Skip navigation
Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorFan, Jianqing-
dc.contributor.authorZhong, Yiqiao-
dc.contributor.otherOperations Research and Financial Engineering Department-
dc.description.abstractModern statistical analysis often requires the integration of statistical thinking and algorithmic thinking. There are new challenges posed for classical estimation principles. Indeed, in high-dimensional problems, statistically sound estimation procedures such as maximum-likelihood estimation (MLE) may be difficult to compute, at least in the naive form. Also, spectral methods such as principal component analysis, which enjoy low computational costs, have unclear statistical guarantees in general. This thesis addresses both spectral methods and MLE in a wide range of estimation problems, including high-dimensional factor models, community detection, matrix completion, synchronization problems, etc. The fundamental structure that underlies these problems is low rank, which is a core structure in modern statistics and machine learning. The low rank structure enables the use of spectral methods, and it allows efficient algorithms for solving nonconvex optimization problems with certain structural assumptions. The contribution of this thesis includes the following. It reveals interesting phenomena about entrywise behavior of eigenvectors, leading to sharp `∞ perturbation bounds. These bounds are provided in both the deterministic regime and the random regime. Besides, a stability-based strategy, namely leave-one-out, is proposed to analyze nonconvex optimization problems. Finally, a moments-based spectral aggregation method is proposed to handle practical issues such as data heterogeneity.-
dc.publisherPrinceton, NJ : Princeton University-
dc.relation.isformatofThe Mudd Manuscript Library retains one bound copy of each dissertation. Search for these copies in the library's main catalog: <a href=> </a>-
dc.subjectHigh dimensional statistics-
dc.subjectLow rank matrices-
dc.subjectMatrix perturbation-
dc.subjectNonconvex optimization-
dc.subjectRandom matrix theory-
dc.subject.classificationOperations research-
dc.subject.classificationApplied mathematics-
dc.titleSpectral methods and MLE: a modern statistical perspective-
dc.typeAcademic dissertations (Ph.D.)-
Appears in Collections:Operations Research and Financial Engineering

Files in This Item:
File Description SizeFormat 
Zhong_princeton_0181D_13142.pdf1.62 MBAdobe PDFView/Download

Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.