Skip navigation
Please use this identifier to cite or link to this item:
Title: Designing A SUBOFF Model for Drag Reduction Using SLIPS
Authors: Gibbons, Scott
Advisors: Smits, Alexander
Department: Mechanical and Aerospace Engineering
Class Year: 2016
Abstract: Liquid-repellent surfaces offer many benefits such as drag reduction, anti-fouling, and self-cleaning abilities. Many tests have been done on superhydrophobic surfaces and liquid-infused surfaces in both laminar and turbulent flow. However, they were not as encompassing as tests that could be performed on a body of revolution at much higher Reynolds numbers. The purpose of this project was to design a SUBOFF model that will be the test apparatus to demonstrate the benefits of SLIPS (slippery liquid-infused porous surfaces), particularly their drag reduction capabilities. This model will allow for tests at much higher Reynolds numbers on a body of revolution which is much better for practical engineering purposes. The model was designed to be cost-efficient, slightly buoyant, and structurally sound. The bow and stern pieces were 3D printed and the cylindrical section was made of aluminum tubing that was machined to the proper dimensions. The tests will be performed in the largest tow tank at the Unite States Naval Academy. Tests will first be performed on a SUBOFF model with an untreated surface and then on a SUBOFF model with SLIPS. The SUBOFF model with the untreated surface was successfully designed and manufactured. The SUBOFF model with SLIPS is yet to be determined. From the differences in measurements of each test run, the effect on drag reduction of SLIPS will be apparent.
Extent: 31 pages
Type of Material: Princeton University Senior Theses
Language: en_US
Appears in Collections:Mechanical and Aerospace Engineering, 1924-2019

Files in This Item:
File SizeFormat 
Gibbons_Scott_Thesis.pdf3.04 MBAdobe PDF    Request a copy

Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.