuscript Library retains one bound copy of each dissertation. Search for these copies in the library's main catalog: <a href=http://catalog.princeton.edu>catalog.princeton.edu</a>
dc.subjectEuler system
dc.subjectIwasawa theory
dc.subject.classificationMathematics
dc.titleConstruction of an anticyclotomic Euler system with applications
dc.typeAcademic dissertations (Ph.D.)
pu.date.classyear2022
pu.departmentMathematics
Appears in Collections:Mathematics

Files in This Item:
File Description SizeFormat 
Do_princeton_0181D_14213.pdf724.08 kBAdobe PDFView/Download


Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.