Skip navigation
Please use this identifier to cite or link to this item:
Title: Galois Closures for Rings
Authors: Biesel, Owen Douglass
Advisors: Bhargava, Manjul
Contributors: Mathematics Department
Keywords: algebras
Subjects: Mathematics
Issue Date: 2013
Publisher: Princeton, NJ : Princeton University
Abstract: To generalize the notion of Galois closure for separable field extensions, we devise a notion of <italic>G</italic>-closure for algebras of commutative rings <italic>R &rarr; A</italic>, where A is locally free of rank <italic>n</italic> as an <italic>R</italic>-module and <italic>G</italic> is a subgroup of <italic>Sn</italic>. A <italic>G</italic>-closure of <italic>A</italic> over <italic>R</italic> is an <italic>A<super>&#8855;n</super></italic>-algebra <italic>B</italic> equipped with an <italic>R</italic>-algebra homomorphism <italic>(A<super>&#8855;n</super>)<super>G</super> &rarr; R</italic> satisfying certain properties. Being a <italic>G</italic>-closure commutes with base change, and reduces to being the normal closure of a finite separable field extension if <italic>G</italic> is the corresponding Galois group. We describe <italic>G</italic>-closures of finite &eacute;tale algebras over connected rings in terms of the corresponding finite sets with continuous actions by the fundamental group. If 2 is invertible, then <italic>An</italic>-closures of free extensions correspond to square roots of the discriminant, and if 2 is a non-zerodivisor, then <italic>D</italic>4-closures of quartic monogenic extensions correspond to roots of the resolvent cubic.
Alternate format: The Mudd Manuscript Library retains one bound copy of each dissertation. Search for these copies in the library's main catalog
Type of Material: Academic dissertations (Ph.D.)
Language: en
Appears in Collections:Mathematics

Files in This Item:
File Description SizeFormat 
Biesel_princeton_0181D_10599.pdf447.15 kBAdobe PDFView/Download

Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.