Skip navigation
Please use this identifier to cite or link to this item: http://arks.princeton.edu/ark:/88435/dsp012f75rc341
Full metadata record
DC FieldValueLanguage
dc.contributorLyu, Ming-
dc.contributor.authorHernandez, Andres Correa-
dc.contributor.authorGmachl, Claire F.-
dc.date.accessioned2023-12-07T17:24:10Z-
dc.date.available2023-12-07T17:24:10Z-
dc.date.created2023-04-17-
dc.date.issued2023-12-
dc.identifier.urihttp://arks.princeton.edu/ark:/88435/dsp012f75rc341-
dc.identifier.urihttps://doi.org/10.34770/r7nr-ee50-
dc.descriptionThe method for building QC datasets and identifying the laser transition for a design is referenced in [1] A. C. Hernandez, M. Lyu and C. F. Gmachl, "Generating Quantum Cascade Laser Datasets for Applications in Machine Learning," 2022 IEEE Photonics Society Summer Topicals Meeting Series (SUM), 2022, pp. 1-2, doi: 10.1109/SUM53465.2022.9858281.en_US
dc.description.abstractThis dataset contains 1800 quantum cascade (QC) structures generated by randomly modifying an initial 10-layer design in the tolerance range of -2 to +3 Angstroms at an applied electric field range of 0 to 150 kV/cm (in 10 kV/cm increments). One structure at one electric field is one design, thus there are 27000 unique designs, represented as a row in the dataset. The layer thicknesses (in angstroms) and the electric field are inputs which get evaluated using a Schrödinger solver, ErwinJr2, to identify the laser transition Figure of Merit (fom*), among other reported outputs.en_US
dc.description.sponsorshipSchmidt DataX Fund at Princeton University, National Science Foundation under Grant No. DGE-2039656, and the Center for Statistics and Machine Learning at Princeton University through the support of Microsoften_US
dc.description.tableofcontentsQCL-layer_10-4rep-rand-m2A_3A-efield_0-10-150-v22-dataset.csv, README.txten_US
dc.language.isoen_USen_US
dc.publisherPrinceton Universityen_US
dc.rightsCC-BY 4.0en_US
dc.subjectquantum cascade laser, mid-infrared, figure of meriten_US
dc.titleQCL Dataset, 10 Layer Structure, Tolerance [-2, +3] A, Electric Field [0,10,150] kV/cmen_US
dc.title.alternativeQCL-layer_10-4rep-rand-m2A_3A-efield_0-10-150-v22-dataseten_US
dc.typeDataseten_US
Appears in Collections:EE Research Data Sets

Files in This Item:
File Description SizeFormat 
README.txt2.71 kBTextView/Download
QCL-layer_10-4rep-rand-m2A_3A-efield_0-10-150-v22-dataset.csv7.38 MBCSVView/Download


Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.