Skip navigation
Please use this identifier to cite or link to this item: http://arks.princeton.edu/ark:/88435/dsp011831cn18c
Title: Study of Nonlinear Dynamics of Intense Charged Particle Beams in the Paul Trap Simulator Experiment
Authors: Wang, Hua
Advisors: Davidson, Ronald
Contributors: Astrophysical Sciences Department
Keywords: Collective Processes
LIF
Paul Trap
Subjects: Plasma physics
Issue Date: 2014
Publisher: Princeton, NJ : Princeton University
Abstract: The Paul Trap Simulator Experiment (PTSX) is a compact laboratory device that simulates the nonlinear dynamics of intense charged particle beams propagating over a large distance in an alternating-gradient magnetic transport system. The radial quadrupole electric eld forces on the charged particles in the Paul Trap are analogous to the radial forces on the charged particles in the quadrupole magnetic transport system. The amplitude of oscillating voltage applied to the cylindrical electrodes in PTSX is equivalent to the quadrupole magnetic eld gradient in accelerators. The temporal periodicity in PTSX corresponds to the spatial periodicity in magnetic transport system. This thesis focuses on investigations of envelope instabilities and collective mode excitations, properties of high-intensity beams with significant space-charge effects, random noise-induced beam degradation and a laser-induced-fluorescence diagnostic. To better understand the nonlinear dynamics of the charged particle beams, it is critical to understand the collective processes of the charged particles. Charged particle beams support a variety of collective modes, among which the quadrupole mode and the dipole mode are of the greatest interest. We used quadrupole and dipole perturbations to excite the quadrupole and dipole mode respectively and study the effects of those collective modes on the charge bunch. The experimental and particle-in-cell (PIC) simulation results both show that when the frequency and the spatial structure of the external perturbation are matched with the corresponding collective mode, that mode will be excited to a large amplitude and resonates strongly with the external perturbation, usually causing expansion of the charge bunch and loss of particles. Machine imperfections are inevitable for accelerator systems, and we use random noise to simulate the effects of machine imperfection on the charged particle beams. The random noise can be Fourier decomposed into various frequency components and experimental results show that when the random noise has a large frequency component that matches a certain collective mode, the mode will also be excited and cause heating of the charge bunch. It is also noted that by rearranging the order of the random noise, the adverse effects of the random noise may be eliminated. As a non-destructive diagnostic method, a laser-induced- fluorescence (LIF) diagnostic is developed to study the transverse dynamics of the charged particle beams. The accompanying barium ion source and dye laser system are developed and tested.
URI: http://arks.princeton.edu/ark:/88435/dsp011831cn18c
Alternate format: The Mudd Manuscript Library retains one bound copy of each dissertation. Search for these copies in the library's main catalog
Type of Material: Academic dissertations (Ph.D.)
Language: en
Appears in Collections:Astrophysical Sciences

Files in This Item:
File Description SizeFormat 
Wang_princeton_0181D_11183.pdf50.96 MBAdobe PDFView/Download


Items in Dataspace are protected by copyright, with all rights reserved, unless otherwise indicated.