Skip navigation
Please use this identifier to cite or link to this item:
Title: Reversible and Quantum Circuit Synthesis
Authors: Lin, Chia-Chun
Advisors: Jha, Niraj K.
Contributors: Electrical Engineering Department
Keywords: Circuit Synthesis
Quantum Computing
Reversible Computing
Subjects: Computer engineering
Issue Date: 2014
Publisher: Princeton, NJ : Princeton University
Abstract: This thesis presents five major tools for the synthesis of reversible and quantum circuits. Quantum computation has the ability to solve several important problems significantly faster than its classical counterpart. Because of this promise, much research effort has been dedicated to discovering new quantum algorithms and technologies. Quantum mechanics postulates that the time-evolution of quantum states is reversible. Thus, reversibility is a necessary condition for quantum computing. Hence, we propose an effective method and tool, called RMDDS, for synthesizing reversible circuits. Since the evolution of quantum states is determined by some primitive physical operations, quantum computers implemented in different physical systems have different cost. Therefore, we propose an optimized quantum gate library, called QGLVP, for various physical machine descriptions. To enhance synthesis efficiency, we introduce QLib, a quantum module library, which contains scripts to generate quantum modules for many well-known quantum algorithms. Since a quantum system inevitably interacts with the environment, this leads to error and consequent failure of computation. To address this problem, we propose FTQLS, a tool that synthesizes and optimizes fault-tolerant quantum circuits by using logic identity rules for various physical machine descriptions. Finally, we present a tool, called PAQCS, for physical design-aware fault-tolerant quantum circuit synthesis. It effectively synthesizes quantum logic circuits into quantum physical circuits, targeting different physical machine descriptions and quantum error correction codes.
Alternate format: The Mudd Manuscript Library retains one bound copy of each dissertation. Search for these copies in the library's main catalog
Type of Material: Academic dissertations (Ph.D.)
Language: en
Appears in Collections:Electrical Engineering

Files in This Item:
File Description SizeFormat 
Lin_princeton_0181D_10906.pdf1.87 MBAdobe PDFView/Download

Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.