Please use this identifier to cite or link to this item:
http://arks.princeton.edu/ark:/88435/dsp01v979v628j
Title: | A Noninvasive Peripheral Neural Interface |
Authors: | Shields, Nathaniel |
Advisors: | Arnold, Craig |
Department: | Mechanical and Aerospace Engineering |
Certificate Program: | Engineering and Management Systems Program |
Class Year: | 2022 |
Abstract: | I explore technologies read from and write to the peripheral nervous system. Terminally, neural interfaces are the rational choice for both measuring movement (motor signals) and producing stimulation. Some sensations are inaccessible by other means. I construct a system that reads nerve signals from the forearm and produces predictions of fingertip position. Despite the dubious quality of my data, stunted in the frequency domain by a low sampling rate, I create a machine-learning model that predicts the locations of the fingertips within an inch. I reduce the model complexity for use in real time. Nevertheless, the millimeter-level precision claimed by CTRL Labs (now Meta), a firm producing a similar system, remains elusive. Much space for innovation remains. |
URI: | http://arks.princeton.edu/ark:/88435/dsp01v979v628j |
Type of Material: | Princeton University Senior Theses |
Language: | en |
Appears in Collections: | Mechanical and Aerospace Engineering, 1924-2022 |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
SHIELDS-NATHANIEL-THESIS.pdf | 16.24 MB | Adobe PDF | Request a copy |
Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.